Способ ускорения электронов



Способ ускорения электронов
Способ ускорения электронов
Способ ускорения электронов
Способ ускорения электронов
Способ ускорения электронов

 


Владельцы патента RU 2557798:

Федеральное госудерственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение относится к ускорительной технике и предназначено для генерации электронов с большой энергией для последующего использования в дефектоскопии, томографии, радиационных испытаниях стойкости материалов, лучевой терапии и других областях техники. Способ ускорения электронов включает формирование возрастающего во времени магнитного поля, коррекцию магнитного поля дополнительным импульсным магнитным полем, импульсную инжекцию электронов в скорректированное магнитное поле, ускорение пучка частиц на равновесной орбите. Корректирующее дополнительное импульсное магнитное поле включают после начала импульсной инжекции электронов в магнитное поле. Техническим результатом является увеличение количества ускоренных электронов в импульсе излучения бетатрона. 5 ил.

 

Изобретение относится к области ускорительной техники и предназначено для генерации высокоэнергетичных электронов для последующего использования в дефектоскопии, томографии, радиационных испытаниях стойкости материалов, лучевой терапии и др.

Известен способ индукционного ускорения электронов, реализуемый в бетатронах [1. Москалев В.А., Сергеев Г.И. Индукционный ускоритель электронов - бетатрон. - Томск: ТПУ, 2012. - С. 103], который включает формирование возрастающего во времени магнитного поля, коррекцию магнитного поля дополнительным импульсным магнитным полем, импульсную инжекцию электронов в скорректированное магнитное поле, ускорение электронов на равновесной орбите.

Известен, способ индукционного ускорения электронов, реализуемый в бетатронах [2. Демидов И.И., Лисин В.А. Секторный контрактор бетатрона //Актуальные проблемы современной онкологии. - Томск: ТГУ, 1984. - Вып. 3. - С. 30-33.], выбранный в качестве прототипа, который включает формирование возрастающего во времени магнитного поля, коррекцию магнитного поля дополнительным импульсным магнитным полем, импульсную инжекцию электронов в скорректированное магнитное поле, ускорение электронов на равновесной орбите, причем коррекцию магнитного поля дополнительным импульсным магнитным полем и импульсную инжекцию электронов начинают одновременно.

Количество электронов, ускоренных этими способами в импульсе излучения бетатрона, ограничено из-за малой длительности интервала времени захвата электронов в ускорение, в течение которого энергия инжектируемых электронов соответствует напряженности магнитного поля на равновесной орбите.

Задачей настоящего изобретения является увеличение количества ускоренных электронов в импульсе излучения.

Поставленная задача решена за счет того, что способ ускорения электронов, так же как и в прототипе, включает формирование возрастающего во времени магнитного поля, коррекцию магнитного поля дополнительным импульсным магнитным полем, импульсную инжекцию электронов в скорректированное магнитное поле, ускорение пучка частиц на равновесной орбите.

Согласно изобретению корректирующее дополнительное импульсное магнитное поле включают после начала импульсной инжекции электронов в магнитное поле.

Включение корректирующего дополнительного импульсного магнитного поля после начала импульсной инжекции электронов в магнитное поле позволяет при подборе амплитуд и простых временных зависимостей корректирующего дополнительного импульсного магнитного поля и напряжения импульсной инжекции электронов, увеличить длительность интервала времени захвата электронов в ускорение, в течение которого энергия инжектируемых электронов соответствует напряженности магнитного поля на равновесной орбите, до длительности действия корректирующего дополнительного импульсного магнитного поля.

Увеличение длительности интервала времени захвата электронов в ускорение соответствует увеличению количества ускоренных электронов в импульсе излучения.

На фиг. 1 показана принципиальная схема бетатрона.

На фиг. 2 показаны зависимости токов в обмотках возбуждения, в обмотках контрактора и напряжения инжекции от времени.

На фиг. 3 представлены зависимость энергии электронов, соответствующей радиусу равновесной орбиты и напряженности магнитного поля на ней, а также тока в обмотках, генерирующих корректирующее дополнительное импульсное магнитное поле, и энергии инжектируемых электронов от времени при реализации предлагаемого способа.

На фиг. 4 показана зависимость радиуса равновесной орбиты от времени в интервале времени включения корректирующего дополнительного импульсного магнитного поля.

