Способ определения качества покрытий на изделиях, полученных обработкой давлением

Изобретение относится к способам определения качества металлических разнофункциональных покрытий на изделиях, получаемых обработкой давлением. Способ определения качества покрытий на изделиях, получаемых обработкой давлением, заключается в том, что образец-свидетель перед подготовкой поверхности по ГОСТ 9.301.78 и нанесением покрытия на него подвергают осадке по схеме напряженно-деформированного состояния аналогично таковой для конкретного вида обработки давлением, при котором получено изделие. Затем исследуемую поверхность образца-свидетеля подвергают комплексной обработке, соответствующей комплексу поверхностной обработки реального изделия после обработки давлением перед нанесением покрытия. В этом случае напряженно-деформированное состояние образца и физико-механическое состояние его поверхности в наибольшей степени соответствует таковым для конкретного вида обработки давлением и последующей поверхностной обработки, при которых получено изделие. Техническим результатом является повышение точности (достоверности) определения параметров качества разнофункциональных покрытий на изделиях, получаемых обработкой давлением.

 

Изобретение относится к способам определения качества металлических разнофункциональных покрытий на изделиях, получаемых обработкой давлением.

Известен способ определения качества покрытий, заключающийся в подготовке поверхности изделия под покрытие согласно ГОСТ 9.301-78, нанесении покрытия на подготовленную поверхность, исследовании основных параметров качества покрытия (прочность сцепления покрытия с основным материалом, микротвердость, толщина, пористость) согласно соответствующим методам контроля по ГОСТ 9.302-79.

Этот способ реализуется следующим образом. Поверхность изделия перед нанесением покрытия подвергается обработке согласно требованиям ГОСТ 9.301-78. Затем на изделие наносят требуемый тип покрытия. Контроль качества нанесенного покрытия на пористость, прочность сцепления покрытия с основным материалом, микротвердость, толщину осуществляют по ГОСТ 9.302-79 (прототип). Допускается производить контроль качества покрытия на образцах-свидетелях простой формы в случае сложной формы изделия и определения параметров качества покрытий на внутренних поверхностях изделия.

Недостатком этого способа является то, что для случая исследования перечисленных выше параметров качества покрытия на реальных изделиях эта процедура существенно затруднена, а зачастую просто невозможна для изделий сложной геометрии, что наиболее характерно для изделий, получаемых обработкой давлением. В случае же использования для исследования качества покрытия образцов-свидетелей простой формы, последние по напряженно-деформированному состоянию и физико-механическому состоянию исследуемой поверхности не соответствуют таковым для изделия после обработки давлением. При этом эти различия весьма существенны. Соответственно параметры качества покрытия, полученные на таких образцах-свидетелях, могут значительно отличаться от соответствующих параметров реальных изделий. Этот недостаток становится еще более существенным, когда требуется определить качество покрытий на внутренних поверхностях изделий, а также когда происходит разработка новых изделий и технологий обработки давлением с последующим нанесением покрытий, где исследования наиболее целесообразно производить на модельных образцах.

Технический результат изобретения - повышение точности (достоверности) определения параметров качества разнофункциональных покрытий на изделиях, получаемых обработкой давлением.

Технический результат достигается тем, что в способ определения качества покрытий на изделиях, полученных обработкой давлением, заключающийся в подготовке поверхности образца-свидетеля согласно ГОСТ 9.301-78, нанесении покрытий на образец-свидетель, исследовании основных параметров качества покрытий на образце-свидетеле: прочность сцепления покрытия с основным материалом, микротвердость, толщина, пористость, согласно соответствующим методам контроля по ГОСТ 9.302-79, добавляется следующее: образец-свидетель перед подготовкой поверхности по ГОСТ 9.301-78 и нанесением покрытий на него подвергают осадке по схеме напряженно-деформированного состояния аналогично таковой для конкретного вида обработки давлением, при котором получено изделие, затем исследуемую поверхность образца-свидетеля подвергают комплексной обработке, соответствующей комплексу поверхностной обработки реального изделия после обработки давлением перед нанесением покрытия.

В этом случае напряженно-деформированнное состояние образца-свидетеля и физико-механическое состояние его поверхности в наибольшей степени соответствует таковым для конкретного вида обработки давлением и последующей поверхностной обработки, при которых получено изделие. После этого исследуемая поверхность образца-свидетеля проходит обработку согласно ГОСТ 9.301-78 и на нее наносят конкретный вид покрытия.

