Способ определения теплопроводности твердых тел

Изобретение относится к способам определения теплофизических характеристик твердых тел и позволяет измерять теплопроводность образцов твердых тел, являющихся малыми во всех трех измерениях. Систему, состоящую из исследуемого образца, закрепленного между двумя одинаковыми эталонными образцами, изготовленными из одного прозрачного материала известной теплопроводности, где все образцы выполнены в форме прямых цилиндров с одинаковыми основаниями и приведены в контакт торцевыми сторонами, помещают в интерферометр. При создании в системе стационарного одномерного теплового потока, направленного перпендикулярно плоскости контактов, интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через эталонные образцы, а теплопроводность вычисляют из измеренного изменения профиля фазы светового пучка интерферометра, теплопроводности эталонных образцов и высоты исследуемого образца. Технический результат - повышение точности определения теплопроводности образцов малого размера. 1 ил.

 

Изобретение относится к способам определения теплофизических характеристик твердых тел, а именно теплопроводности.

Способ позволяет измерять теплопроводность твердых тел в диапазоне от 0,2 до 200 Вт/(м·К), выполненных в форме прямого цилиндра с характерным размером основания от 1 до 20 мм и высотой от 0,5 до 20 мм. Способ позволяет исследовать образцы малого размера, что широко востребовано в области исследования новых твердотельных материалов, технология получения которых не позволяет производить большие образцы. В частности, способ подходит для исследования оптических материалов, таких как оптические стекла, кристаллы и керамики. Существующие способы измерения теплопроводности малых образцов позволяют исследовать образцы, являющиеся экстремально малыми в одном или двух измерениях, такие как тонкие провода, тонкие ленты или тонкие пленки, и не позволяют изучать образцы, которые малы во всех трех измерениях. При этом данные методы являются довольно сложными с точки зрения математической модели, используемой для вычисления теплопроводности.

Наиболее близким к предлагаемому по технической сущности является взятый за прототип способ определения теплопроводности твердых материалов [американский стандарт ASTM E 1225, http://www.astm.org/Standards/E1225.htm], включающий создание стационарного одномерного теплового потока через систему, представляющую собой измеряемый образец, закрепленный между двумя эталонными образцами, изготовленными из одного материала (обычно металла) известной теплопроводности. Все образцы выполняют в форме прямых цилиндров с одинаковыми основаниями и скрепляют торцевыми сторонами. Тепловой поток направляют перпендикулярно плоскости контактов. Для определения продольного градиента температуры в эталонных образцах и скачка температуры между их основаниями, прилегающими к измеряемому образцу, вдоль эталонных образцов закрепляют термопары. Для уменьшения потерь тепла в атмосферу всю систему покрывают теплоизолирующей оболочкой. Теплопроводность измеряемого образца вычисляют из продольного градиента температуры в эталонных образцах, скачка температуры между гранями эталонных образцов, прилегающими к измеряемому образцу, теплопроводности эталонных образцов и высоты измеряемого образца.

Недостатком способа-прототипа является большой размер всей измерительной системы, который не может быть уменьшен из-за измерения температуры в эталонных образцах с помощью термопар. Термопары имеют конечный размер, для достижения нужной точности измерения их должно быть несколько на каждом эталонном образце (больше двух) и они должны быть разнесены на некоторое расстояние. Большой продольный размер системы вынуждает увеличивать ее поперечный размер, чтобы ослабить поток тепла в атмосферу. Это делает невозможным исследование образцов малого размера.

Задачей, на которую направлено изобретение, является создание способа, позволяющего измерять теплопроводность образцов твердых тел, являющихся малыми во всех трех измерениях.

Технический эффект достигается тем, что создают стационарный одномерный тепловой поток через систему, представляющую собой исследуемый образец, закрепленный между двумя одинаковыми эталонными образцами, изготовленными из одного материала известной теплопроводности, где все образцы выполнены в форме прямых цилиндров с одинаковыми основаниями и приведены в контакт торцевыми сторонами, при этом тепловой поток направляют перпендикулярно плоскости контактов.

Новым является то, что эталонные образцы изготавливают из прозрачного материала, систему помещают в интерферометр, при создании в системе стационарного одномерного теплового потока интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через эталонные образцы, а теплопроводность вычисляют из измеренного изменения профиля фазы светового пучка интерферометра, теплопроводности эталонных образцов и высоты исследуемого образца, при этом все образцы изготавливают так, чтобы в каждом эталонном образце можно было выделить область в виде прямоугольного параллелепипеда, у которого две противоположные грани являются частью боковой поверхности цилиндра, а стороны этого параллелепипеда имеют длину не меньше 1 мм, и измерение проводят именно в этих областях, направляя световой пучок интерферометра перпендикулярно тем граням областей, которые являются частью боковой поверхности цилиндра.

