Ролик обкатной мультирадиусный



Ролик обкатной мультирадиусный
Ролик обкатной мультирадиусный
Ролик обкатной мультирадиусный

 


Владельцы патента RU 2557377:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) (RU)

Изобретение относится к технологии обработки металлов давлением, в частности к упрочняющей обработке деталей машин поверхностным пластическим деформированием обкатными роликами. На рабочей поверхности ролика последовательно расположены от 2 до 10 деформирующих элементов с профильным радиусом 0,5…5 мм, смещенных относительно друг друга в радиальном направлении на величину 0,01…0,1 мм, как к оси ролика, так и от нее. Расстояние между вершинами упомянутых деформирующих элементов вдоль оси ролика составляет l = 1,2 2 ( R п р 1 + R п р 2 2 ) , где Rпр1 - профильный радиус первого деформирующего элемента; Rпр2 - профильный радиус второго деформирующего элемента. В результате расширяются технологические возможности. 3 ил.

 

Изобретение относится к технологии обработки металлов давлением, в частности к упрочняющей обработке деталей машин поверхностным пластическим деформированием (ППД) обкатными роликами.

Известны конструкции обкатных роликов торовой формы для осуществления ППД (ГОСТ 16344-70. Ролики обкатные. Конструкция и размеры).

Все эти ролики имеют профиль рабочей поверхности, выполненный в виде радиуса постоянной величины - профильного радиуса ролика (Rпр).

По ГОСТ 16344-70 ролики торовой формы изготавливаются с Rпр величиной от 1,6 до 16 мм.

В процессе обработки ППД ролик рабочей частью прижимается к поверхности детали с некоторым усилием Р (по упругой схеме обработки) или с некоторым натягом hд (по жесткой схеме обработки). Вращение (nр) ролику сообщается посредством вращения детали n. Ролик перемещается вдоль оси детали с некоторой подачей S, в результате чего перед ним образуется волна пластически деформированного металла (фиг.1).

При внедрении ролика в зоне контакта возникает асимметричный очаг деформации (ОД) ABCDEFG, характеризуемый передней внеконтактной поверхностью пластической волны (АВС), поверхностью контакта (CDE), a также задней внеконтактной поверхностью (EF). Геометрические размеры и кривизна поверхностей ОД определяются свойствами обрабатываемого материала, а также параметрами режима обработки (фиг.2).

Вследствие деформации частицы металла в ОД перемещаются вдоль некоторых линий тока (ЛТ), формируя упрочненный слой некоторой толщины (фиг.2). Начальные параметры механического состояния металла, которые частицы имели до входа в ОД, трансформируются в накопленные к моменту выхода.

В процессе перемещения вдоль ЛТ частицы металла испытывают непрерывно изменяющееся напряженное состояние, которое в совокупности может быть описано величиной гидростатического давления (величина среднего нормального напряжения, взятая с обратным знаком). При этом происходит непрерывное накопление деформации и исчерпание запаса пластичности частицами металла, которые оцениваются соответственно степенью деформации сдвига Λ и степенью исчерпания запаса пластичности Ψ.

В результате обработки формируется поверхностный слой, оцениваемый совокупностью параметров качества, ключевыми из которых при обработке ППД являются:

- степень упрочнения, (%);

- глубина упрочнения, (мм);

- градиент упрочнения, (МПа/мм).

Конструкции роликов по ГОСТ 16344-70 позволяют в зависимости от исходных свойств металла детали, условий и технологических режимов обработки ППД получать поверхностный слой (ПС) с определенными параметрами механического состояния металла.

Стремление к повышению параметров качества ПС приводит к необходимости интенсификации процесса ППД через изменение режимов обработки и увеличение таким образом объема ОД. Однако известно, что, например, величина допустимого действительного внедрения роликов по ГОСТ 16344-70 при ППД в зависимости от свойств обрабатываемого металла не превышает значений 0,05-0,15 мм - в этом отношении способы ППД имеют предел, обусловленный в первую очередь пластическими свойствами обрабатываемого металла.

При превышении этих значений полностью исчерпывается запас пластичности и происходит разрушение металла в районе вершины пластической волны (точка C на фиг.2) и, как следствие, обработанной поверхности.

Таким образом, доступный диапазон изменения достигаемых при обработке ППД параметров механического состояния ПС ограничен как исходными свойствами металла детали, так и допустимым диапазоном изменения технологических параметров режима обработки, к которым относится и форма профиля обкатного ролика.

