Способ управления нефтегазовым месторождением

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам автоматического управления технологическими процессами при эксплуатации скважин нефтегазового месторождения. Технический результат - повышение эффективности способа за счет повышения дебита нефти, уменьшения объема перекачиваемой воды и сокращения потребляемой электроэнергии. По способу используют нагнетательные скважины и добывающие скважины, оборудованные насосными установками с электродвигателями. На устье каждой из скважин устанавливают пассивно-акустический многофазный расходомер. Непрерывно в режиме реального времени измеряют давление, температуру и дебит каждой фазы, в том числе воды. Собирают и передают информацию в систему автоматизированного управления производственным процессом непрерывно в режиме реального времени. Информацию усредняют за определенный период времени. Обрабатывают и определяют средний дебит по фазам за выбранное время. Сравнивают с заданными параметрами и на основе информации о дебите каждой фазы устанавливают зависимость дебита каждой скважины от объемов закачанной пластовой воды. Выбирают вариант работы насосных установок с электродвигателями добывающих скважин и поддерживают пластовое давление таким образом, чтобы дебит нефти был максимальным, а объем перекачиваемой пластовой воды и расход электроэнергии - минимальными. При этом при выходе расчетных значений дебитов за заданные границы дебитов выполняют одно из действий: снижают производительность насосной установки за счет снижения числа оборотов электродвигателя; повышают производительность насосной установки за счет повышения числа оборотов электродвигателя; останавливают на определенное время насосную установку для накопления нефти в забое скважины. Продукцию добывающих скважин сепарируют на фазы и транспортируют, в зависимости от фазы, в систему сбора нефти и газа или систему поддержания пластового давления. 1 ил.

 

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам автоматического управления технологическими процессами при эксплуатации скважин нефтегазового месторождения.

Известен способ управления нефтегазовым месторождением (Мезенцев Е.Ф. «Автоматизированная система управления технологическим процессом добычи нефти на основе динамической модели участка нефтяного пласта», автореферат диссертации, Уфа, 2010, 24 с.), в котором используют алгоритм выбора оптимального дебита добывающей скважины в режиме непрерывной и кратковременной эксплуатации, а также алгоритм управления группой скважин, который заключается в реализации комплексной технологии моделирования и управления путем формирования управляющего воздействия на скважинное оборудование на основе периодической идентификации постоянно действующей модели участка пласта по мере поступления текущих промысловых данных и расчета оптимального дебита скважины в реальном масштабе времени с учетом как технологических ограничений, так и экономических затрат.

Недостатком указанного способа является необходимость сбора и обработки текущих промысловых данных, отличающихся случайной выборкой по времени и невысокой точностью измерений.

Известен также способ эксплуатации нефтегазового месторождения (RU 2411351, E21B 43/00 от 01 12 2009 «Способ эксплуатации нефтегазового месторождения»). Способ включает регулирование производительности глубинных насосов по давлениям на приеме насоса и устье скважины и температурам внутри погружного электродвигателя (ПЭД) и на выходе из насоса путем изменения частоты тока питания электродвигателя. На приеме глубинного насоса фиксируется датчик измерения давления, на выходе из насоса устанавливается датчик измерения температуры, такой же термометр фиксируется внутри ПЭД. Все датчики информативно сообщены со станцией управления погружного электродвигателя. Работа ПЭД в оптимальном режиме достигается регулировкой частоты питающего электротока так, чтобы давление на приеме насоса было близко к давлению насыщения нефти газом, температура внутри погружного электродвигателя не превышала критического значения, а температура нефти в глубинном насосе не снижалась ниже температуры насыщения нефти парафином.

Недостатком указанного способа является управление производительностью ПЭД только по двум измеряемым параметрам - температуре и давлению, без учета фазового состава продукции скважины. При этом велика вероятность перекачивания только пластовой воды с высокой температурой и значительного перерасхода электроэнергии на подъем и закачку пластовой воды.

Для устранения указанных недостатков предлагается данное изобретение.