На фиг. 5 представлены зависимость энергии электронов, соответствующей радиусу равновесной орбиты и напряженности магнитного поля на ней, а также тока в обмотках, генерирующих корректирующее дополнительное импульсное магнитное поле, и энергии инжектируемых электронов от времени при реализации известного способа.

Способ ускорения электронов осуществляют, например, малогабаритным бетатроном, который содержит магнитопровод 1 (фиг. 1), обмотки возбуждения 2, профильные полюсы 3, набор центральных вкладышей 4, ускорительную камеру 5, инжектор 6, обмотки контрактора 7.

Формирование основного магнитного поля осуществляют путем пропускания в каждом цикле ускорения длительностью, например, 1 мс через обмотки возбуждения 2 возрастающего во времени t тока Iв (фиг. 2).

При этом профильные полюсы 3, набор центральных вкладышей 4, величина зазора между профильными полюсами 3 обеспечивают распределение напряженности магнитного поля, в котором на радиусе r =Ro=const выполняется "бетатронное соотношение":

H R o ( t ) = H R o ( t ) ¯ 2 ,

где H R o ( t ) - текущая напряженность магнитного поля на орбите радиуса Ro в медианной плоскости (z=0) в момент времени t ;

H R o ( t ) ¯ - текущая средняя в пределах круга, охватываемого орбитой радиуса Ro, напряженность магнитного поля в медианной плоскости в момент времени t .

Кинетическая энергия E к и н . ( H R o ( t ) , R O ) , с которой на орбите с радиусом Ro может находится электрон в момент времени t до включения корректирующего дополнительного импульсного магнитного поля и после выключения корректирующего дополнительного импульсного магнитного поля при напряженности магнитного поля на орбите H R o ( t ) , соответствует соотношениям:

E к и н . ( H R o ( t ) , R o ) = E ( t ) m c 2 ,

E ( t ) = m c 2 1 β ( t ) 2 ,

β ( t ) = V ( t ) c ,

β ( t ) E ( t ) = e 0 R 0 H R o ( t ) ,

и равна:

E к и н . ( H R o ( t ) , R o ) = ( ( m c 2 ) 2 + ( e 0 R 0 H R o ( t ) ) 2 ) 0.5 m c 2 ,

где E - полная энергия электрона,

m - масса покоя электрона,

c - скорость света,

e 0 - заряд электрона,

V - скорость электрона.

Зависимости E к и н . ( H R o ( t ) , R O ) от времени t до включения корректирующего дополнительного импульсного магнитного поля и после его выключения показаны на фиг. 3.

В момент времени tи включают инжекцию электронов, напряжение которой изменяется по зависимости Uи(t) (фиг. 2).

По такой же зависимости возрастает энергия инжектируемых электронов (фиг. 3):

Eи (t)= e 0 Uи(t), кэВ.

При достижении равенства:

E и ( t ) = E к и н . ( H R o ( t ) , R O )

в момент времени tк включают на время Tк корректирующее дополнительное импульсное магнитное поле путем пропускания тока через обмотки контрактора 7 в соответствии с зависимостью I к ( t ) (фиг. 2, фиг. 3).

Зависимости U и ( t ) и I к ( t ) реализуются известными средствами.

В скорректированном магнитном поле радиус R(t) орбиты, соответствующей "бетатронному соотношению", в интервале времени Tк изменяется от Ro до Rмакс (фиг. 4).

Возрастающая во времени кинетическая энергия:

E к и н . ( H R ( t ) ( t , I к ( t ) ) , R ( t ) ) = ( ( m c 2 ) 2 + ( e 0 R ( t ) H R ( t ) ( t , I к ( t ) ) ) 2 ) 0.5 m c 2 ,

с которой электрон может находиться на орбите с радиусом R(t), и возрастающая во времени энергия инжектируемых электронов E и ( t ) с момента времени tк в течение интервала времени Tк практически равны в пределах энергетического разброса электронов, соответствующего их ускорению:

E к и н . ( H R ( t ) ( t , I к ( t ) ) , R ( t ) ) = E и ( t ) ,

(фиг. 3), и соответственно инжектируемые электроны захватываются на орбиту с радиусом R(t), которая становится благодаря фокусирующим свойствам скорректированного магнитного поля равновесной орбитой ускорения захваченных электронов.

