Способ отвода тепла от тепловыделяющих электронных компонентов в виде электромагнитной энергии на основе диодов ганна


 


Владельцы патента RU 2558217:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (RU)

Изобретение относится к способам охлаждения и теплоотвода, например к способам охлаждения компьютерного процессора. Цель изобретения - улучшение процесса охлаждения тепловыделяющих электронных компонентов. Для достижения поставленной цели разработано термоэлектрическое устройство, состоящее из термомодуля, горячие спаи которого представляют собой диоды Ганна, предназначенные для преобразования тепловой энергии, поступившей с холодных спаев в виде электрического тока, в электромагнитную энергию, отводящую тепло от охлаждаемого устройства в окружающую среду. Такой способ имеет преимущества перед обычными термомодулями с горячими и холодными спаями в том, что можно получить более низкую температуру на холодном спае, так как уменьшается паразитный кондуктивный перенос со стороны горячего спая, который нагревается гораздо меньше за счет того, что часть энергии уходит в виде электромагнитных волн, а не преобразуется в тепло на горячем спае. Использование представленного изобретения позволит повысить эффективность теплопередачи и уменьшить габариты теплоотвода, а также тем самым увеличить интенсивность работы систем охлаждения. 1 ил.

 

Изобретение относится к способам охлаждения и теплоотвода, например к способам охлаждения компьютерного процессора.

Известен термоэлектрический теплоотвод [1], выполненный из термомодулей, у которого основание теплоотвода представляет собой базовый термомодуль, стержни теплоотвода игольчатого типа расположены на основании в шахматном или коридорном порядке, каждый стержень состоит из оптимального числа расположенных каскадно друг над другом дополнительных термомодулей, имеющих площадь значительно меньшую, чем базовый термомодуль.

Цель изобретения - улучшение процесса охлаждения тепловыделяющих электронных компонентов.

Для достижения поставленной цели разработано термоэлектрическое устройство, состоящее из термомодуля, горячие спаи которого представляют собой диоды Ганна, предназначенные для преобразования тепловой энергии, поступившей с холодных спаев в виде электрического тока, в электромагнитную энергию, отводящую тепло от охлаждаемого устройства в окружающую среду. Такой способ имеет преимущества перед обычными термомодулями с горячими и холодными спаями в том, что можно получить более низкую температуру на холодном спае, так как уменьшается паразитный кондуктивный перенос со стороны горячего спая, который нагревается гораздо меньше за счет того, что часть энергии уходит в виде электромагнитных волн, а не преобразуется в тепло на горячем спае. Дополнительным преимуществом является быстродействие процесса отвода тепла в виде электромагнитного излучения. Энергия электромагнитных волн прямо пропорционально зависит от частоты волн. Поэтому, для повышения эффективности отвода тепла, целесообразно использовать такие материалы p-типа и n-типа полупроводниковых ветвей, которые применяются в диодах Ганна с наиболее высокой частотой излучения электромагнитных волн.

На фиг.1 представлена конструкция термоэлектрического устройства, реализующая заявленный способ.

Конструкция термоэлектрического устройства представляет собой термомодуль 1 в виде основания теплоотвода, на котором в качестве игольчатых штырей теплоотвода используются последовательно соединенные диоды Ганна 2, при этом ток, протекающий на одном из спаев, будет формировать электромагнитные волны, а не нагрев, как в обычном термомодуле, причем в другом спае будет происходить поглощение тепловой энергии в соответствии с эффектом Пельтье.

Использование представленного изобретения позволит повысить эффективность теплопередачи и уменьшить габариты теплоотвода, а также тем самым увеличить интенсивность работы систем охлаждения.

Возможность повышения теплопередачи путем использования излучения электромагнитных волн имеет перспективу применения для дискретных источников тепловыделения, например, мощных полупроводниковых компонентов (диодов, транзисторов, тиристоров и т.д.).

Литература

1. Термоэлектрический теплоотвод: пат. 2288555 Рос. Федерация, МПК Н05К 7/20/Исмаилов Т.А., Гаджиев Х.М., Нежведилов Т.Д., Гафуров К.А.; заявитель и патентообладатель «Дагестанский государственный технический университет» - №2003124400/28; заявл. 10.02.2005, опубл. 27.11.2006.

Способ отвода тепла от тепловыделяющих электронных компонентов в виде электромагнитной энергии на основе диодов Ганна, заключающийся в применении для отвода тепла термомодуля, примыкающего холодными спаями к электронному компоненту, отличающийся тем, что горячие спаи термомодуля представляют собой диоды Ганна, предназначенные для преобразования тепловой энергии, поступившей с холодных спаев в виде электрического тока, в энергию электромагнитных волн, отводящую тепло от охлаждаемого электронного компонента в окружающую среду.



