Индуктивный уровнемер электропроводных жидкостей



Индуктивный уровнемер электропроводных жидкостей
Индуктивный уровнемер электропроводных жидкостей
Индуктивный уровнемер электропроводных жидкостей

 


Владельцы патента RU 2558144:

Лешков Владимир Васильевич (RU)
Таранин Владимир Дмитриевич (RU)

Изобретение относится к устройствам измерения уровня электропроводных сред и может использоваться для контроля уровня жидкометаллических теплоносителей в атомной энергетике. Предложенный уровнемер содержит обмотку возбуждения, соединенную с генератором переменного тока постоянной частоты и измерительную обмотку, подключенную к дискретно-аналоговому вычислителю уровня. Обе обмотки выполнены в виде ряда соленоидов, изготовленных из многожильного кабеля и закрепленных внутри защитного чехла. Часть жил каждого соленоида образует обмотку возбуждения, а остальные - измерительную обмотку. В качестве многожильного кабеля может быть использован жаростойкий, термопарный или нагревательный кабель в стальной герметичной оболочке с минеральной изоляцией жил. По сравнению с известными уровнемерами жидких металлов предлагаемый уровнемер имеет более простую конструкцию при сохранении высоких метрологических характеристик и длительного ресурса работы. 1 з.п. ф-лы, 2 ил.

 

Предлагаемое изобретение относится к устройствам измерения уровня электропроводных сред и может использоваться преимущественно для измерения уровня жидкометаллических теплоносителей в атомной энергетике.

Известен уровнемер по патенту РФ №2252397. Этот уровнемер содержит обмотку возбуждения, питаемую переменным током и измерительную обмотку, индуктивно связанную с обмоткой возбуждения и подключенную к измерительной схеме. Обе обмотки размещаются в защитном чехле в зоне изменений уровня контролируемой среды, причем длина измерительной обмотки примерно равна или немного превышает диапазон изменения уровня. Этот уровнемер имеет хорошие метрологические характеристики при стационарной температуре внутри бака и отсутствии значительных температурных градиентов по высоте защитного чехла, однако при нарушении этих условий его температурная погрешность может превышать допустимые по условиям эксплуатации значения. Источниками температурной погрешности являются изменяющиеся с температурой величины электропроводности измеряемой среды и конструкционных материалов уровнемера.

Наиболее близким по технической сущности к предлагаемому устройству является индуктивный уровнемер по патенту РФ №2328704. В этом уровнемере обмотка возбуждения выполнена в виде ряда катушек, закрепленных внутри защитного чехла в зоне изменений уровня, а измерительная обмотка также состоит из цепочки катушек, индуктивно связанных с катушками обмотки возбуждения. Этот уровнемер имеет высокие метрологические характеристики, его температурная погрешность на порядок меньше, чем у уровнемера по патенту РФ №2252397, однако он требует для своего изготовления большого количества дорогостоящего жаростойкого кабеля, так как катушки возбуждающей и измерительной обмоток занимают более половины внутреннего объема защитного чехла в зоне изменений уровня. Кроме того, при конструировании и изготовлении этого уровнемера трудно разместить внутри него канал для перемещения индикатора уровня, необходимого для бездемонтажной поверки уровнемера на месте эксплуатации.

Целью предлагаемого изобретения является упрощение конструкции уровнемера, уменьшение стоимости и трудоемкости его изготовления при сохранении высоких метрологических характеристик.

Указанная цель достигается, что в индуктивном уровнемере электропроводных сред, содержащем обмотку возбуждения и измерительные обмотки, размещенные в защитном чехле, погруженном в контролируемую среду, обмотки возбуждения и измерительные обмотки выполнены в виде ряда соленоидов, изготовленных из многожильного кабеля и закрепленных внутри защитного чехла в зоне изменений контролируемого уровня, причем часть жил многожильного кабеля каждого из соленоидов подключена к генератору стабильного тока постоянной частоты и образует обмотку возбуждения, а остальные жилы многожильных кабелей каждого соленоида образуют измерительную обмотку и соединены с дискретно-аналоговым вычислителем уровня среды.

