Способ получения мультиплексного риккетсиального диагностикума

Изобретение относится к медицине, а именно к диагностике риккетсиозов, и может быть использовано для выявления антител к риккетсиям Провачека и коксиеллам Бернета в сыворотке крови людей, а также при изучении иммунологической структуры населения и проверке эффективности вакцинации. Способ получения мультиплексного риккетсиального диагностикума включает в себя метку корпускулярных антигенов риккетсий и коксиелл полупроводниковыми коллоидными наночастицами разного цвета флуоресценции. Корпускулярные антигены риккетсий Провачека конъюгируют с наночастицами с длиной волны флуоресценции в красном диапазоне спектра (610-670 нм), а корпускулярный антиген коксиелл Бернета - с наночастицами с длиной волны флуоресценции в зеленом диапазоне спектра (520-540 нм). Конъюгацию проводят в течение 1 часа при постоянном перемешивании. Удаление непрореагировавших наночастиц проводят методом гель-фильтрации на сефадексе G-25. Затем меченые риккетсии и коксиеллы соединяют в мультиплексный диагностикум и используют его в иммунофлуоресцентной реакции наноагглютинации (ИФРНА). Мультиплексный диагностикум позволяет выявлять антитела одновременно к риккетсиям Провачека и коксиеллам Бернета в одной постановке ИФРНА. Способ упрощает выявление специфических антител в сыворотке крови людей, сокращает время проведения реакции в 2 раза и повышает специфичность детекции иммунофлуоресцентного анализа. 3 табл., 3 пр.

 

Изобретение относится к медицине, а именно к диагностике риккетсиозов, и может быть использовано для выявления антител к риккетсиям Провачека и коксиеллам Бернета в сыворотке крови людей, а также при изучении иммунологической структуры населения и проверке эффективности вакцинации.

Известен способ получения флуоресцирующих риккетсиальных диагностикумов для иммунофлуоресцентной реакции микроагглютинации (П.С. Барбан, В.Я. Мирский. Лаб. дело, 1973, №1. с 28-30; П.С. Барбан, В.Я. Мирский. - Лаб. дело, 1975, №5, с. 315).

Однако при этом способе каждый вид риккетсий и коксиелл был конъюгирован с органическим красителем (изотиоцианатом флуоресцеина - ФИТЦ) и использован в раздельных постановках в иммунофлуоресцентной реакции микроагглютинации (ИФРМА). Меченые риккетсии и коксиеллы окрашиваются ФИТЦем в зеленый цвет и не могут быть индицированы в едином диагностикуме. Кроме того, технология приготовления таких диагностикумов длительна и энергоемка (18 часов конъюгация и 3-5-кратное высокоскоростное центрифугирование).

Целью изобретения является упрощение способа выявления антител к риккетсиям и коксиеллам в сыворотке крови людей, сокращение постановки реакции в 2 раза и повышение детекции (фотостабильность и высокая яркость) иммунофлуоресцентного анализа.

Сущность способа заключается в получении мультиплексного диагностикума путем соединения риккетсий Провачека и коксиелл Бернета, меченных наночастицами, разными по цвету флуоресценции, и использовании их для одновременного выявления антител к риккетсиям Провачека и коксиеллам Бернета в одной постановке иммунофлуоресцентной реакции наноагглютинации (ИФРНА).

Для метки риккетсиальных и коксиеллезного антигенов используют полупроводниковые коллоидные наночастицы, обладающие флуоресценцией в разных диапазонах видимого спектра (Воробьев И.А., Рафаловская-Орловская Е.П., Гладких А.А., Поташникова Д.М., Бартенева Н.С. Цитология. 2011, т. 53, №5, с. 392-403; Патент RU 2381304 РФ). Корпускулярный антиген риккетсий Провачека конъюгируют с наночастицами с длиной волны флуоресценции в красном диапазоне спектра (610-670 нм), а корпускулярный антиген коксиелл Бернета - с наночастицами с длиной волны флуоресценции в зеленом диапазоне спектра (520-540 нм). Конъюгацию проводят в течение 1 часа при постоянном перемешивании. Удаление непрореагировавших наночастиц осуществляют методом гель-фильтрации на сефадексе G-25. Затем меченые риккетсии и коксиеллы соединяют в мультиплексный диагностикум и используют его в иммунофлуоресцентной реакции наноагглютинации (ИФРНА) для выявления антител одновременно к риккетсиям Провачека и коксиеллам Бернета.