 

Похожие патенты:

Изобретения относятся к компьютерным системам, монтируемым в серверных стойках и залах, а также к их охлаждению. Технический результат - обеспечение компьютерной системы с эффективным охлаждением, в которой возможен беспрепятственный монтаж/демонтаж оборудования в процессе ее работы.

Группа изобретений относится к области радиоэлектронной техники и может быть использована при конструировании корпусов радиоэлектронных устройств. Технический результат - обеспечение интенсивного отведения тепла от тепловыделяющих радиоэлектронных элементов при их контакте с дном корпусов при одновременной минимизации передачи тепла к радиоэлектронным элементам при герметизации корпусов при помощи пайки или сварки, что повышает надежность и долговечность работы радиоэлектронных устройств.

Изобретение относится к металлокерамической связанной подложке и, в частности, к объединенной подложке с жидкостным охлаждением, и к способу ее изготовления. Технический результат - уменьшение затрат на материалы и изготовление, и уменьшение изгиба (деформации формы), повышение прочности и теплоизлучающей производительности.

Изобретение относится к электронно-вычислительной технике и может быть использовано в конструкциях блоков радиоэлектронной аппаратуры (РЭА), в состав которых устанавливаются сменные модули электронные, и, работающих в условиях повышенного тепловыделения элементами РЭА, значительных механических нагрузок, а также агрессивных погодно-климатических факторов при войсковой эксплуатации.

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла от каждого из собранных в модуль полупроводниковых светодиодов при минимальном значении сопротивления теплопередаче и минимальном влиянии неконденсированных примесей.

Изобретение относится к теплоотводящей технике, может использоваться в теплообменных системах газового и жидкостного охлаждения, а также для отведения тепла от термонагруженных твердых элементов.

Изобретение относится к области электроники и может быть использовано для обеспечения эффективного отвода тепла от печатных плат с размещенными на них электронными компонентами.

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых светодиодов.

Изобретение относится к области радиоаппаратостроения и может использоваться при конструировании корпусов радиоэлектронной аппаратуры. Технический результат - упрощение конструкции вентиляционного блока за счет снижения трудоемкости изготовления вентиляционной панели при повышенной эффективности экранирования, а также упрощение способа изготовления вентиляционных пластин.

Изобретение относится к системам охлаждения и теплоотвода, например к устройствам для охлаждения компонентов электронной аппаратуры. Технический результат - повышение энергоэффективности системы охлаждения.

Изобретение относится к электротехнике и может быть использовано для испытания объектов на электромагнитную совместимость с одновременными электромагнитным и климатическим воздействиями на объект испытания. Технический результат - повышение эффективности экранирования испытательного контейнера от внешнего электромагнитного излучения и климатических условий - достигается тем, что климатическая экранированная камера, включает экранированный корпус, экранированную дверь, экранированный модуль ввода с электрическими соединителями, уплотнительные экранирующие прокладки и прокладки воздушной герметизации, низкочастотные фильтры, устройство для управления климатическими воздействиями внутри испытательного пространства. При этом внешние стенки экранированного корпуса покрыты радиопоглощающим материалом, в экранированный корпус внедрен выполненный в виде ТЕМ-ячейки испытательный контейнер, нижняя стенка которого выполнена в виде испытательного стола, в стенки экранированного корпуса внедрены электрические датчики, трубки теплообменника, экранирующий слой из лент магнитомягких сплавов. В непосредственной близости от камеры располагается датчик температуры и электромагнитного поля. Экранированная дверь выполнена съемной, ее внутренняя сторона выполнена в виде испытательного стола, а в ее внутреннюю полость внедрен электромеханический замок, трубки теплообменника, экранирующий слой из магнитомягких сплавов, а также экранированный модуль ввода с защитными крышками и помехозащитными фильтрами, в прорези экранированной двери размещены уплотнительные экранирующие, воздушные и герметизирующие прокладки, которые при закрытии двери прижимаются к экранирующему пазу, размещенному в экранированном корпусе, открытие и закрытие двери производится при помощи червячного подъемника и выше упомянутого электромеханического замка, сила прижатия которых отслеживается вышеупомянутыми электрическими датчиками. 5 ил.

