Способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке

Изобретение относится к радиолокации и может быть использовано для повышения точности определения местоположения и других параметров наземных источников радиоизлучений (ИРИ) с помощью систем радиотехнической разведки (СРТР). Достигаемый технический результат - повышение достоверности отождествления сигналов в многоцелевой обстановке. Указанный результат достигается за счет того, что СРТР вычисляет оценки X ^ j , i ( k ) координат состояния обнаруженных и сопровождаемых ИРИ, на основании которых производится отождествление результатов измерения координат Xин,i(k), полученных в k-й момент времени, с соответствующим ИРИ, при этом для каждой координаты состояния каждого обнаруженного и сопровождаемого ИРИ определяется интервал значений, зависящий от дисперсий измерения величин Xиj,i(k), дисперсий скорости изменения координат состояния X ˙ j , i ( k ) , а также от коэффициента пропорциональности K, значение которого выбирается в диапазоне от 1 до 2. Совокупность интервалов по всем координатам состояния каждого ИРИ образует многомерный строб, при попадании в который результат измерения вектора состояния Xин(k) в k-й момент времени отождествляется, например, с конкретным ИРИ. Если измеренный вектор Xин(k) не попал в пределы ни одного из стробов j-го ИРИ, где j = 1, N ¯ , то принимается решение об обнаружении нового ИРИ с индексом N+1. 2 ил.

 

Изобретение относится к радиолокации и может быть использовано для повышения точности определения местоположения (МП) и других параметров наземных источников радиоизлучений (ИРИ) с помощью систем радиотехнической разведки (СРТР).

Ожидаемая высокая насыщенность районов военных действий ИРИ различного назначения создает сложную (многоцелевую) радиоэлектронную обстановку и предопределяет для СРТР принципиальную необходимость решения следующих задач:

- идентификации ИРИ по типам, экземплярам и тактическому назначению;

- сопровождения обнаруженных ИРИ по всем значимым информационным параметрам: несущей частоте, периоду повторения (интервалу следования) и длительности импульсов, ширине спектра сигналов, местоположению и др.

Актуальность решения этих задач обусловлена, в частности, необходимостью оценки угроз с ранжированием ИРИ по степени важности и выдачи команд целеуказания, например, противорадиолокационным ракетам для поражения наиболее опасных целей. При этом следует подчеркнуть, что успешность решения этих задач в многоцелевой обстановке во многом зависит от способности СРТР отождествлять принятые сигналы с конкретными экземплярами ИРИ, что и предопределяет потенциальные возможности их достоверного сопровождения.

Здесь под отождествлением сигналов понимается процесс взаимно однозначного установления принадлежности принятых сигналов к конкретным экземплярам ИРИ в условиях многоцелевой обстановки. Процесс правильного отождествления сигналов не вызывает существенных затруднений, если сигналы, принимаемые от различных ИРИ, имеют устойчивые различия численных значений радиотехнических параметров. В противном случае, когда в зоне наблюдения находится несколько однотипных ИРИ, то вероятность ошибочного отождествления их сигналов резко возрастает.

В [1, 2] представлены способы отождествления, применяемые в бортовых пеленгационных системах для обработки измеренных азимутов ИРИ. Среди них наиболее часто применяется на практике так называемый «площадной» способ, который рассматривается в качестве прототипа.

«Площадной» способ отождествления азимутальных пеленгов поясняется фиг. 1. Предполагается, что в точках x1, x2, x3, … производится измерение пеленгов, например, α1, β1, α2, β2, α3, β3 … на ИРИ «А» и ИРИ «В» соответственно. При этом точки пересечения пеленгов, измеренных в различных точках на один и тот же ИРИ, группируются в пределах небольших областей, которые называются доверительными областями (ДО) и с заданной доверительной вероятностью Рдов включают в себя точки истинного МП ИРИ. Точки пересечения пеленгов, измеренных на разные ИРИ, распределены по сравнительно большой площади и плотно не группируются. Пеленги, пересекающиеся в пределах ДО, отождествляются с тем ИРИ, к которому эта область относится. Точки пересечения пеленгов, находящиеся за пределами ДО, определяют местоположение ложных (несуществующих) ИРИ.

Недостатком «площадного» способа является невозможность обработки других параметров принимаемых сигналов (кроме пеленгов), а также совместной обработки нескольких разнотипных параметров.