Технический результат: создание способа управления нефтегазовым месторождением, в котором увеличение добычи и снижение затрат на потребляемую электроэнергию достигается постоянным измерением дебита фаз продукции скважин в режиме реального времени и выбором режима работы электронасосных установок добычи и поддержания пластового давления так, чтобы дебит нефти был максимальным, а объем пластовой воды и потребление электроэнергии - минимальным.

Технический результат достигается благодаря тому, что предложенный способ эксплуатации месторождения углеводородного сырья включает добывающие и нагнетательные скважины, систему транспортирования продукции скважин, сепарационное оборудование и систему поддержания пластового давления, систему автоматизированного управления производственным процессом, при этом продукцию скважин сепарируют на фазы и транспортируют в систему сбора нефти и газа или в систему поддержания пластового давления, а с целью увеличения добычи и снижения затрат на электроэнергию на устье каждой скважины устанавливают пассивно-акустический многофазный расходомер, непрерывно, в режиме реального времени, измеряют давление, температуру и дебит каждой фазы, собирают и передают информацию в систему автоматизированного управления производственным процессом, на основе информации о дебите каждой фазы, с целью снижения затрат на электроэнергию, устанавливают зависимость дебита каждой добывающей скважины от объемов закачанной пластовой воды, выбирают вариант работы электронасосных установок добычи и поддержания пластового давления так, чтобы дебит нефти был максимальным, а объем пластовой воды и потребление электроэнергии - минимальными.

Способ реализован следующим образом (см. рис.1). На трубопроводе устья каждой скважины устанавливают пассивно-акустический многофазный расходомер, реализующий способ измерения расхода многофазной жидкости (RU 2489685). Измеряют акустический шум, создаваемый движением жидкости при протекании ее через известное сечение, скорость прохождения жидкости определяют по частоте акустических шумов, вызываемых неравномерностью движения жидкости, предварительно измеряют температуру потока и давление в трубе, плотности каждой из фаз, а затем на основе предложенных зависимостей рассчитывают объемную или массовую долю каждой фазы.

Отсутствие информации о фазовом составе многофазной жидкости в течение нескольких часов приводит к перекачиванию излишних объемов пластовой воды и перерасходу электроэнергии. Данные о дебите фаз пластовой жидкости передаются по каналам связи в АСУ ТП добывающего предприятия, где их записывают в математические зависимости, оптимизирующие процесс добычи, а с целью снижения затрат на электроэнергию записывают дебит скважины по фазам ежесекундно и усредняют его за определенный период времени, например сутки, проводят статистическую обработку измерений с целью определения среднего дебита по фазам за определенное выбранное время, сравнивают последующие дебиты по фазам с заданными технологическими параметрами, и при выходе расчетных значений дебитов за заданные границы дебитов выполняют одно из действий:

- снижают производительность насосной установки за счет снижения числа оборотов электродвигателя;

- повышают производительность насосной установки за счет повышения числа оборотов электродвигателя;

- останавливают на определенное время насосную установку для накопления нефти в забое скважины.

Сущность изобретения иллюстрируется рис.1.

На устье добывающих скважин 1 устанавливают пассивно-акустические многофазные расходомеры 2, сигналы передаются в АСУ ТП, обрабатываются в команды для станций управления электродвигателями насосных установок добывающих скважин 3 и станций управления электродвигателями насосных установок 4 нагнетающих скважин 5, насосы которых закачивают обратно в пласт воду после установки первичной подготовки нефти 6.