Изобретение относится к области вычислительной техники. Технический результат - повышение эффективности охлаждения нагревающихся электронных компонентов, увеличение плотности установки вычислительных узлов, обеспечение функционирования серверной фермы при отрицательных температурах окружающей среды, а также сохранение эффективности охлаждения и экономии электроэнергии при установке неполного количества вычислительных узлов. Серверная ферма с иммерсионной системой охлаждения состоит из герметичного резервуара, заполненного охлаждающей жидкостью, снабженного крышкой, впускным и выпускным патрубками, сообщающимися с циркуляционным насосом и теплообменником. Внутри резервуара параллельно его днищу установлена первая печатная плата, состыкованная со второй печатной платой, установленной параллельно одной из стенок резервуара. К месту состыковки первой и второй печатных плат прикреплена перегородка, продолжающаяся до стенки резервуара. Вычислительный узел состоит из двух параллельных друг другу монтажных панелей и материнских плат, смонтированных на обращенных друг к другу поверхностях монтажных панелей. К радиаторам плотно примыкают две наклоненные навстречу друг к другу пластины, продолжающиеся вплотную до первой печатной платы и прикрепленные к нижней части монтажных панелей. Вычислительный узел установлен на первую печатную плату параллельно второй печатной плате. На первой печатной плате соосно между собой выполнены отверстия для доступа охлажденной жидкости через первую печатную плату к вычислительным узлам. Пружинный механизм прикреплен к первой печатной плате и предназначен для локального перекрывания прохождения вертикального потока охлаждающей жидкости через первую печатную плату на том ее участке, где вычислительный узел не установлен. Серверная ферма может включать n герметичных резервуаров, параллельно соединенных между собой посредством системы подводящих и отводящих трубопроводов, сообщающихся с выпускной и впускной коллекторными трубами, соединенными между собой общим напорным трубопроводом. 2 н. и 9 з.п. ф-лы, 6 ил.

Изобретение относится к системам охлаждения Центров хранения и обработки данных. Техническим результатом является повышение эффективности охлаждения Центров хранения и обработки данных. Помещение для охлаждения серверов включает: пространство чернового пола, образуемое полом, боковыми стенками и фальшполом, расположенными над полом; внутреннее пространство, расположенное над пространством чернового пола и образуемое черновым полом, боковыми стенками и потолком; корпус, расположенный во внутреннем пространстве, в котором корпус образует внутреннее пространство и включает отверстие серверной стойки, предназначенное для сопряжения со стойкой; охлаждающий и перемешивающий модуль; стойку, включающую один или несколько установленных в ней блоков; один или несколько охлаждающих вентиляторов; одно или несколько вентиляционных отверстий в фальшполу; одно или несколько вентиляторных устройств во внутреннем пространстве. 4 з.п. ф-лы, 6 ил.

Изобретение относится к электротехнике, к электрическому оборудованию, работающему во взрывоопасной атмосфере. Технический результат состоит в повышении надежности за счет создания защиты от воспламенения и расширения диапазона окружающей атмосферы. Корпус выполнен с одним из видов взрывозащиты согласно требованиям взрывобезопасности и снабжен устройством для поддержания температурного режима, которое состоит из змеевика, термически соединенного, по меньшей мере, с одной из стенок. Посредством циркуляционного насоса при необходимости подается через змеевик для поддержания температурного режима текучая среда, чтобы в зависимости от целевого применения повысить или понизить температуру корпуса. 2 н. и 8 з.п. ф-лы, 1 ил.

Изобретение относится к системам охлаждения и термостатирования с жидким теплоносителем. Технический результат - повышение энергетической эффективности системы жидкостного охлаждения силового полупроводникового прибора за счет исключения необходимости использования внешнего водоподъемного устройства для подачи охлаждающей среды через тепловоспринимающий элемент системы. Достигается за счет того, что в системе жидкостного охлаждения силового полупроводникового прибора, содержащей электромагнит, состоящий из подвижной и неподвижной частей, мембрану, стойку, подводящий и отводящий патрубки, корпус и стакан, стакан и стойка, в сечении которой закреплена мембрана, установлены оппозитно с торцов корпуса с образованием внутренней полости между ними, которая сообщена с подводящим и отводящим патрубками, неподвижная часть электромагнита закреплена со стойкой, а подвижная часть электромагнита связана с мембраной. Дополнительно введены два обратных клапана и пружина, причем обратные клапаны установлены на подводящий и отводящий патрубки, а пружина расположена во внутренней полости корпуса между мембраной и стаканом. 1 ил.