Ниже будет предложен более рациональный по критерию «достоверность - вычислительные затраты» способ отождествления принятых сигналов с конкретными экземплярами обнаруженных (сопровождаемых) ИРИ в многоцелевой обстановке, основанный на использовании многомерных стробов (доверительных областей) по измеряемым фазовым координатам (параметрам). При этом будет полагаться, что выполняются следующие условия:

1) СРТР предназначена для оценки n координат состояния ИРИ, объединенных в вектор

каждого из N источников радиоизлучения при наличии соответствующих измерений

2) сигналы ИРИ поступают на СРТР в общем случае не одновременно, а результаты измерений определяются моделью

где k - номер дискрета времени, ξj,i(k) - центрированные некоррелированные гауссовские шумы с известной дисперсией Dиj,i(k) в k-й момент времени;

3) оценки X ^ j , i ( k ) координат состояния всех обнаруженных ИРИ являются известными и получены на k-й момент времени по результатам предыдущих измерений.

В процессе разработки предлагаемого способа отождествления необходимо решить две задачи:

1) определить размеры стробов, гарантирующих требуемую достоверность отождествления;

2) сформулировать правило принятия решения о принадлежности полученных измерений конкретным ИРИ.

При решении этих задач будет полагаться, что за время, равное Δt (k)=tk-tk-1, координаты (1) состояния ИРИ изменяются по закону

где X ˙ j , i ( k 1 ) - скорость изменения оцениваемого параметра.

Тогда с учетом (3) и (4) приращение измерений и его дисперсия за интервал Δt (k) будут определяться выражениями соответственно [3]

где - дисперсия скорости изменения параметров [3].

Здесь следует отметить, что численные значения могут определяться по правилу вытекающему из соотношения Для большинства параметров наземных (морских) неподвижных (малоподвижных) ИРИ, не зависящих от перемещений самолета-носителя СРТР, можно полагать

Поскольку процесс (3) является гауссовским, то все приращения (5) должны с вероятностью 0,997 укладываться в диапазон

При этом размер строба ΔXиj,i(k)max для j-го ИРИ по i-й измеренной фазовой координате должен удовлетворять условию

где K=1…2 обеспечивает выполнение условия (8) с заранее заданной вероятностью Р=0,68…0,95, a Dиj,i(k) - дисперсия шумов измерений ΔXиj,i(k)max.

Выражение (8) определяет размеры строба для каждого j-го ИРИ по каждой i-й фазовой координате, а также предопределяет использование следующего правила принятия решения об отождествлении. Если все измерения Xин,i(k), принадлежащие в k-й момент времени неизвестному экземпляру ИРИ, удовлетворяют условию

то принимается решение об их отождествлении с фазовыми координатами j-го ИРИ. При этом результат отождествления представляется в виде вектора Xиj*(k)=Xин. Здесь Xиj*(k)=[Xиj*,1(k), Xиj*,2(k), …, Xиj*i(k), …, Xиj*,i(k)], а Xин(k)=[Xин,1(k), Xин,2(k), …, Xин,i(k), …, Xин,i(k)], где j* - индекс ИРИ, с которым отождествлен измеренный вектор параметров Xин(k). Если условие (9) не выполняется хотя бы по одной из n координат, то проверяется выполнение этого условия для следующего экземпляра сопровождаемого ИРИ в соответствии с выражением

и так далее для всех обнаруженных (сопровождаемых) ИРИ. Если условия (9), (10) не выполняются ни для одного из обнаруженных (сопровождаемых) экземпляров ИРИ, то принимается решение об обнаружении нового ИРИ, т.е. j*=N+1.

На фиг. 2 представлена упрощенная структурная схема одного из возможных вариантов системы, реализующей предлагаемый способ стробового отождествления пеленгов ИРИ в многоцелевой обстановке. Система включает в себя n-канальный измеритель параметров принимаемых сигналов (И) 3, устройство сравнения (УС) 4, а также бортовую вычислительную систему (БВС) 5. Принимаемые сигналы поступают на измеритель И, формирующий в каждый k-й момент времени результаты Xин,i(k), которые подаются на УС, а также в БВС, вычисляющую в соответствии с (8) размеры стробов ΔXиj,i(k)max. При этом информация о местоположении СРТР и скорости ее движения поступает от навигационной системы, а значения X ^ j , i ( k ) - от системы формирования оценок координат состояния ИРИ. Координаты МП и оценки координат состояния также подаются на УС, которая реализует алгоритм, определяемый выражениями (9), (10). По результатам сравнения принимается решение о принадлежности принятых сигналов соответствующим j*-м ИРИ либо об обнаружении новых ИРИ cj*=N+1.

Реализация описанного выше способа позволит повысить достоверность отождествления сигналов в многоцелевой обстановке и тем самым обеспечит качественное определение местоположения обнаруживаемых ИРИ и их надежное сопровождение.

ЛИТЕРАТУРА

1. Мельников Ю.П. Воздушная радиотехническая разведка (методы оценки эффективности). М.: Радиотехника, 2005.

2. Мельников Ю.П., Попов С.В. Радиотехническая разведка. Методы оценки эффективности местоопределения источников излучения. М.: Радиотехника, 2008.