В частном случае реализации способа по п.2, если при измерении не выполняется условие малости скачка температуры на границах между исследуемым и эталонными образцами по отношению к скачку температуры на исследуемом образце, дополнительно проводят второе измерение с исследуемым образцом из того же материала и с тем же основанием, что и первый исследуемый образец, но имеющим другую высоту, и теплопроводность вычисляют из измеренных изменений профилей фазы светового пучка интерферометра, полученных для каждого исследуемого образца, высот каждого из исследуемых образцов и теплопроводности эталонных образцов.

Способ поясняется Фиг.1, на которой изображена система из приведенных в контакт эталонных и исследуемого образцов, а также нагреватель и радиатор, которые создают через систему стационарный одномерный тепловой поток.

Способ осуществляют следующим образом. Для проведения эксперимента используют систему, представленную на Фиг.1. Система представляет собой исследуемый образец 3, закрепленный между двумя одинаковыми эталонными образцами 4, изготовленными из одного прозрачного материала известной теплопроводности. Все образцы выполнены в форме прямых цилиндров с одинаковыми основаниями и приведены в контакт торцевыми сторонами. Эталонные образцы 4 имеют высоту от 1 до 3 мм. С одной стороны к системе прикрепляют нагреватель 1, с другой - радиатор с проточным охлаждением 2, которые в момент измерений создают в системе стационарный одномерный тепловой поток, направленный перпендикулярно плоскости контактов. Систему помещают в интерферометр и интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через эталонные образцы 4, которое появляется при включении в системе стационарного теплового потока. При этом все образцы изготавливают так, чтобы в каждом из эталонных образцов 4 можно было выделить область в виде прямоугольного параллелепипеда, у которого две противоположные грани являются частью боковой поверхности цилиндра и стороны этого параллелепипеда имеют длину не меньше 1 мм. Измерение проводят именно в этих областях, направляя световой пучок интерферометра перпендикулярно тем граням областей, которые являются частью боковой поверхности цилиндра. Из измеренного изменения профиля фазы светового пучка интерферометра (L) вычисляют градиент изменения профиля фазы пучка в эталонных образцах 4 (dL1/dx и dL2/dx) и скачок изменения профиля фазы пучка между обращенными друг к другу торцами эталонных образцов 4 (ΔL). Теплопроводность вычисляют по формуле:

,

где dL/dx - среднее арифметическое от dL1/dx и dL2/dx, κ0 - теплопроводность эталонных образцов 4, h - высота исследуемого образца 3. Данная формула получается из формулы, используемой для расчета в способе-прототипе:

,

где T - изменение температуры при включении в системе стационарного теплового потока, ΔT - скачок изменения температуры между обращенными друг к другу торцами эталонных образцов 4, dT/dx - среднее арифметическое градиентов изменения температуры в эталонных образцах 4. При этом используется линейная связь изменения профиля фазы светового пучка интерферометра, проходящего через эталонные образцы 4, с изменением распределения температуры в них:

,

где L0 - толщина одного из эталонных образцов 4 в том направлении, в котором направлен световой пучок интерферометра, dn/dT - температурное изменение показателя преломления одного из эталонных образцов 4, α - коэффициент теплового расширения одного из эталонных образцов 4.

Величина ΔL связана со скачком температуры на исследуемом образце 3 и со скачком температуры на двух границах 5 между исследуемым образцом 3 и эталонными образцами 4. Для измерения необходимо, чтобы скачок температуры на границах 5 был много меньше, чем на исследуемом образце 3.

На практике встречаются случаи, когда скачок температуры на границах 5 сравним по величине со скачком температуры на исследуемом образце 3. Это бывает, когда исследуемый образец имеет высокую теплопроводность или малую высоту, либо когда не удается создать хороший тепловой контакт между исследуемым образцом 3 и эталонными образцами 4 из-за особенности материала исследуемого образца 3. В этом случае реализуют способ по п.2: последовательно проводят два измерения по п.1 с исследуемыми образцами разной высоты (h1 и h2), из которых теплопроводность вычисляется по формуле:

,

где индексами 1 и 2 обозначаются величины, полученные при измерении образцов высотой h1 и h2 соответственно.

Мощность тепла, уходящего в атмосферу, оценивают из разности градиентов изменения профиля фазы пучка в эталонных образцах. Она должна быть много меньше мощности тепла, протекающей через систему. Если это условие не выполняется, систему покрывают теплоизолирующей оболочкой или помещают в вакуумную камеру.