Для примера оценим финансовые потери ОАО «Татнефть» в 2010-2011 годах от закачки пластовой воды, не требуемой в технологическом процессе добычи. Расчет основан на данных, приведенных на сайте компании. «Для ОАО «Татнефть» пробурены и закончены строительством 331 скважина, в том числе 277 добывающих, из которых в первый год эксплуатации извлечено 393,5 тысяч тонн нефти. Среднесуточный дебит новых скважин, введенных из бурения, в 2010 году составил 8,6 тонн водонефтяной эмульсии в сутки». Рассчитаем дебит по товарной нефти: 393,5 тыс. тонн / 277 скважин=1420 тонн в год на одну скважину. 1420 тонн / 365 дней=3,89 тонн нефти в сутки. Средняя обводненность составит ((8,6-3,89)/8,6)*100%=55%. «Дебит жидкости составляет 56 м3/сутки, нефти 8 тонн/сутки». В этом случае обводненость составит ((56-8)/56)*100%-85%. «В 2011 году в НГДУ «Азнакаевскнефть» абсолютная величина потребляемой электроэнергии составила 173,1 удельных кВтч на добычу 1 т нефти, что на 7,1 кВтч, или 4% ниже показателя 2009 года, когда были максимальные значения добычи жидкости и потребления электроэнергии». Для расчета условно примем, что объем бесконтрольной пластовой воды, поднятой вместе с нефтью, отсепарированной и снова закачанной на глубину пласта, составит 5 м3/сутки=5 тонн/сутки.

Также условно примем стоимость 1 кВт-час электроэнергии 2,4 руб. для Татарстана (такое допущение справедливо из-за множественности тарифов оплаты). Тогда затраты на подъем и закачку бесконтрольной пластовой воды на 1 скважину в сутки составят: 5 тонн*173,1 кВт*час*2,4 руб.=2077,2 руб. При круглогодичной эксплуатации скважины: 2077,2 руб.*300 раб. дней=623160 руб./год. В ОАО «Татнефть» фонд скважин около 20000 шт. Тогда суммарные расходы: 623160*20000=12,46 (млрд руб.).

По данным сайта http://www.sinprotek.ru: «на сегодняшний день доля энергозатрат в себестоимости нефтедобычи - около 30-40% (2-3 место среди всех затрат). Большая часть электроэнергии (55-60%), потребляемой в нефтяной промышленности, расходуется на подъем нефти из скважин. На обеспечение работы системы поддержания пластового давления приходится 22-33% общего потребления энергии, на подготовку и промысловый транспорт нефти - 5-10%. По мере ухудшения условий добычи, эксплуатация малодебитных скважин, с учетом увеличения их глубины, сопровождается резким ростом энергопотребления и, соответственно, падением энергоэффективности. При этом существующие на рынке предложения по повышению энергоэффективности процесса нефтедобычи не позволяют осуществить анализ причин, приводящих к увеличению затрат энергии на каждой конкретной скважине, поэтому выработка плана мероприятий по снижению энергозатрат невозможна».

Указанные существенные признаки в совокупности, характеризующие сущность заявляемого технического решения, не известны в настоящее время для способов управления месторождениями. Аналог, характеризующийся идентичностью всем существенным признакам заявляемого изобретения, в ходе исследований не обнаружен, что позволяет сделать вывод о соответствии заявляемого технического решения критерию «Новизна».

Существенные признаки заявляемого изобретения не могут быть представлены как комбинация, выявленная из известных решений с реализацией в виде отличительных признаков для достижения технического результата, из чего следует вывод о соответствии критерию «Изобретательский уровень». Указанные существенные признаки в совокупности, характеризующие сущность заявляемого технического решения, не известны в настоящее время для способов управления месторождениями.

Список используется источников

1. Мезенцев Е.Ф. «Автоматизированная система управления технологическим процессом добычи нефти на основе динамической модели участка нефтяного пласта», автореферат диссертации, Уфа, 2010, 24 с.

2. «Способ эксплуатации нефтегазового месторождения» RU 2411351, E21B 43/00 от 01.12.2009.

3. «Способ измерения расхода многофазной жидкости» (RU 2489685).