Так, например, для обработки ППД заготовки из стали 45 в состоянии поставки роликами по ГОСТ 16344-70 наибольшая степень упрочнения, достижимая без разрушения ПС, составляет 30-40%, наибольшая глубина упрочнения при этом в зависимости от режимов обработки составляет 3-4 мм.

Из представленного примера следует, что недостатком обкатных роликов известной конструкции является недостижимость больших по величине параметров механического состояния ПС, например, степени упрочнения 45-50% без разрушения ПС детали.

Техническим результатом изобретения является расширение возможностей обработки ППД и диапазона достижимых параметров механического состояния металла ПС, за счет применения деформирующего ролика со специальной формой профиля рабочей поверхности.

Технический результат заявляемого изобретения достигается тем, что в ролике обкатном мультирадиусном, включающем профиль рабочей поверхности, выполненный в виде радиуса постоянной величины, согласно изобретению профиль рабочей поверхности представляет собой комбинацию последовательно расположенных деформирующих элементов в количестве от 2 до 10 с профильным радиусом 0,5…5 мм, выполненных в виде радиусов постоянной величины, расположенных относительно друг друга со смещением в радиальном направлении на величину 0,01…0,1 мм как к оси ролика, так и от нее, а расстояние между вершинами деформирующих элементов вдоль оси ролика составляет l = 1,2 2 ( R п р 1 + R п р 2 2 ) , где

Rпр1 - профильный радиус первого деформирующего элемента;

Rпр2 - профильный радиус второго деформирующего элемента.

Изобретение поясняется чертежами, где на фиг.1 показан процесс обработки ППД роликом, взятым за прототип, на фиг.2 - возникновение очага деформации при обработке ППД роликом, взятым за прототип, на фиг.3 - конструкция ролика обкатного из 4 инденторов.

Профиль рабочей поверхности ролика обкатного мультирадиусного представляет собой комбинацию последовательно расположенных деформирующих элементов в количестве от 2 до 10 с профильным радиусом 0,5…5 мм. Рассмотрим на примере конструкции ролика обкатного мультирадиусного из 4 инденторов. Ролик обкатной мультирадиусный перемещается вдоль оси детали с некоторой подачей S.

Расстояние между вершинами ДЭ вдоль оси ролика составляет l = 1,2 2 ( R п р 1 + R п р 2 2 ) , где

Rпр1 - профильный радиус первого деформирующего элемента;

Rпр2 - профильный радиус второго деформирующего элемента.

Деформирующий элемент, первым входящий в контакт с исходным (необработанным) поверхностным слоем 3 детали 2, имеет некоторый профильный радиус Rпр1=0,5…5 мм и двигается относительно поверхностного слоя 3 с некоторым натягом h∂1=0,01…0,1 мм. В результате возникает ОД, по форме и размерам типичный для ППД роликом-прототипом.

Второй деформирующий элемент также имеет некоторый профильный радиус Rпр2=0,5…5 мм и радиальное смещение относительно 1-го элемента в направлении от оси ролика на некоторую величину в пределах Δ12=0,01…0,1 мм. Таким образом, натяг 2-го элемента относительно поверхности составляет h∂2=h∂112.

Второй ДЭ формирует свой ОД, передняя внеконтактная зона которого совпадает с задней внеконтактной зоной ОД от первого ДЭ. Таким образом, в зоне между 1-м и 2-м ДЭ происходит изменение схемы напряженного состояния, которое приводит к смене знака пластической деформации и трансформации механического состояния частиц металла при переходе от одного ДЭ к другому.

Этот же эффект наблюдается во всех зонах, расположенных между соседними деформирующими элементами.

Третий деформирующий элемент, как и предыдущие, имеет профильный радиус Rпр3=0,5…5 мм и радиальное смещение относительно 2-го элемента в направлении от оси ролика на величину Δ23=0,01…0,1 мм. Таким образом, натяг 3-го элемента относительно поверхности составил h∂3=h∂223.

Четвертый деформирующий элемент также имеет профильный радиус Rпр4=0,5…5 мм и некоторое радиальное смещение величиной в пределах Δ12=0,01…0,1 мм относительно 3-го элемента в обратную сторону, т.е. в направлении к оси ролика величиной Δ34. Таким образом, натяг 3-го элемента относительно поверхности составил h∂4=h∂334.