Пример 1. Получение меченого антигена риккетсий Провачека.

В качестве исходного материала используют корпускулярный антиген риккетсий Провачека (патент №2062110 РФ). Содержимое ампулы с антигеном ресуспендируют в 0,05 М боратном буфере pH 7,2 до концентрации риккетсий 1×109 степени. К взвеси риккетсий добавляют 10 мкл коллоидного раствора наночастиц с длиной волны флуоресценции в красном диапазоне спектра (610-670 нм) и содержанием частиц 3,0×10-5 мол/л. Конъюгацию риккетсий и наночастиц проводят при постоянном перемешивании при температуре 6-10°C в течение 1 часа. Непрореагировавшие наночастицы удаляют методом гель-фильтрации на сефадексе G-25. Элюат стандартизуют до 1×109 в 1 мл и контролируют на иммунофлуоресцентную активность и отсутствие спонтанной агглютинации в ИФРНА.

Таблица №1
Исследование иммунных сывороток к риккетсиям и коксиеллам с меченым антигеном риккетсий Провачека в иммунофлуоресцентной реакции наноагглютинации
№ пп Наименование исследуемой сыворотки Количество сывороток Иммунофлуоресцентная активность (средний геометрический титр) Индикация положительного результата
1 Сыворотки к риккетсиям Провачека 10 1:208 4+ агглютинаты красного цвета
2 Сыворотки к коксиеллам Бернета 10 отсутствует Изолированные риккетсии красного цвета
3 Контроль отсутствует Изолированные риккетсии красного цвета

Результаты исследований приведены в табл. 1, из которой видно, что предложенный меченый антиген Провачека агглютинируется (4+) антителами к риккетсиям Провачека, находящимися в гомологичных сыворотках, не взаимодействует с гетерологичными сыворотками (к коксиеллам Бернета) и располагается изолированно, как и в контроле.

Пример 2. Получение меченого антигена коксиелл Бернета

В качестве исходного материала используют корпускулярный антиген коксиелл Бернета (патент №2167674 РФ). Содержимое ампулы с антигеном ресуспендируют в 0,05 М боратном буфере pH 7,2 до концентрации коксиелл 1×109 степени. К взвеси коксиелл добавляют 10 мкл коллоидного раствора наночастиц с длиной волны флуоресценции в зеленом диапазоне спектра (520-540 нм) и содержанием частиц 3,0×10-5 мол/л. Конъюгацию коксиелл и наночастиц проводят при постоянном перемешивании при температуре 6-10°C в течение 1 часа. Удаление непрореагировавших наночастиц проводят методом гель-фильтрации на сефадексе G-25. Элюат стандартизуют до 1×109 коксиелл в 1 мл и контролируют на иммунофлуоресцентную активность и отсутствие спонтанной агглютинации в ИФРНА.

Таблица №2
Исследование иммунных сывороток к риккетсиям и коксиеллам с меченым антигеном коксиелл Бернета в ИФРНА
№ пп Наименование исследуемой сыворотки Количество сывороток Иммунофлуоресцентная активность (средний геометрический титр) Индикация положительного результата
1 Сыворотки к коксиеллам Бернета 10 1:120 3+ агглютинаты коксиелл зеленого цвета
2 Сыворотки к риккетсиям Провачека 10 отсутствует Изолированные коксиеллы зеленого цвета
3 Контроль отсутствует Изолированные коксиеллы зеленого цвета

Результаты исследований приведены в табл. 2, из которой видно, что антитела к коксиеллам Бернета, находящиеся в гомологичных сыворотках, вызывают агглютинацию (3+) коксиелл, в то время как в реакции с гетерологичными сыворотками и в контроле коксиеллы располагаются изолированно.

Пример 3. Отстандартизованные антигены, меченые разными цветами, объединяют в соотношении 1:1 и проверяют на иммунофлуоресцентную активность, отсутствие спонтанной агглютинации и специфичность детекции. При получении положительного результата с гомологичными сыворотками (образование 3+ - 4+ агглютинатов), отсутствии спонтанной агглютинации, отсутствии агглютинации с гетерологичными сыворотками, мультиплексный диагностикум используют для диагностики сыпного тифа и коксиллеза.