4. http://www.tatneft.ru/wps/wcm/connect/tatneft/portal_rus/homepage/

5. http://www.sinprotek.ru

Способ управления нефтегазовым месторождением, характеризующийся тем, что используют нагнетательные скважины и добывающие скважины, оборудованные насосными установками с электродвигателями, на устье каждой из скважин устанавливают пассивно-акустический многофазный расходомер, непрерывно в режиме реального времени измеряют давление, температуру и дебит каждой фазы, в том числе воды, собирают и передают информацию в систему автоматизированного управления производственным процессом непрерывно в режиме реального времени, информацию усредняют за определенный период времени, обрабатывают и определяют средний дебит по фазам за выбранное время, сравнивают с заданными параметрами и на основе информации о дебите каждой фазы устанавливают зависимость дебита каждой скважины от объемов закачанной пластовой воды, выбирают вариант работы насосных установок с электродвигателями добывающих скважин и поддерживают пластовое давление таким образом, чтобы дебит нефти был максимальным, а объем перекачиваемой пластовой воды и расход электроэнергии - минимальными, при этом при выходе расчетных значений дебитов за заданные границы дебитов выполняют одно из действий:
снижают производительность насосной установки за счет снижения числа оборотов электродвигателя;
повышают производительность насосной установки за счет повышения числа оборотов электродвигателя;
останавливают на определенное время насосную установку для накопления нефти в забое скважины,
продукцию добывающих скважин сепарируют на фазы и транспортируют, в зависимости от фазы, в систему сбора нефти и газа или систему поддержания пластового давления.



 

Похожие патенты:

Способ относится к системам автоматического контроля работы нефтегазового оборудования и позволяет своевременно обнаруживать предаварийные ситуации, связанные с отложением гидратов в газовом оборудовании.

Изобретение относится к механизированной добыче жидкости из нефтяных скважин и может быть использовано для оптимизации технологии периодической эксплуатации скважин, дебит которых меньше минимальной допустимой подачи электроцентробежного насоса.

Изобретение относится к области геофизики и может быть использовано для определения характеристик буровой скважины для проведения операции бурения. Заявлены способы и системы для сбора, получения и отображения индекса азимутальной хрупкости буровой скважины.

Изобретение относится к нефтяной промышленности и может быть использовано в добывающих скважинах для снижения давления сепарированного попутного газа в затрубном пространстве и повышения притока нефти из пласта.

Группа изобретений относится к нефтедобывающей промышленности и, в частности, к вторичным и третичным методам увеличения нефтеотдачи пластов с пониженной нефтенасыщенностью, предусматривающим применение оборудования для выработки газообразного азота с высоким давлением и температурой.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано, в частности, для продления безводного режима эксплуатации нефтяных скважин.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для перепуска затрубного газа в колонну насосно-компрессорных труб - НКТ в скважинах, эксплуатируемых установками штанговых насосов.
Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации нефтедобывающей скважины. Технический результат - повышение добычи нефти.

Изобретение относится к нефтегазодобывающей промышленности, а именно к способу удаления жидкости глушения из газовой скважины при пластовом давлении ниже гидростатического.

Группа изобретений относится к топливно-энергетическому комплексу и может быть использована, преимущественно, при отработке удаленных нефтяных месторождений в экстремальных климатических условиях.