Исследование основных параметров качества покрытий (прочность сцепления покрытия с основным материалом, микротвердость, толщина, пористость) проводят на образце-свидетеле согласно соответствующим методам контроля по ГОСТ 9.302-79.

Пример реализации предлагаемого способа.

Требуется определить качество вакуумного ионно-плазменного износостойкого покрытия из нитрида хрома на внутренней поверхности полости диаметром 10 мм, глубиной 18,5 мм, в цилиндрической детали диаметром 20 мм и высотой 30 мм. Полость в детали из стали 45 получена методом холодного обратного вылавливания на гидравлическом прессе. Скорость выдавливания (скорость деформирования) составляла 1,67 мм/с.

Способ осуществляется следующим образом.

1. Из материала изделия изготавливается образец-свидетель цилиндрической формы диаметром 15 мм и высотой 15 мм. Это обеспечивает структурное соответствие материала изделия и образца-свидетеля. Величина торцевой поверхности образца-свидетеля достаточна для проведения испытаний по определению параметров качества покрытия по методам ГОСТ 9.302-79.

2. Образец-свидетель подвергают свободной осадке между параллельными плитами на гидравлическом прессе со скоростью деформирования 0,83 мм/с. Образец-свидетель осаживают на 9,5 мм. Схема и деформационно-скоростные параметры осадки соответствуют параметрам процесса выдавливания исследуемой полости. В этом случае напряженно-деформированное состояние образца и физико-механическое состояние его поверхности в наибольшей степени соответствует таковым для конкретного вида обработки давлением, при котором получено изделие.

3. Исследуемая поверхность образца-свидетеля после осадки подвергается комплексу обработки, соответствующему комплексу поверхностной обработки реального изделия после обработки давлением: проводят термическую обработку на HRC 45; полируют поверхность до Ra=0,16 мкм. Это обеспечивает идентичность физико-механического состояния исследуемой поверхности образца-свидетеля и поверхности реального изделия пред нанесением покрытия.

4. Производится подготовка исследуемой поверхности образца-свидетеля под покрытие согласно ГОСТ 9.301-78.

5. На исследуемую поверхность образца-свидетеля наносят износостойкое ионно-плазменное покрытие из нитрида хрома совместно с исследуемыми деталями.

6. На исследуемой поверхности образца-свидетеля определяют параметры качества покрытия согласно методам по ГОСТ 9.302-79.

Таким образом, заявленный способ определения качества покрытий позволяет значительно повысить точность определения параметров качества покрытий на изделиях, полученных обработкой давлением, так как при реализации способа в наибольшей степени выполнены структурное и деформационное соответствие образца-свидетеля и реального изделия и идентичность физико-механического состояния их поверхностей перед нанесением покрытия. Особенно это важно при нанесении тонких покрытий физическими методами (например, ионно-плазменные покрытия), когда физико-механическое состояние поверхности и напряженно-деформированное состояние поверхностной зоны изделия существенно влияют на механизмы формирования покрытий.

Способ определения качества покрытий на изделиях, полученных обработкой давлением, заключающийся в подготовке поверхности образца-свидетеля согласно ГОСТ 9.301-78, нанесении покрытий на образец-свидетель, исследовании основных параметров качества покрытий на образце-свидетеле: прочность сцепления покрытия с основным материалом, микротвердость, толщина, пористость, согласно соответствующим методам контроля по ГОСТ 9.302-79, отличающийся тем, что образец-свидетель перед подготовкой поверхности по ГОСТ 9.301-78 и нанесением покрытий на него подвергают осадке по схеме напряженно-деформированного состояния аналогично таковой для конкретного вида обработки давлением, при котором получено изделие, затем исследуемую поверхность образца-свидетеля подвергают комплексной обработке, соответствующей комплексу поверхностной обработки реального изделия после обработки давлением перед нанесением покрытия.



 

Похожие патенты:
Изобретение относится к сельскому хозяйству, а именно к машинному доению коров. Сначала каждую корову доят доильным аппаратом через счетчик молока.

Изобретение относится к способам анализа образцов пористых материалов. Для определения распределения и профиля проникшего загрязнителя в пористой среде приготовляют суспензию загрязнителя, содержащего по меньшей мере один твердый компонент и окрашенного по меньшей мере одним катионным красителем.

Изобретение относится к способам и устройствам для измерения содержания растворенного газа, остающегося в нефти после сепарации, при различных давлениях и температурах в установках замера дебитов скважин.