С точки зрения стабильности положения ролика относительно обрабатываемой поверхности, т.е. для снижения сил, вызывающих перекос ролика, натяг последнего ДЭ должен быть идентичным натягу первого ДЭ, т.е. h∂1=h∂4. Таким образом, смещение 4-го ДЭ (в обратном направлении) должно составлять Δ34=-(Δ1223).

В результате описанной выше конструкции профиля рабочей части металл поверхностного слоя детали при обработке, находясь в условиях сложного напряженного состояния, испытывает пластическую деформацию с неоднократной сменой знака, что приводит к частичному залечиванию дефектов и восстановлению запаса пластичности металла в зонах смены знака деформации.

Результаты исследований показали, что при обработке роликом представленной конструкции накопление деформации и исчерпание запаса пластичности происходит волнообразно, число и расположение «волн» соответствует числу ДЭ. При этом накапливаются значительно меньшие значения исчерпания запаса пластичности Ψ=0,02…0,3, в то время как при обработке деталей ППД роликами по ГОСТ 16344-70 с профильным радиусом Rпр=1,6…10 мм, значения степени исчерпания запаса пластичности находятся в диапазоне Ψ=0,1…0,9.

Проведенные исследования показывают, что описанная выше конструкция профиля рабочей части обкатного ролика позволяет накапливать большие значения деформаций без разрушения ПС и увеличить максимально достижимые значения параметров механического состояния металла ПС при обработке.

Ролик обкатной с рабочей поверхностью, имеющей радиус постоянной величины, отличающийся тем, что на рабочей поверхности ролика последовательно расположены от 2 до 10 деформирующих элементов с профильным радиусом 0,5…5 мм, смещенных относительно друг друга в радиальном направлении на величину 0,01…0,1 мм, как к оси ролика, так и от нее, при этом расстояние между вершинами упомянутых деформирующих элементов вдоль оси ролика составляет , где
Rпр1 - профильный радиус первого деформирующего элемента;
Rпр2 - профильный радиус второго деформирующего элемента.



 

Похожие патенты:

Изобретение относится к машине для накатывания осей колесных пар единиц железнодорожного подвижного состава. Машина содержит два упорных центра для размещения каждого из обоих концов оси, устройство для привода оси, две пары накатных инструментов, установленных с возможностью перемещения в направлениях x, y, z машины, и устройства для зажима и продольной подачи накатных инструментов.

Изобретение относится к упрочнению поверхности металлических изделий. Осуществляют установку обрабатываемого изделия электрически изолированно на изоляторы с заземляющим проводом.

Изобретение относится к области металлообработки, а именно к устройствам для электромеханической обработки деталей машин, и может быть использовано для упрочнения внутренних цилиндрических поверхностей.

Изобретение относится к комбинированным методам чистовой обработки зубьев зубчатых колес. Обработку производят тремя свободно установленными на соответствующих неподвижных осях роликами, два из которых режущие, а один калибрующий, при принудительном вращении обрабатываемого зубчатого колеса.

Изобретение относится к области машиностроения, в частности к устройствам для накатывания сетчатых рифлений и упрочнения поверхностного слоя методом пластического деформирования.

Изобретение относится к области машиностроения, в частности к металлообработке, и может быть использовано при изготовлении металлических изделий с повышенной износостойкостью поверхности.

Изобретение относится к области машиностроения, в частности к финишной обработке деталей. Осуществляют вращение детали и воздействие на ее поверхность устройством для ультразвуковой финишной обработки с деформирующим элементом.

Изобретение относится к поверхностному пластическому деформированию деталей с помощью обкатных роликов. Ролик содержит два деформирующих элемента с профильным радиусом 0,5…5 мм, расположенных относительно друг друга со смещением в радиальном направлении на величину 0,01…0,1 мм как к оси ролика, так и от нее.

Изобретение относится к поверхностному пластическому деформированию деталей с помощью обкатных роликов. Ролик содержит деформирующий элемент, имеющий радиус постоянной величины, равный 1…10 мм, и цилиндрическую часть, расположенную со смещением в радиальном направлении относительно вершины деформирующего элемента на величину Δ=0,01…0,5 мм.

Изобретение относится к машиностроению и может быть использовано для обработки металлов поверхностным пластическим деформированием нежестких длинномерных деталей.