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации горизонтальной скважины. Технический результат - повышение эффективности способа за счет обеспечения полной выработки запасов нефти из продуктивного пласта независимо от величины депрессии на продуктивный пласт. По способу осуществляют эксплуатацию скважины. В горизонтальную скважину спускают колонну труб. По колонне труб закачивают изолирующий материал в интервал водопритока продуктивного пласта. Осуществляют отбор нефти до обводнения горизонтальной скважины. Из горизонтальной скважины под основным стволом вдоль границы водонефтяного контакта бурят дополнительный ствол на 50 м длиннее забоя основного ствола. Спускают в скважину колонну гибких труб - ГТ, оснащенную снизу гидравлическим отклонителем и фильтром, отверстия которого герметично перекрыты изнутри полой втулкой. Закачивают технологическую жидкость в колонну ГТ, создавая избыточное давление. Одновременно перемещают колонну ГТ вниз до попадания в дополнительный ствол. Доспускают колонну ГТ до забоя дополнительного ствола. На устье скважины в колонну ГТ устанавливают продавочную пробку. Создают избыточное давление в колонне ГТ выше продавочной пробки, проталкивают продавочную пробку и перемещают полую втулку, открывают отверстия фильтра. По колонне ГТ закачивают микроцементный раствор и продавливают его в дополнительный ствол и призабойную зону. Одновременно поднимают колонну ГТ для заполнения дополнительного ствола скважины микроцементным раствором. Прекращают продавку микроцементного раствора при подъеме давления в колонне ГТ до допустимого значения. Извлекают колонну ГТ из скважины и проводят технологическую выдержку для схватывания и твердения микроцементного раствора. Отсекают дополнительный ствол от основного ствола горизонтальной скважины установкой глухого пакера в интервале зарезки на входе в боковой ствол. Спускают в основной ствол горизонтальной скважины насос на технологической колонне труб и запускают горизонтальную скважину в эксплуатацию. При обводнении добываемой продукции извлекают из скважины технологическую колонну труб с насосом, производят геофизические исследования и определяют обводняющий интервал горизонтальной скважины. Изолируют обводняющий интервал основного ствола горизонтальной скважины. 4 ил.

Изобретение относится к газодобывающей промышленности и может быть использована на газовом промысле для автоматического управления и регулирования технологическими процессами сбора и подготовки газа к дальнему транспорту. Система содержит ПИД-регуляторы расхода газа, подключенные к скважинам и соединенные входом с датчиками расхода газа, а выходом с исполнительными механизмами скважин. К газосборному коллектору куста скважин подключен ПИД-регулятор, соединенный выходом через временной квантователь с ПИД-регуляторами скважин, а входом, через последовательно соединенные инерционный фильтр и устройство сравнения между заданной величиной давления газа куста скважин и величиной давления газа в газосборном коллекторе куста скважин, с датчиком давления газа, установленным в газосборном коллекторе куста скважин. В качестве задатчика производительности используется удаленное автоматизированное рабочее место, которое подает задание производительности на устройство сравнения. Технический результат заключается в обеспечении стабильного согласованного управления скважинами куста, повышении точности и качества переходных процессов регулирования давления газа в газосборном коллекторе куста скважин, увеличении рабочего ресурса исполнительных механизмов скважин, повышении надежности и безаварийности, сокращении «человеческого фактора» при эксплуатации газового промысла.