Изобретение относится к способам контроля состояния атмосферного воздуха и может быть использовано для мониторинга загрязнения окружающей среды аэрозолями, а также для контроля аварийных выбросов.

Изобретение относится к области аналитической химии. Испытуемый образец золошлакового материала и пары азотной кислоты подвергают контакту в изолированной камере в течение 8-90 часов.

Изобретение относится к области поверхностных явлений и может быть использовано в разных отраслях, в том числе для характеристики дисперсных материалов или раздробленных материалов, песка, цемента и т.п.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано при изучении возможного взаимодействия в недрах земли пластовых вод и жидких производственных отходов при закачивании последних в глубокозалегающие водоносные пласты.

Изобретение относится к нефтедобывающей промышленности, в частности к разработке нефтяных низкопроницаемых месторождений. Техническим результатом является определение местоположения застойных и слабодренируемых нефтенасыщенных участков нефтяных низкопроницаемых залежей.

Изобретение относится к нефтяной промышленности, а именно к способам контроля за разработкой нефтяных месторождений. Техническим результатом является повышение эффективности способа контроля за разработкой нефтяных месторождений за счет более полного и формализованного учета параметров, характеризующих протекающие в пористой среде процессы.

Изобретение относится к противопожарной технике и может быть использовано при оценке огнетушащей способности порошковых составов огнетушителей. Способ определения распределения массы частиц огнетушащего вещества, содержащегося в нестационарном газовом потоке, с осаждением их на подложке и измерением времени осаждения частиц.

Изобретение относится к нефтедобывающей промышленности, а именно к определению исходных данных для проектирования разработки продуктивной залежи вмещающей, нефть с повышенным содержанием асфальтено-смолистых веществ, проявляющую неньютоновские свойства нелинейной вязкопластичной нефти. Техническим результатом является повышение точности определения реологических, фильтрационных свойств нефти и термобарических параметров системы «пласт-нефть» с учетом влияния неньютоновских свойств нелинейной вязкопластичной нефти. Способ включает исследование скважины и/или использование данных из исходной геолого-физической характеристики пласта, данных о физических свойствах нефти, составе попутного газа, результатов промысловых и гидродинамических исследований скважины на установившемся режиме, включающих пары значений забойного давления и дебита скважины по нефти и определение реологических и/или фильтрационных параметров системы «пласт-нефть» методом моделирования процессов фильтрации нелинейно вязкопластичной нефти на основе полученных данных с определением ее притока. В модели фильтрации нелинейно вязкопластичной нефти учитывают площадь дренирования и фактор формы контура питания, а псевдоустановившийся приток указанной нефти к забою вертикальной добывающей скважины, расположенной в любом месте произвольной по форме площади дренирования, определяют по математической формуле. 3 з.п. ф-лы, 6 табл., 2 ил.

Изобретение относится к литейному производству, а именно к определению формы зерен формовочного песка на основе кварца, и может быть использовано при оценке состояния поверхности формовочного песка различных месторождений. Способ включает отбор пробы песка, отделение глинистых частиц, расположение пробы песка на контрастной гладкой подложке, фотографирование через микроскоп, оптический анализ изображения путем наложения сетки и подсчета числа ячеек, содержащих контур фрактала, построение графика логарифмической зависимости, определяющей фрактальную размерность Dp. Анализ изображения осуществляют компьютерной обработкой изображения, подсчитывая число занятых ячеек только на границе зерна песка. Определяют зависимость числа занятых ячеек N со стороной ячейки h от размера ячейки в двойных логарифмических координатах. Построение графика линии логарифмической зависимости осуществляют по lnN от lnh и определяют фрактальную размерность Dp по тангенсу угла наклона линии, полученной построением логарифмической зависимости Dp=lnN/lnh. Техническим результатом является повышение достоверности оценки формы зерна формовочного песка и его развитой поверхности. 3 ил., 2 табл.

Изобретение относится к области термопорометрии, в частности к устройствам для проведения измерений распределения размера пор пористых сред, и может найти применение в различных отраслях промышленности, например нефтегазовой, химической и пищевой. Измерительная ячейка дифференциального сканирующего калориметра содержит цилиндрический корпус, выполненный из металла с высокой температуропроводностью. В корпусе размещена по меньшей мере одна металлическая вставка в виде диска, выполненного из металла с высокой температуропроводностью, в верхней части которого выполнено углубление для размещения образца исследуемого материала. В верхней части корпуса выполнен гермоввод для вакуумирования и подачи жидкости, а нижняя часть корпуса снабжена герметичной крышкой, выполненной с возможностью герметичного размещения внутри корпуса. Техническим результатом является обеспечение повышенной температуропроводности образца в ячейке, уменьшение эффекта запаздывания температуры, обеспечение возможности работы как с твердыми пористыми телами цилиндрической формы, так и с порошками, а также ячейка позволяет производить вакуумирование образцов и заполнение жидкими средами. 8 з.п. ф-лы, 2 ил.