Устройство предложенного уровнемера поясняется его конструкцией и электрической схемой, приведенными на фиг.1 и фиг.2, где приняты следующие условные обозначения:

1 - несущий корпус; 2 - соленоид; 3 - защитный чехол; 4 - контролируемая среда (жидкий металл); 5 - отверстия в несущей трубе под выводы соленоидов; 6 - переходные втулки; 7 - гибкие выводы обмоток; 8 - оболочка многожильного кабеля; 9 - минеральная изоляция жил кабеля; 10 - жилы кабеля; 11 - генератор стабильного тока постоянной частоты; 12 - каналы дискретно-аналогового вычислителя уровня; Фв - электромагнитный поток обмотки возбуждения; Фт - электромагнитный поток вихревых токов; E1, E2…En - ЭДС, наводимые в измерительных обмотках; C1, C2…Cn - секции уровнемеров, Iв - ток обмоток возбуждения, ОВ - обмотка возбуждения; ОИ - обмотка измерительная. Уровнемер состоит из защитного чехла 3, погруженного в контролируемую среду 4. Внутри защитного чехла 3 закреплен несущий корпус 1, представляющий собой трубу с проточками, в которые уложены кабели соленоидов 2, выводы этих кабелей через отверстия 5 пропущены внутрь несущего корпуса 1 и выведены в его верхнюю часть, где жилы кабелей, в переходных втулках 6 распаяны на гибкие провода 7 для подключения внешних электрических цепей от генератора стабильного тока постоянной частоты 11 и дискретно-аналоговых вычислителей уровня 12.

Кабель соленоида 2 состоит из наружной герметичной оболочки 8, внутри которой расположены токоведущие жилы 10, изолированные друг от друга и от оболочки 8 минеральной изоляцией 9, обычно в качестве изоляции 9 используется порошок окиси магния MgO. Каждый соленоид 2 с прилегающими участками несущего корпуса 1 образует секцию уровнемера С1, С2…Сn-1, Сn. Количество секций и их длина выбираются в соответствии с диапазоном изменения уровня и заданной погрешностью измерения уровня.

Работа уровнемера происходит следующим образом. Обмотки возбуждения ОВ соленоидов 2 подключены к генератору стабильного тока 11. Стабилизированный ток звуковой частоты Iв, проходя по обмоткам возбуждения ОВ, создает вокруг соленоидов 2 переменное электромагнитное поле Фв. Если соленоиды 2 находятся выше уровня H измеряемой среды 4, то вокруг этих соленоидов образуется только электромагнитное поле Фв. Если соленоиды 2 находятся ниже уровня H, т.е. «затоплены», то электромагнитное поле Фв наводит в электропроводной среде 4 вихревые токи, которые создают свое электромагнитное поле Фт, направленное навстречу Фв, таким образом результирующее электромагнитное поле в зоне «затопленных» соленоидов равно Фвт.

В измерительных обмотках ОИ соленоидов 2, находящихся в электромагнитном поле, по закону электромагнитной индукции наводится ЭДС Е, которая для обмоток ОИ выше уровня H - «сухих обмоток» равна