Изобретение относится к области радиоаппаратостроения и может использоваться при конструировании корпусов радиоэлектронной аппаратуры. Технический результат - повышение эффективности охлаждения корпуса и модулей радиоэлектронной аппаратуры. Достигается тем, что в электронном блоке с воздушным охлаждением система охлаждения корпуса образована входным отверстием на задней стенке, выходными отверстиями на лицевой панели, нижней крышкой, внутренними и внешними левой боковой, правой боковой стенками, внешней и внутренней верхними крышками, а также задней стенкой, выполненными с возможностью прохождения между внутренними и внешними стенками и крышками охлаждающего потока воздуха. Причем боковые внутренние стенки выполнены в виде радиаторов, а внутри корпуса установлен, по крайней мере, один функционально скомпонованный тепловыделяющий элемент. Внутри корпуса параллельно задней стенке размещена средняя стенка с рассекателем, установленная с возможностью образования основного отсека и отсека воздухораспределения, во внутренних боковых стенках и внутренней верхней крышке которого выполнены дополнительные входные отверстия. При этом тепловыделяющий элемент в виде радиоэлектронного модуля, включающего печатную плату с электрорадиоизделиями, установленную на радиатор, закрытый крышкой модуля с отверстиями, с возможностью образования внутреннего канала охлаждения размещен внутри основного отсека параллельно средней стенке и закреплен на внутренних боковых стенках корпуса посредством клинового механизма, обеспечивающего плотное прилегание боковых и верхней торцевых контактных поверхностей радиатора к поверхностям внутренних боковых стенок и верхней крышки корпуса с возможностью осуществления конвективного отвода тепла через внутренний канал охлаждения и кондуктивного отвода тепла на стенки корпуса. При этом внутренняя верхняя крышка выполнена с возможностью образования с внешней верхней крышкой посредством перегородки двух отсеков, содержащих дополнительные входные и выходные отверстия, размещенные соосно с отверстиями в крышке модуля. 10 ил.

Группа изобретений относится к базовым элементам светотехнических безламповых устройств на основе светодиодов и к способам изготовления таких элементов. Технический результат - повышение эффективности отвода тепла от светодиодов, увеличение устойчивости блока к ударным и вибрационным нагрузкам, надежность работы при разогреве до высоких температур, уменьшение энергоемкости и материалоемкости производства, исключение экологически вредных отходов и испарений, присущих классической толстопленочной технологии. Достигается тем, что в интегрированном блоке для светодиодного светильника токопроводящая цепь выполнена в виде металлических проводников, адгезионно укрепленных на диэлектрическом слое, материал которого обладает температурным коэффициентом расширения, равным таковому для алюминиевого сплава с точностью плюс-минус 10%, диэлектрический слой нанесен непосредственно на корпус и, в свою очередь, адгезионно укреплен на нем, а светодиод укреплен своим теплоотводящим выводом на корпусе методом пайки. При этом в качестве диэлектрической пасты применена низкотемпературная не содержащая свинца и кадмия стеклосодержащая паста, а в качестве проводниковой пасты применена не содержащая свинца низкотемпературная паста на основе серебра. 2 н. и 7 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам для переноса тепла, созданного в электронном устройстве. Техническим результатом является повышение эффективности отвода тепла от электронного устройства. Устройство содержит корпус, который вмещает электронное устройство, при этом корпус включает в себя тело основания, тело крышки и тело рамки, причем тело рамки имеет первый участок и второй участок. Второй участок имеет более большую длину, чем длина первого участка, а толщина первого участка меньше, чем длина первого участка в упомянутом направлении, причем тело основания и тело рамки имеют более высокую удельную теплопроводность, чем удельная теплопроводность тела крышки. 3 н. и 17 з.п. ф-лы, 25 ил.

Изобретение относится к шумоподавляющему корпусу для электронного оборудования и способу его изготовления. Технический результат - снижение шума с одновременным улучшением теплообмена оборудования - достигается тем, что корпус для подавления шума, создаваемого внутри него, содержит конструкцию, задающую внутреннюю камеру, имеющую вентиляционные отверстия для входа и выхода охлаждающего воздуха. Конструкция взаимодействует с расположенным внутри оборудованием для задания впускного пленума и выпускного пленума. Наружный воздух проходит через входное отверстие корпуса в впускной пленум, через оборудование в выпускной пленум и выходит из конструкции через выходное отверстие корпуса. Входное и/или выходное отверстия содержат перегородки. Перегородки состоят из эластичного материала, образующего отверстия, связанные посредством текучей среды с внутренней камерой и пространством снаружи корпуса. Перегородки расположены так, что препятствуют прямой видимости изнутри конструкции наружу или уменьшают ее, при этом сохраняя открытыми вентиляционные каналы между перегородками. 14 з.п. ф-лы, 18 ил.

Изобретение относится к электротехнике и может быть использовано в импульсных источниках вторичного электропитания в качестве способа отвода тепла от обмоток в планарном индуктивном элементе (ПИЭ). Технический результат - обеспечение эффективного отвода тепла от обмоток ПИЭ, расположенных в многослойной печатной плате (МПП), за счет сокращения длины теплового пути и уменьшения теплового сопротивления между обмотками и окружающей средой. Достигается тем, что отвод тепла от обмоток ПИЭ, расположенных в МПП, осуществляется путем формирования на поверхности МПП контактных площадок; выполнением соединения контактных площадок с концами обмоток; установкой на контактные площадки разных обмоток токопроводящего теплоотводящего элемента (ТТЭ), причем передача тепла от обмоток осуществляется путем обеспечения теплового контакта поверхности ТТЭ с теплорассеивающим элементом (ТЭ). 2 н. и 1 з.п. ф-лы, 3 ил.
Наверх