Изобретение относится к нефтегазодобывающей промышленности, в частности к области эксплуатации и ремонта скважин и изоляции притока пластовых вод в горизонтальные скважины. Способ изоляции притока вод в необсаженном горизонтальном участке ствола добывающей скважины включает извлечение из скважины насосного оборудования, спуск колонны насосно-компрессорных труб (НКТ) в скважину и закачку водоизоляционного материала. После извлечения насосного оборудования из необсаженного ствола с горизонтальным участком добывающей скважины ниже необсаженного ствола с горизонтальным участком из добывающей скважины бурят дополнительный ствол с горизонтальным участком, вскрывающим вдоль водопроявляющий пласт. Причем забой горизонтального участка дополнительного ствола бурят длиннее - на расстоянии 50 м от забоя необсаженного ствола с горизонтальным участком добывающей скважины. Затем до забоя дополнительного ствола спускают колонну гибких труб (ГТ), осевым перемещением колонны ГТ от забоя к устью с одновременной подачей в колонну ГТ водоизоляционного материала производят изоляцию водопроявляющего пласта и дополнительного ствола до интервала его зарезки из добывающей скважины. Причем в качестве водоизоляционного материала используют смесь из высоковязкой и угленосной нефти в отношении 70% на 30%, а в качестве закрепляющего материала используют высоковязкую нефть с температурой 60-70°C. Затем извлекают из дополнительной скважины колонну ГТ, спускают в необсаженный ствол с горизонтальным участком добывающей скважины насосное оборудование и запускают добывающую скважину в эксплуатацию. В процессе эксплуатации добывающей скважины производят периодический отбор проб добываемой продукции. При повышении обводненности добываемой продукции выше допустимой величины производят извлечение из скважины насосного оборудования, выполняют геофизические исследования горизонтального участка ствола добывающей скважины и определяют интервал притока водопроявляющего пласта. После чего спускают в скважину колонну НКТ, оснащенную пакерами, отсекают изолируемый интервал пакерами с двух сторон и производят изоляцию интервала необсаженного ствола горизонтального участка добывающей скважины закачкой высоковязкой эмульсии, в качестве которой используется смесь из высоковязкой и товарной угленосной нефти в отношении 70% на 30%. При этом образующийся в скважине гидроизолирующий экран непроницаем для воды и пропускает нефть, так как вязкость эмульсии резко уменьшается при разбавлении нефтью. Затем вновь спускают насосное оборудование в необсаженный ствол горизонтального участка добывающей скважины и продолжают ее эксплуатацию. Техническим результатом является повышение качества и технологичности проведения водоизоляционных работ. 3 ил., 1табл.
Изобретение относится к области добычи природного газа и, в частности, к предупреждению гидратообразования и разрушению гидратов в системах сбора газа - газосборных шлейфах газовых и газоконденсатных месторождений Крайнего Севера. Технический результат - повышение качества эксплуатации газового промысла за счет снижения расхода ингибитора гидратообразования и снижения себестоимости добываемого и подготавливаемого к транспорту газа. По способу определяют начало процесса гидратообразования в шлейфе путем измерения температуры газа, поступающего на вход установки комплексной подготовки газа - УКПГ из шлейфа. Сравнивают динамику поведения температуры газа с динамикой расчетного значения этой температуры. При этом начало процесса гидратообразования в газосборном шлейфе определяют с помощью автоматической системы управления технологическим процессом УКПГ - АСУ ТП УКПГ. С помощью этой же системы снижают давление газа на выходе шлейфа в рамках технологических ограничений. Одновременно измеряют температуру газа на выходе газосборного шлейфа. При снижении этой температуры в упомянутый шлейф подают ингибитор гидратообразования. Если при этом продолжается снижение температуры газа, то газосборный шлейф продувают. При стабилизации или повышении температуры газа на выходе газосборного шлейфа ингибитор гидратообразования в этот шлейф не подают.

Способ относится к области газодобывающей промышленности и может быть использован при разработке трудноизвлекаемых запасов газа из подземных залежей. Технический результат - повышение эффективности разработки трудноизвлекаемых запасов газа на месторождениях, залежи которых представлены неконсолидированными, заглинизированными коллекторами с высокой остаточной водонасыщенностью и низкими фильтрационно-емкостными свойствами. По способу осуществляют бурение наклонно-направленной скважины с восходящим окончанием ствола. Спускают эксплуатационную колонну либо хвостовик. Осуществляют оборудование восходящего участка эксплуатационной колонны фильтром. Изолируют «глухую» часть обсадной колонны от фильтровой пакерующим устройством с муфтой ступенчатого цементирования. При этом в газовой скважине вскрытие участков продуктивных пластов производят с заданным зенитным углом - сначала по нисходящей, а затем по восходящей траектории. Этим достигают максимальную протяженность вскрытия продуктивного горизонта и скорость газового потока. Применяют буровой раствор на основе эмульсии смеси газойлей и воды. Ствол скважины обсаживают эксплуатационной колонной, оборудованной фильтром, в нисходящем и восходящем участке ствола скважины. Формируют в нижней части ствола скважины зону аккумуляции пластовой жидкости, в которую спускают лифтовую колонну насосно-компрессорных труб и осуществляют совместную эксплуатацию продуктивных горизонтов. Вынос жидкости обеспечивают за счет скорости газового потока, поступающего из продуктивных пластов. 1 пр., 1 ил.