а для «затопленных» обмоток ОИ равна

Таким образом, ЭДС полностью «затопленных» обмоток измерительных ОИ меньше, чем ЭДС «сухих» обмоток измерительных ОИ. На фиг.1 и фиг.2 полностью «затоплены» соленоиды 2, образующие секции С1 и С2, и ЭДС их измерительных обмоток ОИ соответствует (2), а соленоиды 2, образующие секции Сn-1, Сn-2, полностью «сухие» и ЭДС их измерительных обмоток ОИ соответствует (1). Измерительные обмотки ОИ подключены к каналам дискретно-аналогового вычислителя уровня 12, которые по величине ЭДС определяют «затоплены» или «сухие» соответствующие соленоиды 2 и, соответственно, вычисляют дискретную составляющую измеренной величины уровня среды 4. Погрешность дискретной составляющей вычисленного уровня равна половине шага размещения соленоидов 2, т.е. половине длины секции С1, С2…Сn. Для повышения точности контроля дискретно-аналоговый вычислитель уровня 12 анализирует величину аналоговой составляющей ЭДС измерительных обмоток ОИ. По мере «затопления» соленоида 2 величина вихревых токов в зоне его расположения изменяется от нулевого значения при «сухом» соленоиде до максимального значения при его полном «затоплении» и соответственно величина Фт в формуле (2) также изменяется. Зависимость Фт от степени «затопления» соответствующего соленоида 2 близка к линейной. Графики зависимости величины ЭДС измерительных обмоток ОИ от степени их «затопления» приведены на фиг.2. Таким образом, по поступающей на каналы дискретно-аналогового вычислителя уровня 12 информации о величинах ЭДС E1, E2…En-1, En с секцией соответственно С1, С2…Сn-1, Сn производится точное вычисление уровня по формуле:

Где Hвыч - вычисленное значение уровня;

N - количество соленоидов, у которых ЭДС измерительных обмоток равна минимальной;

L - высота секции (С1, С2…Сn);

Emax, Emin - соответственно максимальная (для сухих) и минимальная (для полностью «затопленных») величины ЭДС измерительных обмоток ОИ;

E - величина ЭДС измерительной обмотки ОИ частично «затопленной» секции, находящейся в зоне текущей величины уровня H измеряемой среды 4.

Благодаря учету аналоговой составляющей, вычислитель 12 позволяет определять уровень H с точностью, заданной в технических требованиях к уровнемеру.

Принцип действия предложенного уровнемера аналогичен принципу действия уровнемера по патенту РФ №2252397, в котором обмотка возбуждения и измерительная обмотка составляют одну секцию длиной не менее диапазона измерения уровня, соответственно, погрешность контроля уровня равна погрешности одной секции, отнесенной к ее длине. В предлагаемом уровнемере число измерительных секций равно «n», соответственно общая погрешность контроля уровня в «n» раз меньше, так как шаг секций и их высота известны с абсолютной точностью, а погрешность аналоговой составляющей сигнала - это погрешность определения степени «затопления» одной секции. Преимущество предложенного устройства перед уровнемером по патенту РФ №2328704 - более простая конструкция, в несколько раз меньший расход жаростойкого кабеля, наличие достаточно свободного пространства внутри несущего корпуса 1 для размещения передвижного индикатора уровня, необходимого для периодической поверки уровнемера на месте эксплуатации без остановки технологического процесса и извлечения уровнемера из бака с контролируемой средой. На фиг.1 и фиг.2 показан двухжильный кабель для намотки соленоидов 2. Одна из жил выполняет роль обмотки возбуждения Ов, а другая - роль измерительной обмотки ОИ. Для уровнемера можно использовать и кабели с большим числом жил. Если для обмотки возбуждения в таких кабелях использовать более одной жилы, то их соединяют последовательно, параллельно или по комбинированной схеме для оптимального согласования генератора стабильного тока 11 с сопротивлением обмотки возбуждения Ов. Оставшиеся свободные жилы кабеля используют в качестве измерительной обмотки ОИ, причем их целесообразно соединять последовательно для увеличения выходного сигнала ОИ.

Основное назначение предложенного уровнемера - контроль уровня жидкометаллических теплоносителей - натрия, свинца, сплава свинец - висмут на атомных станциях с реакторами на быстрых нейтронах. Так как диапазон рабочих температур теплоносителей на таких реакторах находится в пределах 300÷600°C, то в качестве кабелей для соленоидов 2 предложенного уровнемера могут использоваться только кабели в стальной нержавеющей оболочке с минеральной изоляцией жил.