Таблица №3
Исследование иммунных сывороток к риккетсиям Провачека и коксиеллам Бернета с мультиплексным диагностикумом в ИФРНА
№ пп Наименование исследуемой сыворотки Количество сывороток Иммунофлуоресцентная активность (средний геометрический титр) Индикация положительного результата флуоресценции
1 Сыворотки к риккетсиям Провачека 10 1:160 4+ агглютинаты риккетсий Провачека красного цвета, изолированные коксиеллы Бернета зеленого цвета
2 Сыворотки к коксиеллам Бернета 10 1:69 3+ агглютинаты коксиелл Бернета зеленого цвета, изолированные риккетсии Провачека красного цвета,
3 Контроль отсутствует Изолированные риккетсии Провачека красного цвета, изолированные коксиеллы Бернета - зеленого цвета

Таким образом, приготовленный мультиплексный диагностикум (табл. 3) обладает достаточной иммунофлуоресцентной активностью с гомологичными сыворотками и не взаимодействует с гетерологичными сыворотками, не дает спонтанной агглютинации в контроле и позволяет четко индифицировать по цвету флуоресценции риккетсии Провачека и коксиеллы Бернета в одной постановке ИФРНА. Возможность использования мультиплексного риккетсиального диагностикума для одновременного определения антител к риккетсиям Провачека и коксиеллам Бернета сокращает время проведения реакции в 2 раза и улучшает детекцию иммунофлуоресцентного анализа за счет фотостабильности и яркости наночастиц.

Способ получения мультиплексного риккетсиального диагностикума, включающий метку корпускулярных антигенов риккетсий Провачека в концентрации 1×109 наночастицами с длиной волны флуоресценции в красном диапазоне спектра (610-670 нм), коксиелл Бернета в концентрации 1×109 - наночастицами с длиной волны флуоресценции в зеленом диапазоне спектра (520-540 нм), конъюгацию в течение 1 часа, удаление непрореагировавших реагентов методом гель-фильтрации на сефадексе G-25, соединение активных меченых антигенов в мультиплексный диагностикум в соотношении 1:1.



 

Похожие патенты:

Изобретения относятся к области биотехнологии и касаются cпособа предотвращения или лечения заболевания у субъекта, вызванного патогенным организмом, путем введения вакцинной композиции, вакцинной композиции и ее применения.

Изобретение относится к биотехнологии и иммунологии и представляет собой иммуногенную композицию для активации иммунного ответа в отношении пневмококков и/или менингококков, содержащую: (i) смесь конъюгированных пневмококковых капсульных сахарид; и (ii) два различных полипептида фактор H-связующего белкового антигена (fHBP), но не содержащая везикулы внешней мембраны менингококка.
Предложенная группа изобретений относится к области ветеринарии. Предложены вакцина, направленная против актинобациллезной плевропневмонии, включающая липополисахарид в комплексе с одним или более повторов токсинов ApxI, ApxII и ApxIII, выделенный из бактериальной культуры, и полимиксин для уменьшения симптомов эндотоксического шока, вызываемого липополисахаридом, способ получения такой вакцины, применение полимиксина для снижения симптомов эндотоксического шока и способ снижения симптомов эндотоксического шока при введении вакцины, в котором полимиксин добавляют в вакцину в дозе от 2,6 до 60 мкг/мл.

Изобретение касается способа изготовления вакцины, ассоциированной против псевдомоноза и вирусной геморрагической болезни кроликов. Охарактеризованный способ включает отбор пораженных органов от павших кроликов в период их заболевания из местного эпизоотического очага, выделение чистых культур возбудителей болезней, для чего проводят раздельное выращивание культур Pseudomonas aeruginosa и вируса геморрагической болезни кроликов.

Группа изобретений относится к медицине и касается адъювантной иммуногенной композиции, содержащей липоолигосахарид менингококка (LOS) и капсулярный сахарид пневмококка серотипа 14 (CS14), где CS14 содержит тетрасахарид Galβ1-4GlcNAcβ1-3Galβ1-4Glc, a LOS не содержит тетрасахарид Galβ1-4GlcNAcβ1-3Galβ1-4Glc.

Изобретение относится к фармацевтике и представляет собой композицию вакцины для индукции иммунного ответа у животных. Композиция содержит антиген и 40% эмульсию «масло в воде», разведенную до 2,5%, где указанная 40% эмульсия «масло в воде» содержит 30% об./об.