Способ может быть применен для измерения при температурах от 10 К до 400 К помещением системы в вакуумную камеру и использованием системы охлаждения с возможностью стабилизации температуры на любом уровне из заданного диапазона. При этом в качестве хладагентов используют воду (от 280 К), жидкий азот (от 80 К) или жидкий гелий (от 10 К).

Способ определения теплопроводности твердых тел, в котором создают стационарный одномерный тепловой поток через систему, представляющую собой исследуемый образец, закрепленный между двумя одинаковыми эталонными образцами, изготовленными из одного материала известной теплопроводности, где все образцы выполнены в форме прямых цилиндров с одинаковыми основаниями и приведены в контакт торцевыми сторонами, при этом тепловой поток направляют перпендикулярно плоскости контактов, отличающийся тем, что эталонные образцы изготавливают из прозрачного материала, систему помещают в интерферометр, при создании в системе стационарного одномерного теплового потока интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через эталонные образцы, а теплопроводность вычисляют из измеренного изменения профиля фазы светового пучка интерферометра, теплопроводности эталонных образцов и высоты исследуемого образца, при этом все образцы изготавливают так, чтобы в каждом эталонном образце можно было выделить область в виде прямоугольного параллелепипеда, у которого две противоположные грани являются частью боковой поверхности цилиндра, а стороны этого параллелепипеда имеют длину не меньше 1 мм, и измерение проводят именно в этих областях, направляя световой пучок интерферометра перпендикулярно тем граням областей, которые являются частью боковой поверхности цилиндра.



 

Похожие патенты:

Изобретение относится к теплофизическим измерениям и может быть использовано в теплофизическом приборостроении. Способ заключается в нагревании одной из поверхностей образца или ее участка до максимальной температуры, которую поддерживают до момента времени, когда измеряемая разность температур на границах исследуемого участка уменьшится до заданного значения.

Изобретение относится к стационарным способам определения теплопроводности твердого тела и может быть использовано в строительстве и теплоэнергетике для проведения в натурных условиях теплофизических исследований теплоизоляционных материалов, установленных на трубопроводах круглого сечения.

Изобретение относится к области исследования теплофизических свойств материалов и может быть использовано в теплофизическом приборостроении. Способ осуществляют путем двух тепловых воздействий на двухслойную пластину с последующими охлаждениями, измерения разности температур и теплового потока.

Изобретение относится к способам измерений теплопроводности веществ, материалов и изделий и может быть использовано в теплофизическом приборостроении. Способ осуществляют путем теплового воздействие на образец с последующим охлаждением, измерения разности температур на границах исследуемого участка образца и количества тепла, поступившего в него за время интегрирования разности.

Изобретение относится к нефтегазовой промышленности и касается определения тепловых свойств пород, слагающих разрез скважины и пласт в целом. Техническим результатом является повышение точности измерения среднеинтегрального значения теплопроводности горных пород по разрезу скважины и определение коэффициентов теплопередачи через НКТ и через обсадную колонну, а также длины циркуляционной системы скважины.

Изобретение относится к бесконтактным методам исследований теплофизических характеристик твердых тел и может быть использовано для исследований теплофизических характеристик изделий, используемых в авиакосмической, машиностроительной и энергетической промышленности.

Изобретение относится к теплофизике и может быть использовано для определения степени черноты поверхности композитных и тонкопленочных материалов. Способ основан на применении нагрева поверхности образца и регистрации радиационной температуры от образца с покрытием известного значения степени черноты и от образца без покрытия.

Изобретение относится к способам определение теплопроводности и температуропроводности материалов. В соответствии с предлагаемым способом регистрируют электрические сигналы, соответствующие начальным температурам поверхностей исследуемого образца материала по меньшей мере двух эталонных образцов с известными теплопроводностью и температуропроводностью.

Изобретение относится к теплофизике и может быть использовано для определения степени черноты поверхности композитных и тонкопленочных материалов. Устройство применимо при нагреве поверхности образца и регистрации радиационной температуры от образцов с покрытием известного значения степени черноты и без покрытия.

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Заявленный способ включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного объекта.