Изобретение относится к области добычи газа и, в частности, к ремонту газодобывающих скважин, из которых необходимо удалять скапливающуюся на забое жидкость - воду, газоконденсат. Техническим результатом изобретения является обеспечение безопасной эксплуатации скважин. По способу на устье скважины устанавливают противовыбросовое оборудование. Затем через него на безмуфтовой длинномерной трубе спускают в лифтовую колонну пакер-пробку, изготовленную из растворимого материала и снабженную установочной компоновкой. В лифтовую колонну подают продавочную жидкость, под давлением которой пакер-пробкой герметизируют трубное пространство лифтовой колонны. В лифтовую колонну закачивают негорючий газ для вытеснения продавочной жидкости из этой колонны. Извлекают на поверхность безмуфтовую длинномерную трубу вместе с установочной компоновкой. Спускают в лифтовую колонну до пакер-пробки на безмуфтовой длинномерной трубе хвостовик, состоящий из подвески хвостовика с разъединителем и колонны труб, диаметр которых меньше внутреннего диаметра лифтовой колонны. Затем закачивают в лифтовую колонну растворитель. После растворения пакер-пробки спускают хвостовик на необходимую глубину. В безмуфтовую длинномерную трубу спускают продавочную пробку или шар и подают продавочную жидкость до посадки продавочной пробки или шара в посадочный узел подвески хвостовика. Затем прокачкой дополнительных порций продавочной жидкости приводят в действие исполнительные механизмы подвески хвостовика и разъединителя. После этого на безмуфтовой длинномерной трубе извлекают разъединитель вместе с продавочной пробкой или шаром из скважины. Демонтируют противовыбросовое оборудование и запускают скважину в работу. 4 ил.

Группа изобретений относится к нефтедобывающей промышленности и может быть применена для эксплуатации скважин. Способ включает добычу скважинного продукта электроцентробежным насосом (ЭЦН) и выполнение ремонтно-восстановительных работ с проведением спускоподъемных операций, промывки и шаблонирования скважины, декольматацию и ввод скважины в эксплуатацию. При нарушении герметичности эксплуатационной колонны негерметичность изолируют установкой пакера на уровне ниже интервала нарушения герметичности. Проводят обследование эксплуатационной колонны с выявлением интервала негерметичности и скреперование поверхности под пакер. На поверхности скважины выполняют монтаж внутрискважинного оборудования и по мере монтажа спускают с определенной скоростью в скважину. При этом конец силового кабеля пропускают через кабельный ввод пакера и герметично соединяют с приводом ЭЦН. К насосно-компрессорной трубе (НКТ) внутрискважинного оборудования неподвижным аксиальным соединением герметично пристыковывают пакер. На пакер навинчивают сбивной клапан, свинчивают НКТ с реперным патрубком и колонной НКТ. Колонну НКТ подгоночным патрубком на резьбе герметично закрепляют планшайбой в устье скважины и скважину вводят в рабочий режим эксплуатации постепенным увеличением частоты вращения ЭЦН под контролем параметров скважинного продукта телеметрической системой. Технический результат заключается в повышении эффективности эксплуатации скважин. 2 н. и 7 з.п. ф-лы, 1 ил.

Изобретение относится к нефтедобыче, а именно к устройству, используемому при свабировании в насосно-компрессорной трубе, в частности в насосно-компрессорной трубе диаметром 2 дюйма. Устройство включает металлический стержень, представляющий собой насосную штангу, головку, при помощи резьбового соединения прикрепленную к нижней части металлического стержня, манжету, установленную на металлическом стержне с возможностью перемещения вдоль его оси, шплинт, установленный в металлическом стержне и головке так, чтобы предотвращать отвинчивание головки, стопор. Стопор выполнен с возможностью закрепления в предварительно заданном месте на металлическом стержне так, чтобы обеспечивать движение манжеты в предварительно заданном диапазоне. Стопор представляет собой кольцо с трапецеидальным сечением, при этом диаметр кольца в ближней к головке части соответствует диаметру головки, и в стопоре выполнен по меньшей мере один канал для текучей среды. Повышается надежность и удобство эксплуатации свабовой мандрели. 3 з.п. ф-лы, 2 ил.