Питательная среда для культивирования штамма возбудителя рожи свиней Erysipelothrix rhuisipathie, относится к общей биотехнологии и ветеринарной микробиологии и может быть использована для приготовления микробиологических питательных сред для наращивания биомассы штамма возбудителя рожи свиней. В питательной среде в качестве источника азотного питания используют смесь рыбного автолизата и щелочного мидийного гидролизата при следующем соотношении компонентов: щелочной мидийный гидролизат 20-50% пептон ферментативний 1% калий фосфорнокислый 0,3% натрий фосфорнокислый 1,8% рыбный автолизат остальное. .
Изобретение относится к биотехнологии, в частности к технологии получения антигена для диагностики бруцеллеза. Способ получения бруцеллезного L-антигена осуществляют следующим образом.

Изобретение относится к области биохимии, в частности к химерным или гибридным белкам для индуцирования иммунного ответа против Р. gingivalis.

Изобретение относится к области биохимии, в частности к выделенному полипептиду, который является биологической мишенью для ингибирования клетки-метанопродуцента, а также к выделенному полинуклеотиду, который кодирует этот полипептид.

Настоящее изобретение относится к биотехнологии и представляет собой α1,6-глюкан-содержащее соединение Helicobacter pylori. Настоящее изобретение также раскрывает конъюгат для индукции иммунного ответа против H.pylori, содержащий указанное соединение, конъюгированное с белком-носителем. Также настоящее изобретение раскрывает иммуногенную композицию, применение указанной композиции и способ индукции иммунного ответа против H.pylori с использованием указанной композиции. Настоящее изобретение раскрывает также иммунную антисыворотку для нейтрализации H.pylori у млекопитающего, которую получают путем иммунизации указанного млекопитающего иммуногенной композицией, содержащей указанную иммуногенную композицию. Настоящее изобретение раскрывает антитело, распознающее указанное α1,6-глюкан-содержащее соединение H.pylori, применение указанного антитела и способ индукции комплемент-опосредованного бактериолиза штаммов H.pylori, экспрессирующих α1,6-глюкан с использованием указанного антитела. Настоящее изобретение позволяет повысить эффективность иммуногенных композиций против H.pylori. 9 н. и 18 з.п. ф-лы, 8 ил., 21 табл., 11 пр.

Изобретение относится к области биотехнологии, микробиологии и иммунологии. Описан полисахарид клеточной стенки энтерококков. Полисахарид может быть использован в качестве антигена для получения вакцин. Также раскрыты антитело к такому полисахариду и фармацевтические композиции для профилактики и терапии бактериальной инфекции. Предложенная группа изобретений может быть использована в медицине. 7 н. и 1 з.п. ф-лы, 6 ил.

Настоящее изобретение относится к области молекулярной иммунологии, биотехнологии и медицины. Создана рекомбинантная псевдоаденовирусная частица, на основе генома аденовируса человека 5 серотипа, содержащая экспрессирующую кассету со вставкой гена модифицированного химерного наноантитела, связывающегося с микоплазмой M. hominis, нуклеотидная последовательность которого предварительно модифицирована путем присоединения эффекторного Fc-фрагмента иммуноглобулина G. При этом предварительно модифицированной последовательностью гена наноантитела является нуклеотидная последовательность SEQ ID 1. Созданная рекомбинантная псевдоаденовирусная частица активирует систему комплемента иммунной системы млекопитающих. Фармацевтическая композиция представляет собой рекомбинантные псевдоаденовирусные частицы по заявленному изобретению и фармацевтически приемлемый носитель, причем при введении в организм млекопитающего она активирует систему комплемента и подавляет микоплазму M. hominis. Способ терапии микоплазмы M. hominis реализуют путем введения нуждающемуся в этом млекопитающему терапевтически эффективного количества созданной фармацевтической композиции. При этом фармацевтическую композицию вводят путем внутривенных инъекции. 3 н. и 2 з.п. ф-лы, 6 ил., 2 табл., 6 пр.

Изобретение относится к медицине, а именно для использования в области иммунологии, и касается индуктора гамма интерферона. Для этого применяют экзополисахарид бактерий P.nigrifaciens штамма КММ 156 в качестве индуктора IFN-γ. Использование данного полисахарида обеспечивает образование IFN-γ для создания нового препарата. 2 табл.