Изобретение относится к области изучения теплофизических свойств материалов и может быть использовано для определения теплопроводности материалов. Способы характеристики неоднородности и определения теплопроводности материалов предусматривают нагрев поверхности образцов неоднородных материалов в процессе движения относительно друг друга образцов, источника нагрева и блока регистрации температуры. Предварительно параметры измерений регулируют так, чтобы обеспечить наилучшее пространственное разрешение и требуемую погрешность измерений. Измеряют распределение начальной температуры на поверхности образцов до и после нагрева, и на основе изменения температуры вдоль линии движения блока регистрации температуры определяют неоднородность образцов. Теплопроводность однородных участков исследуемых образцов определяют расчетным путем, используя при этом зарегистрированные значения избыточных температур, соответствующих данным однородным участкам исследуемых образцов. Технический результат - повышение точности получаемых данных. 3 н. и 17 з.п. ф-лы, 3 ил.

Изобретение относится к области технической физики и предназначено для измерения теплопроводности строительных и теплоизоляционных и иных материалов. Устройство для измерения теплопроводности включает тепловой блок, состоящий из малого измерительного нагревателя, малого охранного нагревательного элемента, выполняющего охранную функцию в случае измерения образцов малых размеров или единичного образца крупноформатной конструкции или выполняющего функцию большого измерительного нагревателя в случае измерения образцов больших размеров, большого охранного нагревательного элемента и двух охранных пластин, холодильный блок, состоящий из основания и охранной пластины, установленной под основанием, и измерительную зону, расположенную между тепловым и холодильным блоками. Причем на основании и на каждой из охранных пластин теплового и холодильного блока закреплены трубы, составляющие змеевидный контур, по которым течет теплоноситель в случае теплового блока и хладоноситель в случае холодильного блока. При этом на каждой из двух торцевых сторон устройства дополнительно размещена боковая охранная зона в виде системы по меньшей мере двух труб с теплоносителем. При этом устройство выполнено с возможностью поворота, обеспечивающего поворот измеряемого образца, находящегося в нем. Технический результат - повышение точности проводимых измерений. 9 з.п. ф-лы, 2 ил.

Изобретение относится к области измерительной техники и может быть использовано для определения коэффициента теплопроводности жидких теплоизоляционных материалов. Сущность заявленного способа заключается в определении измерителем теплопроводности эквивалентного коэффициента теплопроводности плоского трехслойного образца квадратного сечения, состоящего из двух одинаковых теплопроводных эталонов известной толщины с известным коэффициентом теплопроводности материала и слоя жидкой тепловой изоляции известной толщины, расположенного между эталонами. По известным значениям коэффициентов теплопроводности плоского трехслойного образца и теплопроводных эталонов, толщинам отдельных слоев плоского трехслойного образца (эталонов и жидкой тепловой изоляции) вычисляют по специальной расчетной формуле коэффициент теплопроводности жидкой тепловой изоляции. Технический результат - повышение точности определения коэффициента теплопроводности жидкой тепловой изоляции в лабораторных условиях. 1 ил.

Изобретение относится к области теплофизики и может быть использовано для определения тепловой проводимости контактов между прозрачными образцами или между прозрачным и высокотеплопроводным образцами. Систему, состоящую из двух прозрачных образцов либо двух прозрачных и закрепленного между ними высокотеплопроводного образца, где все образцы выполнены в форме прямоугольных параллелепипедов с одинаковыми основаниями, которыми образцы приведены в контакт, помещают в интерферометр. Световой пучок интерферометра направляют перпендикулярно одной из боковых граней каждого прозрачного образца. При создании в системе стационарного одномерного теплового потока, направленного перпендикулярно плоскости контакта, интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через прозрачные образцы. Тепловую проводимость любого из контактов вычисляют из измеренного изменения профиля фазы светового пучка интерферометра, известной теплопроводности и геометрических размеров образцов. Технический результат - повышение достоверности получаемых результатов. 1 ил.

Изобретение относится к области теплофизических измерений и может быть использовано для определения относительной теплопроводности материалов. Плоский исследуемый образец известной толщины помещают между двумя алмазными наковальнями с теплопроводностью, существенно превышающей теплопроводность образца, и подвергают высокому давлению, предварительно установив в верхнюю наковальню нагреватель. Затем изменяют величину внешнего воздействия давления. По изменению разности температур между верхней и нижней наковальнями рассчитывают относительное изменение теплопроводности образца при изменении давления. Мощность источника теплоты при этом постоянна. Технический результат - повышение точности получаемых данных. 2 ил.