Это кабели типов КНМС (нагревательные) или КТМС (термопарные), которые выпускаются российскими и зарубежными заводами для тяжелых температурных условий эксплуатации.

Для подтверждения работоспособности предложенного уровнемера был изготовлен его макет, содержащий 5 однослойных соленоидов, намотанных кабелем КТМС ХК 2×0,06 диаметром 1,5 мм. Испытания макета подтвердили соответствие характеристик уровнемера требованиям условной эксплуатации.

Использование изобретения позволит решить проблему контроля уровня жидкометаллических теплоносителей на перспективных реакторных установках БН-1200, БРЕСТ-300, СВБР-100, так как предложенные уровнемеры имеют высокую эксплуатационную надежность, длительный ресурс работы и высокую точность контроля уровня.

1. Индуктивный уровнемер электропроводных сред, содержащий обмотки возбуждения и измерительные обмотки, размещенные в защитном чехле, погруженном в контролируемую среду, отличающийся тем, что обмотки возбуждения и измерительные обмотки выполнены в виде ряда соленоидов, изготовленных из многожильного кабеля и закрепленных внутри защитного чехла в диапазоне изменений контролируемого уровня, причем часть жил многожильного кабеля каждого из соленоидов подключена к генератору стабильного тока постоянной частоты и образует обмотку возбуждения, а остальные жилы многожильного кабеля каждого из соленоидов образуют измерительную обмотку и соединены с дискретно-аналоговым вычислителем уровня среды.

2. Индуктивный уровнемер электропроводных сред по п.1, отличающийся тем, что в качестве многожильного кабеля для намотки соленоидов используется жаростойкий термопарный или нагревательный кабель в стальной герметичной оболочке с минеральной изоляцией жил.



 

Похожие патенты:

Изобретение относится к области контроля уровня жидкометаллических теплоносителей реакторных установок атомных станций и исследовательских стендов. Уровнемер содержит обмотку возбуждения, питаемую переменным током звуковой частоты, и измерительную обмотку, заключенные в герметичный защитный чехол, погружаемый в контролируемую среду.

Заявленное изобретение относится к емкостным датчикам, использующимся в качестве топливного датчика для определения количества топлива, оставшегося в топливном баке.

Изобретение относится к области контрольно-измерительной техники. Технический результат, достигаемый от осуществления изобретения - расширение области применения при одновременном увеличении точности измерения уровня и упрощении конструкции.

Изобретение относится к области контроля уровня электропроводных сред, преимущественно жидкометаллических теплоносителей реакторных установок атомных станций.

Изобретение относится к измерительной технике, а именно к измерителям уровня путем измерения емкости конденсаторов, и предназначено для измерения температуры и уровня продукта, заполняющего хранилище.

Способ относится к конструированию и изготовлению контрольно-измерительной техники и может быть применен относительно проектируемых емкостных датчиков с металлическими коаксиально расположенными трубчатыми электродами для работы в диэлектрических жидкостях.

Изобретение относится к датчику (1) для измерения уровня поверхности металла в жидкой фазе для установки непрерывной разливки, содержащей кристаллизатор, имеющий верхнюю сторону (3), куда выходит отверстие (4), в которое втекает жидкий металл, характеризующемуся тем, что этот датчик содержит: катушку возбуждения (7) с воздушным сердечником, ориентированную перпендикулярно к верхней стороне (3) кристаллизатора и питаемую током для создания магнитного поля, силовые линии которого распространяются вдоль верхних силовых линий (14), которые отходят от кристаллизатора, и вдоль нижних силовых линий (15), которые перекрывают верхнюю сторону кристаллизатора и поверхность расплавленного металла, - нижнюю приемную катушку (8) с воздушным сердечником, параллельную катушке возбуждения, в которой генерируется наведенное напряжение в результате действия нижних силовых линий (15), изменяющихся при изменении уровня поверхности расплавленного металла, и верхнюю приемную катушку (9) с воздушным сердечником, параллельную катушке возбуждения (8), наложенную непосредственно на нижнюю приемную катушку (8) и имеющую одинаковые с ней геометрию и характеристики, в которой генерируется наведенное напряжение в результате действия верхних силовых линий (14), которые, по существу, не претерпевают возмущений, обусловленных поверхностью расплавленного металла.