Изобретения относятся к области биотехнологии и касаются штамма Francisella tularensis 15/23-1ΔrecA и способа его получения. Охарактеризованный штамм является генетически маркированным: имеет только одну копию гена iglC и делетированный ген recA. Штамм получают из вакцинного штамма Francisella tularensis 15 НИИЭГ путем последовательного аллельного обмена одной из двух копий гена iglC и затем гена recA на их делетированные варианты с помощью суицидной векторной плазмиды, вводимой в клетки штамма методом трансформации с последующим отбором клеток штамма F. tularensis по признаку устойчивости к хлорамфениколу и дальнейшей селекцией модифицированных штаммов на среде с сахарозой. Предложенные изобретения позволяют получать штамм со сниженной реактогенностью и использовать его в качестве живой туляремийной вакцины. 2 н.п. ф-лы, 6 ил., 8 табл., 12 пр.

Изобретение касается вакцины для предупреждения инфекции, вызванной по меньшей мере одним из Leptospira, герпес-вируса коров, вируса парагриппа и коровьего респираторного синцитиального вируса. Представленная вакцина содержит обработанный нагреванием бактерин Leptospira, имеющий липазную активность 50% или менее по сравнению с липазной активностью бактерина до обработки нагреванием и сохраняющий антигенную активность, и 1-3 живых вируса, выбранных из группы, состоящей из герпес-вируса коров, вируса парагриппа и коровьего респираторного синцитиального вируса. Указанная обработка нагреванием включает нагревание бактерина Leptospira до температуры от 60°C до 70°C в течение времени от 5 до 10 часов. Изобретение позволяет получать стабильные вакцины с сохранением вирусной инфекционности вирусов. 6 з.п. ф-лы, 5 пр.

Изобретение относится к медицине, в частности косметологии, дерматологии, пластической хирургии, и предназначено для улучшения состояния кожных покровов, а также для устранения морщин на лице. Способ омоложения кожи лица заключается в инъекционном введении субдермально и внутримышечно в предварительно выявленные точки «проблемных» зон ботулинического токсина типа А, содержащего в своем составе 500 ЕД, разведенного физиологическим раствором. Использование изобретения позволяет повысить эффективность омоложения лица при коррекции мимических морщин, обеспечивает пролонгированность клинических результатов (регресс мимических морщин) при использовании минимальных результативных дозировок без формирования побочных явлений, что ведет к формированию гармоничного внешнего облика после проведения ботулинотерапии. 6 ил., 3 пр.
Изобретение относится к медицине, в частности к неврологии и стоматологии, и может быть использовано для лечения патологического гипертонуса жевательных мышц. В коже правой и левой лицевой части головы пациента определяют область планируемой инъекции с помощью тепловизора либо при электромиографии, после этого осуществляют пальпацию мягких тканей в глубине всей избранной области, выявляют наличие и количество в ней участков повышенной и болезненной твердости, конкретизируют их локализацию, форму, размеры, объем. Разводят суммарную разовую дозу ботулотоксина раствором 0,9% хлорида натрия в объеме 2,5 мл при суммарном объеме участков, не превышающем объем лекарства, а при большем суммарном объеме используют раствор в равном объеме. Под ультразвуковой навигацией вводят раствор лекарственного средства поочередно внутрь каждого твердого участка каждой мышцы вплоть до полного инфильтрирования его раствором. Использование изобретения обеспечивает устранение повышенного напряжения, болезненности жевательных мышц и восстановление жевательной функции в условиях, исключающих нарушение мимики, асимметрии лица и нарушение жевательной функции. 1 пр.

Изобретение относится к области биохимии, в частности к полипептиду, способному вызывать специфичный иммунный ответ против бактерий рода Borrelia, а также полинуклеотиду, его кодирующему. Также раскрыты экспрессионный вектор, содержащий вышеуказанный полинуклеотид, клетка-хозяин, его содержащая, а также способ получения пептида путем культивирования вышеуказанной клетки-хозяина. Изобретение также относится к композициям, содержащим вышеуказанные полинуклеотиды или полипептиды, для вызова специфичного иммунного ответа против бактерий рода Borrelia. Изобретение позволяет эффективно лечить или проводить профилактику инфекции Borrelia или лаймской болезни. 12 н. и 12 з.п. ф-лы, 24 ил., 9 табл., 22 пр.
Наверх