Изобретение относится к области теплофизических измерений и может быть использовано в строительной теплотехнике и различных отраслях промышленности. Согласно заявленному способу осуществляют нагрев исследуемого объекта воздействием импульса СВЧ-излучения, измерение в заданный момент времени после воздействия импульса СВЧ-излучения избыточной температуры на теплоизолированной от окружающей среды поверхности исследуемого изделия в двух точках, находящихся на расстояниях Х1 и Х2 от плоскости электромагнитного воздействия. Определяют зависимость затухания мощности теплового воздействия от глубины исследуемого тела. Затем осуществляют прямолинейную аппроксимацию участка полученной кривой, ограниченного поверхностью исследуемого объекта и точкой, расстояние до которой берется равным значению, превышающим на порядок расстояние до наиболее удаленной от линии теплового воздействия точки контроля х2 избыточной температуры. Измеряют угол α между аппроксимирующей прямой и поверхностью исследуемого тела. Устанавливают рупорную антенну СВЧ-излучения под углом α к поверхности исследуемого тела и осуществляют импульсное тепловое воздействие. Имея информацию о мощности теплового воздействия на исследуемое изделие и измеренных избыточных температур в точках контроля, искомые теплофизические характеристики определяют на основе полученных математических соотношений. Технический результат - повышение точности получаемых данных. 5 ил., 3 табл.

Изобретение относится к наноэлектронике и наноэлектромеханике. Для нагрева пленочного образца и измерения его электрического сопротивления помещают образец в корпус кварцевого реактора. Внутри корпуса образец размещают в С-образных зажимах с плоскими губками, выполненными из вольфрамовой проволоки. Образец устанавливают в плоских губках с натягом, величина которого достаточна для удержания образца в заданном положении при нагреве С-образных зажимов. С-образные зажимы раскрепляют на растяжках, выполненных в виде пружин из вольфрамовой проволоки меньшего диаметра. При помощи резистивного подогревателя, размещенного на поверхности корпуса, производят нагрев образца до заданной температуры. Через С-образные зажимы и растяжки на образец подают измерительный ток и определяют напряжение. Измерение температуры образца осуществляют при помощи термопары, которую предварительно устанавливают в центральной части корпуса. Необходимое расстояние от поверхности образца до измерительного элемента термопары и его центрирование по отношению к термопаре осуществляют при помощи упомянутых растяжек. Обеспечивается стабильность электрического контакта и равномерный прогрев образцов. 1 ил.

Изобретение относится к области теплофизических измерений и может быть использовано в строительной теплотехнике и различных отраслях промышленности. Согласно заявленному способу на поверхность исследуемого твердого строительного материала воздействуют электромагнитным полем СВЧ-диапазона с частотой не менее 10 ГГц, осуществляя нагрев исследуемого полуограниченного в тепловом отношении тела. Имея информацию о мощности генератора СВЧ-излучения, воздействующего на исследуемый объект, информацию о тепловом потоке с поверхности круговой области, искомые теплофизические характеристики (ТФХ) определяют по математическим соотношениям, полученным на основании модельных представлений физических процессов, происходящих в исследуемых объектах при воздействии на их поверхность высокочастотным электромагнитным полем. Технический результат - повышение точности получаемых данных. 3 ил., 2 табл.

Изобретение относится к способам измерения теплофизических свойств веществ и может быть использовано в геофизике для оценки глубинных тепловых полей, условий образования и разрушения гидратов углеводородных газов в флюидонасыщенных породах пластовых резервуаров месторождений углеводородов, исследования анизотропии теплопроводности насыщенных горных пород. Заявлен способ измерения влияния давления до 100 МПа на теплопроводность флюидонасыщенных пористых тел, представляющий собой разновидность стационарного способа плоского слоя, в котором одинаковые образцы, расположенные симметрично относительно нагревателя, гидравлически изолированы друг от друга. Технический результат - повышение информативности за счет обеспечения возможности в одном опыте измерять влияние гидростатического давления на теплопроводность насыщенного пористого образца относительно теплопроводности такого же образца, находящегося при атмосферном давлении. 1 ил.

Изобретение относится к области измерения теплофизических характеристик физических сред и может быть использовано в морской биологии и химии для расчета температурных условий существования биологических объектов и течения химических реакций в верхнем слое донных осадков в условиях изменяющейся температуры водного слоя. Способ включает измерение и регистрацию температуры на двух горизонтах в донных осадках и температуры придонного слоя воды в течение 12-15 час, с последующим вычислением эквивалентного коэффициента температуропроводности (а экв) по формуле а э к в = ∂ T ∂ t ∂ 2 T ∂ z 2 , где ∂Т - изменение температуры; ∂t - изменение времени, ∂z - изменение глубины от поверхности осадка. Суть способа основана на использовании морских приливов в качестве естественного источника тепла, температура которого периодически изменяется во времени, доставляя в максимуме прилива более холодную придонную воду из больших глубин в менее глубокие районы акваторий. Технический результат - повышение точности измерений эквивалентной температуропроводности донного грунта. 2 н.п. ф-лы, 7 ил.
Наверх