Длительность времени захвата ТЗ (интервала времени сопряжения зависимостей E к и н . ( H R ( t ) ( t , I к ( t ) ) , R ( t ) ) и E и ( t ) ) равна (фиг. 3) длительности действия корректирующего дополнительного импульсного магнитного поля ТК, ТЗК.

Причем захватываемые электроны остаются на равновесной орбите с радиусом R(t), так как Rмакс (фиг. 4) достаточно сильно отличается от Rин - радиуса расположения инжектора (фиг. 1), элемента ограничивающего пространство, в котором могут перемещаться захваченные электроны, совершая колебания относительно равновесной орбиты.

В интервале времени от tи до tк и после момента времени tк+Tк электроны с уменьшающейся в процессе инжекции энергией инжектируются в нескорректированное возрастающее во времени магнитное поле и не захватываются на равновесную орбиту из-за несоответствия энергии инжектируемых электронов и напряженности магнитного поля на равновесной орбите.

При условии ограничения амплитуды тока в обмотках контрактора Iк(t), а значит, и Rмакс длительность времени захвата ТЗ ограничена только необходимостью сформировать простые по форме и согласованные по амплитуде импульсы напряжения инжекции и тока в обмотках контрактора 7 достаточно большой длительности, что выполняется известными средствами.

Определение зависимостей I к ( t ) и U и ( t ) при конкретной реализации способа проводится компьютерным моделированием с последующим экспериментальным уточнением.

На фиг. 5 приведены зависимости, соответствующие известному способу ускорения электронов [2]. Если t и t к , то при любых параметрах изменения напряжения инжекции (энергии инжектируемых электронов) невозможно выполнение равенства:

E к и н . ( H R ( t ) ( t , I к ( t ) ) , R ( t ) ) =Eи(t)

во всем интервале времени ТК, время захвата ТЗ мало и составляет только малую часть времени действия корректирующего поля ТК, ТЗ<<ТК.

Большая длительность времени захвата электронов в ускорение, превосходящая длительность времени захвата при реализации известного способа соответствует большему по сравнению с известным способом количеству ускоренных электронов в импульсе излучения.

Cпособ ускорения электронов, включающий формирование возрастающего во времени магнитного поля, коррекцию магнитного поля дополнительным импульсным магнитным полем, импульсную инжекцию электронов в скорректированное магнитное поле, ускорение пучка частиц на равновесной орбите, отличающийся тем, что корректирующее дополнительное импульсное магнитное поле включают после начала импульсной инжекции электронов в магнитное поле.



 

Похожие патенты:

Изобретение относится к области ускорительной техники и предназначено для генерации позитронов с большой энергией для последующего использования в дефектоскопии, томографии, радиационных испытаниях стойкости материалов, лучевой терапии и др.

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований.

Бетатрон (1), прежде всего, в рентгеновской досмотровой установке, с вращательно-симметричным внутренним ярмом из двух расположенных на расстоянии друг от друга частей (2a, 2b), внешним ярмом (4), соединяющим обе части (2a, 2b) внутреннего ярма, по меньшей мере одной катушкой (6a, 6b) основного поля, тороидальной камерой (5) бетатрона, расположенной между частями (2a, 2b) внутреннего ярма, по меньшей мере одной катушкой сжатия и расширения (СР-катушкой) 7a, 7b, при этом соответственно ровно одна СР-катушка (7a, 7b) расположена между торцевой стороной части (2a, 2b) внутреннего ярма и камерой (5) бетатрона, а радиус СР-катушки (7a, 7b) равен, по существу, заданному радиусу орбиты электронов в камере (5) бетатрона.

Изобретение относится к ускорительной технике и может быть использовано при создании индукционных циклических ускорителей промышленного назначения, например, для модификации и производства новых материалов, стерилизации медицинских инструментов и пищевых продуктов, дезинфекции медицинских и других отходов, очистки дымовых газов промышленных предприятий от вредных SOx и NOx окислов.

Изобретение относится к ускорительной технике и может быть использовано в средствах неразрушающего контроля материалов и изделий. .

Изобретение относится к ускорительной технике и может быть использовано в средствах неразрушающего контроля материалов и изделий. .

Изобретение относится к области ускорительной техники и предназначено для генерации позитронных пучков с большой энергией для последующего использования высокоэнергетичных позитронов для целей дефектоскопии, томографии, радиационных испытаний стойкости материалов, лучевой терапии и др.

Изобретение относится к рентгеновской досмотровой технике. .

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований. .
Наверх