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано при проектировании разработки нефтяных и газовых месторождений, на которых планируется применение кислотной обработки пласта и создание трещин гидроразрыва. Для эксперимента используют образцы керна с близким литологическим составом и схожими фильтрационно-емкостными и физико-механическими свойствами. По возможности, образцы выбуривают из одного куска исходного кернового материала. В экстрагированных и высушенных образцах керна создают остаточную водонасыщенность с помощью модели пластовой воды. Для пород-коллекторов нефтяных месторождений образцы затем насыщают керосином или нефтью. На основе литологической характеристики пород-коллекторов подбирается кислотный состав. Каждый образец в отдельности помещают в установку, позволяющую фильтровать кислотный состав. В установке создают эффективные напряжения, соответствующие пластовым условиям, и прокачивают определенное количество поровых объемов образца керна кислотного состава по всем образцам, кроме одного. Далее производят испытание упругих и прочностных свойств всех образцов керна статическим методом. Строят корреляционную зависимость изменения упругих и прочностных свойств образцов керна в зависимости от прокачанных поровых объемов кислотного состава. Техническим результатом является определение закономерности изменения упругих и прочностных свойств пород-коллекторов от прокачиваемых объемов кислотного состава. 1 ил.

Изобретение относится к нефтедобывающей отрасли и может быть использовано при проектировании разработки нефтяных месторождений с трещиноватым типом коллектора, на которых используется система поддержки пластового давления (ППД) в виде нагнетания воды. Проэкстрагированный и высушенный образец керна с единичной трещиной насыщают дистиллированной водой или моделью нагнетаемой воды. Образец помещают в установку для фильтрационных исследований образцов керна. Создают эффективные напряжения, соответствующие пластовым условиям, и определяют проницаемость образца при фильтрации дистиллированной воды или модели нагнетаемой воды. В процессе фильтрации воды образец подвергают циклическому воздействию увеличивающихся и уменьшающихся эффективных напряжений (минимум три цикла), а также выдержке при различном значении постоянного эффективного напряжения (минимум три выдержки). Одновременно производят отбор профильтровавшейся воды (минимум три пробы) и определяют ее химический состав. На основе динамики изменения проницаемости образца керна и химического состава профильтровавшейся воды определяют зависимость изменения проницаемости образца керна с трещиной при совместном воздействии фильтрации воды и постоянных эффективных напряжений. На основе зависимости изменения ширины трещины от изменяющихся эффективных напряжений определяют величину изменения проницаемости за счет упругих деформаций образца керна. Техническим результатом является определение закономерности изменения трещинной составляющей проницаемости при совместном воздействии фильтрующейся воды и изменяющихся эффективных напряжений. 1 табл., 3 ил.

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано при проектировании разработки нефтяных и газовых месторождений. Способ заключается в том, что для эксперимента используют экстрагированные и высушенные образцы керна, отобранные из одного продуктивного объекта. Предварительно определяют открытую пористость и абсолютную проницаемость образцов по газу в стандартных условиях. Делают подборку из данных образцов таким образом, чтобы она включала образцы с максимальной, минимальной и средними значениями открытой пористости и абсолютной проницаемости (5 и более образцов). Для исследования эффективной пористости и эффективной проницаемости в образцах керна создают остаточную водонасыщенность с помощью модели пластовой воды. Для пород-коллекторов нефтяных месторождений образцы затем насыщают керосином или нефтью. Каждый образец помещают в установку, позволяющую определять изменение пористости и проницаемости по жидкости (для нефтяных месторождений) или по газу (для газовых месторождений). В установке ступенями увеличивают эффективные напряжения до величины, соответствующей начальным пластовым условиям. Выдерживают образец до тех пор, пока величина проницаемости не стабилизируется. Увеличивают эффективные напряжения до величины, соответствующей снижению пластового давления на определенное значение (например, 10 МПа), и выдерживают образец до тех пор, пока величина проницаемости не стабилизируется. Циклы увеличения и длительной выдержки образцов керна повторяют не менее трех. Затем эффективные напряжения ступенчато уменьшают с количеством ступеней не менее пяти. Техническим результатом является определение закономерностей изменения пористости и проницаемости образцов керна при фильтрации флюида и воздействии эффективных напряжений различной величины до стабилизации проницаемости образцов керна минимум на трех режимах воздействия. 3 ил.