Группа изобретений относится к скважинной откачивающей системе для откачивания жидкости и способу откачки. Технический результат - упрощение устройства и способа без использования бурильных труб или колонн гибких труб. Устройство содержит насос со входом и выходом, трубопровод, имеющий жидкостное соединение с указанным выходом насоса. Имеется приводной блок, соединенный с питающим кабелем, например с кабель-тросом. Приводной блок содержит приводной вал для приведения насоса в действие. Насос представляет собой возвратно-поступательный насос, содержащий по меньшей мере один насосный блок с первым подвижным элементом для обеспечения всасывания скважинного флюида в первую камеру и вытеснения скважинного флюида из первой камеры. Устройство дополнительно содержит компенсирующее устройство. Оно имеет компенсационную камеру с компенсирующим подвижным элементом, разделяющим компенсационную камеру на первую секцию камеры и вторую секцию камеры. Первая секция камеры имеет жидкостное соединение со скважинным флюидом. Вторая камера устройства имеет жидкостное соединение со второй секцией камеры. 3 н. и 20 з.п. ф-лы, 4 ил.

Изобретение относится к нефтяной промышленности и может быть использовано в добывающих скважинах для снижения давления сепарированного попутного газа в затрубном пространстве и повышения притока нефти из пласта. Техническим результатом является обеспечение возможности откачки газа из затрубного пространства в выкидной коллектор скважины для различных способов механизированной добычи нефти. Устройство для отвода газа из затрубного пространства нефтяной скважины содержит цилиндр насоса для входа и выхода перекачиваемой жидкости, плунжер в цилиндре, обратные клапаны, расположенные по обе стороны цилиндра и сообщающие полость цилиндра с затрубным пространством скважины. Плунжер в цилиндре выполнен в виде двух поршней, соединенных штоком. Шток проходит через сальник цилиндра, по обе стороны которого к цилиндру через переключатель потока подведены линии для входа и выхода добываемой продукции. Одна из линий соединена с выкидным коллектором скважины до разрывной задвижки в коллекторе, а другая после нее. К обоим торцам цилиндра через одну пару обратных клапанов подведены газовые линии от затрубного пространства, а через другую пару клапанов торцы цилиндра соединены с выкидным коллектором после разрывной задвижки. В торцах цилиндра установлены электрические контакты, соединенные с электромагнитным приводом переключателя потока. 1 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам автоматического управления технологическими процессами при эксплуатации скважин нефтегазового месторождения. Технический результат - повышение эффективности способа за счет повышения дебита нефти, уменьшения объема перекачиваемой воды и сокращения потребляемой электроэнергии. По способу используют нагнетательные скважины и добывающие скважины, оборудованные насосными установками с электродвигателями. На устье каждой из скважин устанавливают пассивно-акустический многофазный расходомер. Непрерывно в режиме реального времени измеряют давление, температуру и дебит каждой фазы, в том числе воды. Собирают и передают информацию в систему автоматизированного управления производственным процессом непрерывно в режиме реального времени. Информацию усредняют за определенный период времени. Обрабатывают и определяют средний дебит по фазам за выбранное время. Сравнивают с заданными параметрами и на основе информации о дебите каждой фазы устанавливают зависимость дебита каждой скважины от объемов закачанной пластовой воды. Выбирают вариант работы насосных установок с электродвигателями добывающих скважин и поддерживают пластовое давление таким образом, чтобы дебит нефти был максимальным, а объем перекачиваемой пластовой воды и расход электроэнергии - минимальными. При этом при выходе расчетных значений дебитов за заданные границы дебитов выполняют одно из действий: снижают производительность насосной установки за счет снижения числа оборотов электродвигателя; повышают производительность насосной установки за счет повышения числа оборотов электродвигателя; останавливают на определенное время насосную установку для накопления нефти в забое скважины. Продукцию добывающих скважин сепарируют на фазы и транспортируют, в зависимости от фазы, в систему сбора нефти и газа или систему поддержания пластового давления. 1 ил.

Наверх