Изобретение относится к области технологии машиностроения, а именно к упрочнению поверхностного слоя стальных деталей. Осуществляют низкотемпературное азотирование детали, а затем проводят ее поверхностное пластическое деформирование. Поверхностное пластическое деформирование детали осуществляют ультразвуковым инструментом при частоте f=19-22 кГц и амплитуде ξm=2-20 мкм акустических колебаний и усилием его прижима к детали 25-100 H. В результате увеличивается толщина упрочненного слоя детали и повышается микротвердость ее поверхностного слоя. 1 з.п. ф-лы, 1 табл.

Изобретение относится к устройствам для электромеханической обработки деталей и может быть использовано для упрочнения наружных цилиндрических деталей с резьбой. Державка содержит расположенные друг напротив друга резьбовой инструмент с резьбовым роликом и упрочняющий инструмент с упрочняющим роликом. Каждый из указанных инструментов содержит цилиндр, шток, спиральную пружину, вилку, резьбовой ролик, токоподводящую ось и фланец. При этом шток каждого инструмента установлен в его цилиндре и на нем установлены флажок и спиральная пружина. Вилка каждого инструмента закреплена с торца штока, а его фланец установлен с торца цилиндра. Резьбовой и упрочняющий ролики установлены в своих вилках с помощью токоподводящих осей. В результате расширяются технологические возможности. 1 ил.

Изобретение относится к электромеханической обработке цилиндрических деталей с резьбой. Инструмент содержит корпус и установленные с противоположных сторон последнего упрочняющий инструмент и резьбовой инструмент. Резьбовой инструмент содержит цилиндр, в котором установлен шток, пружину, вилку, резьбовой ролик, токоподводящую ось и фланец. При этом на штоке установлены флажок и спиральная пружина. Вилка закреплена с торца штока. Резьбовой ролик установлен в вилке с помощью токоподводящей оси. Фланец установлен с торца цилиндра. Упрочняющий инструмент содержит цилиндр, в котором установлен шток, пружину, кронштейн вилки, фиксирующую ось, вилку, упрочняющие ролики, токоподводящие оси и фланец. При этом на штоке установлен флажок и спиральная пружина. С торца штока закреплен кронштейн вилки. Вилка шарнирно посредством фиксирующей оси соединена с кронштейном вилки. Упрочняющие ролики установлены в вилке со смещением относительно друг друга на ширину их контактного участка с помощью токоподводящих осей. Фланец установлен с торца цилиндра. В результате обеспечивается возможность упрочнения резьбовой части детали и последующее упрочнение ее цилиндрической части без переналадки инструмента. 1 ил.

Изобретение относится к отделочно-упрочняющей обработке коленчатых валов на шлифовальных станках. Осуществляют ультразвуковую обработку шеек и галтелей коленчатых валов излучателем с головкой и рабочим наконечником. Излучателю с сообщают возвратно-поступательное перемещение и усилие поджима к обрабатываемой поверхности. Передачу ультразвуковых колебаний на излучатель осуществляют через резонансный волновод с помощью акустической системы. Используют рабочий наконечник излучателя, содержащий два сферических индентора, расположенных симметрично в одной горизонтальной плоскости. Коленчатому валу сообщают вращательное движение и движение продольной подачи путем перемещения посредством стола шлифовального станка. Ультразвуковую обработку цилиндрической поверхности шейки вала осуществляют одновременно обоими упомянутыми инденторами при неподвижном положении головки излучателя и акустической системы. Ультразвуковую обработку радиусной галтели выполняют одним из двух сферических инденторов с возможностью возвратно-поступательного перемещения головки излучателя вместе с обоими инденторами вдоль продольной оси акустической системы. В результате расширяются технологические возможности. 4 н.п. ф-лы., 5 ил.

Изобретение относится к обработке кольцевой детали обкаткой. Устанавливают деталь между тремя валками, с помощью которых обеспечивают деформацию детали и ее непрерывную обкатку между ними. Максимальную величину деформации детали определяют из равенства: где D - диаметр наружной поверхности детали, W - момент сопротивления изгибу, [σt] - предел текучести материала детали, Ε - модуль упругости материала детали, J - осевой момент инерции поперечного сечения детали, kp - коэффициент допустимой погрешности (kp=(1,4-1,7)), F - площадь поперечного сечения детали. В результате повышается производительность обработки и расширяются технологические возможности. 1 з.п. ф-лы, 1 ил., 1 пр.
Наверх