Изобретение относится к области молекулярной физики и может использоваться для определения средней длины пробега и эффективного диаметра не только молекул воздуха, но и молекул других газов (кислород, азот, углекислый газ и др.) с соответствующими физическими поправками. Это достигается тем, что устройство дополнительно снабжено припаянным к средней боковой части стеклянного цилиндрического сосуда стеклянным трубчатым уровнемером с измерительной шкалой, отходящим от верхней боковой части стеклянного цилиндрического сосуда стеклянным вакуумным краном, припаянными к стеклянной монолитной пробке со шлифом горла тремя вращательными стеклянными «рожками», присоединенными последовательно и герметично к капилляру из нержавеющей стали гибким полимерным капилляром, стеклянным трубчатым тройником с тремя стеклянными вакуумными кранами и полимерной надуваемой-сдуваемой камерой со стеклянным вакуумным краном. Технический результат, достигаемый при реализации заявленного устройства, заключается в повышении точности прецизионного визуального измерения уровня воды в стеклянном цилиндре. 2 ил.
Изобретение относится к области медицины, в частности к онкологии, и предназначено для определения оптимального срока выполнения оперативного вмешательства после пролонгированной лучевой терапии при раке прямой кишки. В биопсийном материале опухоли прямой кишки до начала курса лучевой терапии и через 4 недели после ее окончания проводят ДНК-цитометрический анализ и определяют индекс пролиферации опухоли. Отличие индексов пролиферации в 1,3 раза и менее является показателем для окончания перерыва в лечении и выполнения операции. Отличие индексов пролиферации более чем в 1,3 раза является показателем для продления перерыва в лечении и выполнения операции через 6-8 недель после окончания курса лучевой терапии. Изобретение обеспечивает определение оптимального срока выполнения операции после окончания курса лучевой терапии и снижение затрат на лечение рака прямой кишки. 2 пр.

Изобретение относится к области геологии и может быть использовано для моделирования многофазного потока текучей среды. Структура пор горных пород и других материалов может быть определена посредством микроскопии и подвержена цифровому моделированию для определения свойств потоков текучей среды, проходящих сквозь материал. Для экономии вычислительных ресурсов моделирование предпочтительно осуществляют на стандартном элементе объема (СЭО). В некоторых вариантах осуществления способа определение многофазного СЭО может быть выполнено путем выведения параметра, связанного с пористостью, из модели пор и матрицы материала; определения многофазного распределения внутри пор материала; разделения модели пор и матрицы на несколько моделей фаз и матрицы; и выведения параметра, связанного с пористостью, из каждой модели фаз и матрицы. Затем можно определить и проанализировать зависимость параметра от фазы и насыщения для выбора подходящего размера СЭО. Технический результат – повышение точности и достоверности получаемых данных. 2 н. и 18 з.п. ф-лы, 15 ил.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности. Предложен способ определения коэффициента диффузии растворителей в листовых изделиях из капиллярно-пористых материалов, заключающийся в том, что в исследуемом листовом материале создают равномерное начальное содержание распределенного в твердой фазе растворителя. Затем исследуемый материал помещают на плоскую подложку из непроницаемого для растворителя материала, гидроизолируют верхнюю поверхность материала, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия дозой растворителя. Затем измеряют изменение во времени сигнала гальванического преобразователя на заданном расстоянии от точки нанесения импульса дозой растворителя, фиксируют значения сигнала гальванического датчика в два момента времени и рассчитывают коэффициент диффузии. Причем измерение коэффициента диффузии осуществляют при условии достижения в эксперименте максимума сигнала гальванического преобразователя Еmax, составляющего 0,75-0,95 от максимально возможного значения данного сигнала Ее, соответствующего переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния. Фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов гальванического датчика Е1 и Е2 из диапазона (0,7-0,9)Eе соответственно на восходящей и нисходящей ветвях кривой изменения сигнала во времени, а расчет коэффициента диффузии производят по формуле: где r0 - расстояние между электродами гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия. Технический результат - повышение точности и быстродействия измерения коэффициента диффузии растворителей в листовых изделиях их капиллярно-пористых материалов. 1 з.п. ф-лы, 1 табл., 3 ил.
Наверх