Изобретение относится к области измерительной техники и может быть использовано для определения массы сжиженного углеводородного газа, содержащегося в резервуаре.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в системах измерения уровня заправки ракетно-космической техники.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в системах измерения уровня заправки ракетно-космической техники.

Предлагаемое изобретение относится к электроизмерительной технике и может быть использовано при измерении уровня диэлектрической жидкости в системах контроля и диагностики технических объектов, а также в системах измерения уровня заправки ракетно-космической техники компонентами топлива. В способе измерения уровня диэлектрического вещества используется емкостной датчик уровня и компенсационный конденсатор, на которые поочередно подают синусоидальные напряжения двух частот. На этих частотах измеряют токи емкостного датчика уровня и компенсационного конденсатора. По величине токов определяют приращение емкости датчика уровня и относительное значение уровня диэлектрической жидкости, заполняющей межэлектродное пространство датчика. Технический результат заключается в повышении точности измерения уровня диэлектрического вещества, повышение степени автоматизации процесса измерений и его технологичности за счет учета текущего значения относительной диэлектрической проницаемости контролируемого вещества, определяемого непосредственно в процессе измерений. 2 ил.

Раскрыт электростатический емкостный датчик уровня текучей среды, в котором герметичный вывод включает в себя металлическую пластинку и электропроводящие контактные штырьки, вставленные сквозь металлическую пластинку так, чтобы они были герметично изолированы и закреплены, а также два электрода с электроизолирующими разделителями, фиксирующие взаимное расположение между электродами. Указанный датчик содержит, по меньшей мере, один соединительный вывод, посредством которого электроды неподвижно соединены с электропроводящими контактными штырьками, выполненный с возможностью быть деформируемым более слабой силой, чем сила, которая вызывает деформацию упомянутого электрода. При этом в результате деформации соединительного вывода механическое напряжение, действующее на электроды, рассредоточено и/или демпфировано и, таким образом, может быть предотвращена деформация электродов. Представленный датчик прост по конструкции, легок в изготовлении и использовании. 7 з.п. ф-лы, 8 ил.

Устройство для мониторинга расхода топлива и режима движения транспортного средства относится к дистанционной контрольно-измерительной технике, устройство предназначено для измерения уровня диэлектрических жидкостей, находящихся в баках, резервуарах, иных емкостях, в том числе в топливных баках транспортных средств, и автоматической, в реальном масштабе времени передаче на диспетчерский пульт информации о степени наполненности емкости и месте ее нахождения. Устройство включает в себя емкостные чувствительные элементы в виде коаксиально выполненных трубчатых электродов, соединенных с корпусом, плату электронного генератора, соединенную с элементами и размещенную внутри корпуса, провод выходного сигнала, новым является то, что сигнал генератора подается на микроконтроллер, который соединен с акселерометром, портом ввода-вывода, модемом, блоком хранения информации, приемником спутниковой связи, включающим усилитель и антенну, а модем соединен с антенной сотовой связи и картой хранения информации, провод представляет собой двунаправленную пару, а корпус выполнен из пластика. В моноблочном исполнении устройства данные об уровне топлива, остановках, стоянках транспортного средства, переданные на сервер, позволяют автоматически, в реальном масштабе времени производить их эффективную обработку и получать достоверную информацию о расходе, местах заправок, возможных сливах топлива, а также о маршруте и режиме движения транспортного средства при фискальном архивировании всех данных. Компактность и моноблочность выполнения устройства снижает его себестоимость и повышает эксплуатационную надежность. 3 ил.
Наверх