3. Тихонов В.И. Статистическая радиотехника. 2-ое изд., перераб. и доп. М.: Радио и связь, 1982.

Способ стробового отождествления сигналов с источниками радиоизлучения (ИРИ) в многоцелевой обстановке, заключающийся в том, что система радиотехнической разведки вычисляет оценки i-x координат состояния j-х обнаруженных и сопровождаемых ИРИ, на основании которых производится отождествление результатов измерения координат состояния Xин,i(k), полученных в k-й момент времени, с соответствующим ИРИ, отличающийся тем, что для каждой i-й координаты состояния каждого j-го обнаруженного и сопровождаемого ИРИ определяется интервал значений

где ΔXиj,i(k)max - размер строба для j-го ИРИ по i-й измеренной координате состояния;
K - коэффициент пропорциональности, значение которого выбирается в диапазоне от 1 до 2, обеспечивающее выполнение (1) с заранее заданной вероятностью;
- дисперсия скорости изменения координат состояния
Δt(k)=tk-tk-1 - дискрет времени;
Dиj,i(k) - дисперсия измерения величины Xиj,i(k);
а также совокупность интервалов по всем координатам состояния каждого ИРИ образует многомерный строб, при попадании в который результат измерения вектора состояния Хин(k) в k-й момент времени отождествляется с конкретным ИРИ, при этом, если измеренный вектор Хин(k) не попал в пределы ни одного из стробов j-го ИРИ, где то принимается решение об обнаружении нового ИРИ с индексом N+1.



 

Похожие патенты:

Изобретение относится к области радиотехники, а именно к беспроводным мобильным сетям или точкам доступа беспроводной локальной сети, и может быть использовано при определении местоположения пользователя.

Изобретение относится к области радиотехники, а именно к оценке положения космического аппарата (6), и может быть использовано, в частности, для оценки положения спутника, вращающегося вокруг Земли.

Изобретение относится к области радиочастотной идентификации. Достигаемый технический результат изобретения - повышение точности и дальности определения местоположения передатчика сигнала.

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля при решении задачи скрытного определения координат объектов-носителей источников радиоизлучения (ИРИ) с направленными антеннами.

Изобретение относится к области пассивной радиолокации и предназначено для проведения натурных испытаний опытных образцов пассивной разностно-дальномерной системы (РДС) при отсутствии одного из приемных постов.

Изобретение относится к способам и устройству для установления местоположения приемника при помощи радиосигналов GPS. .

Изобретение относится к радиотехнике и может быть использовано в системах связи для компенсации задержек принимаемых сигналов в радиоприемниках определения местоположения.

Изобретение относится к радиотехнике и может быть использовано в системах дистанционного контроля ядерных и иных взрывов, предупреждения о запусках ракет, наблюдения за сейсмической активностью.

Изобретение относится к радиотехнике и может быть использовано в системах дистанционного контроля ядерных и иных взрывов, предупреждения о запусках ракет, наблюдения за сейсмической активностью.

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля при решении задачи скрытного определения координат объектов-носителей источников радиоизлучения (ИРИ). Техническим результатом изобретения является возможность определения дальности до ИРИ, преимущественно станций УКВ диапазона, работающих за пределами радиогоризонта, антенны которых могут быть всенаправленными или остронаправленными, сканирующими или неподвижными. 2 ил., 1 табл.

Изобретение относится к областям радионавигации и радиолокации и может быть использовано для создания приемника многопозиционной неизлучающей радиолокационной системы, использующей в качестве сигнала подсвета воздушных целей навигационные сигналы космической системы навигации. Достигаемым техническим результатом является повышение вероятности правильного обнаружения навигационного сигнала, рассеянного воздушной целью. Сущность изобретения заключается в том, что при приеме слабого рассеянного навигационного сигнала осуществляется компенсация мощного навигационного сигнала прямого распространения, играющего в этом случае роль структурно-детерминированной помехи. Для этого при приеме входной реализации в виде смеси мощного прямого навигационного сигнала, слабого навигационного сигнала, рассеянного воздушной целью, и собственного шума приемника осуществляется сначала стандартная процедура обнаружения мощного прямого сигнала и определение его точных параметров, при этом входная реализация записывается в память. Далее формируется точная копия прямого сигнала и вычитается из записанной входной реализации. Полученный результат содержит только собственные шумы приемника и слабый рассеянный сигнал, обнаружение которого осуществляется традиционным способом. Исключение влияния основного лепестка корреляционной функции не полностью скомпенсированного навигационного сигнала прямого распространения осуществляется путем ограничения области возможных значений задержки при поиске слабого рассеянного сигнала, поскольку, исходя из геометрии распространения прямого и рассеянного сигналов, задержка рассеянного сигнала будет всегда больше задержки прямого сигнала. 2 н.п. ф-лы, 1 ил.
Наверх