Микромощный фотодатчик с частотным выходом

Использование: для преобразования интенсивности светового потока инфракрасного, видимого и ультрафиолетового оптического диапазонов, а также рентгеновского излучения в частоту импульсов. Сущность изобретения заключается в том, что микромощный фотодатчик с частотным выходом содержит фотодиод, катод которого подключен к входу логического инвертора, выход которого соединен с первым выводом резистора, полевой транзистор, затвор которого подключен к второму выходу резистора, а сток и исток полевого транзистора подключены к входу логического инвертора, в качестве которого применен инвертирующий триггер Шмитта, анод фотодиода соединен с нулевой цепью, а выход триггера Шмитта является выходом устройства. Технический результат: обеспечение возможности повышения чувствительности, расширения динамического диапазона преобразования излучения в частоту импульсов и уменьшения потребляемой мощности. 2 ил.

 

Изобретение относится к области контрольно-измерительной техники и может быть использовано для преобразования интенсивности светового потока инфракрасного, видимого и ультрафиолетового оптического диапазонов, а также рентгеновского излучения в частоту импульсов.

Известен фотодатчик с преобразованием интенсивности потока светового излучения в частоту импульсов (Жарников С.Д., Игнатенко О.В., Кугейко М.М., Малевич И.А., Стальмаков И.В. Способ фотометрирования световых потоков и устройство для его осуществления. Патент на изобретение №2014574, МПК G01J 1/44. Опубл. 15.06.1994 г.), содержащий фотодиод, катод которого подключен к инвертирующему входу дифференциального усилителя, к выходу которого подключены резисторы и конденсатор цепи обратной связи для обеспечения работы устройства в автогенераторном режиме.

Недостатками такого устройства является малый динамический диапазон входного излучения и низкая чувствительность, которые ограничиваются сопротивлениями применяемых резисторов, увеличение которых приводит к повышению чувствительности и к сужению диапазона преобразования оптического сигнала в частоту импульсов напряжения, а уменьшение сопротивлений ухудшает чувствительность фотодатчика. Еще одним недостатком данного устройства является большое энергопотребление от источников питания, которое затрачивается на заряд и разряд конденсатора в цепи обратной связи усилителя, а также для питания дифференциального усилителя, т.к. для увеличения скорости нарастания выходного сигнала и сокращения длительности фронтов выходных импульсов необходимо повышать его ток питания до единиц миллиампер.

Наиболее близким по технической сущности к предлагаемому изобретению аналогом (прототипом) является фотодатчик с частотным выходом (Алоец А.М., Решетников В.А. Способ измерения световых потоков и устройство для его осуществления. Патент на изобретение №2207525, МПК G01J 1/44. Опубл. 27.06.2003 г.), содержащий фотодиод, катод которого подключен к входу логического инвертора, выход которого соединен с первым выводом резистора. Кроме того, для формирования частоты колебаний в схеме этого устройства используется времязадающий конденсатор и дополнительные логические инверторы.

Недостатками данного устройства является низкая чувствительность и ограниченный динамический диапазон преобразования оптического излучения, которые ограничиваются сопротивлением резистора. При этом для повышения чувствительности необходимо увеличивать его сопротивление, а для расширения динамического диапазона преобразования, наоборот, уменьшать номинал этого резистора. Кроме того, к недостаткам данного фотодатчика относится сравнительно большая потребляемая мощность, необходимая для перезаряда времязадающего конденсатора и затрачиваемая на переключение нескольких логических инверторов в процессе формирования выходных импульсов.

Задачей изобретения является создание микромощного фотодатчика с частотным выходом, позволяющего получить повышение чувствительности, расширение динамического диапазона преобразования излучения в частоту импульсов и уменьшение потребляемой мощности.

Эта задача решается тем, что в микромощный фотодатчик с частотным выходом, содержащий фотодиод, катод которого подключен к входу логического инвертора, выход которого соединен с первым выводом резистора, согласно изобретению дополнительно введен полевой транзистор, объединенные сток и исток которого подключены к второму выводу резистора, а затвор полевого транзистора подключен к входу логического инвертора, в качестве которого применен инвертирующий триггер Шмитта. При этом анод фотодиода соединен с нулевой цепью, а выход инвертирующего триггера Шмитта является выходом устройства.

Заявляемое устройство поясняется чертежами, на которых показаны:

фиг. 1 - схема микромощного фотодатчика с частотным выходом;

фиг. 2 - временные диаграммы работы микромощного фотодатчика с частотным выходом.

Микромощный фотодатчик с частотным выходом содержит фотодиод 1, анод которого подключен к нулевой цепи, а катод - к входу триггера Шмитта 2 и к затвору полевого транзистора 3, объединенные исток и сток которого через резистор 4 соединены с выходом триггера Шмитта 2 и выходом устройства (фиг. 1).

Микромощный фотодатчик с частотным выходом работает следующим образом. В начальный момент времени емкость С1 фотодиода 1 разряжена, поэтому напряжение на входе инвертирующего триггера Шмитта U1≈0, поэтому его выходное напряжение примерно равно напряжению питания UВЫХ≈+UПИТ. Этим напряжением открывается полевой транзистор 3, выполняющий функцию диода, и емкость C1 фотодиода 1 быстро заряжается током, протекающим через резистор 4 и открытый полевой транзистор 3, до напряжения срабатывания UСРАБ триггера Шмитта 2. При выполнении условия U1≥UCPAБ триггер Шмитта 2 переключается в нулевое состояние, и его низким напряжением UВЫХ≈0 закрывается полевой транзистор 3.

Если на светочувствительную поверхность фотодиода 1 подается поток Ф исследуемого оптического или рентгеновского излучения, то под его воздействием фотодиод 1 вырабатывает фототок IФ>0. Этот фототок разряжает собственную емкость C1 фотодиода 1 по линейному закону, т.к. фотодиод 1 находится в закрытом состоянии из-за малого напряжения UВЫХ≈0, которое подается с выхода триггера Шмитта 2 через резистор 4 и полевой транзистор 3. Внутреннее сопротивление фотодиода 1 в закрытом состоянии составляет несколько гигаом, поэтому не влияет на линейность процесса разряда его емкости C1. Кроме того, при разряде этой емкости полевой транзистор 3 в диодном включении также закрыт, поэтому его ток затвора, как и входной ток триггера Шмитта 2 на КМОП микросхеме пренебрежимо мал и не оказывает влияния на линейность процесса разряда емкости С1 фотодиода 1 (фиг. 2).

Разряд внутренней емкости С1 фотодиода 1 фототоком IФ продолжается до тех пор, пока его напряжение U1 не сравняется с напряжением отпускания UОТП триггера Шмитта 2. При выполнении условия U1≤UОТП триггер Шмитта 2 переключается в высокое состояние, и его выходным напряжением UВЫХ≈+UПИТ открывается полевой транзистор 3, а емкость С1 фотодиода 1 быстро заряжается до напряжения срабатывания UСРАБ триггера Шмитта 2 током, протекающим через резистор 4 и полевой транзистор 3. При выполнении условия U1≥UСРАБ триггер Шмитта 2 переключается в нулевое состояние, и его выходное напряжение становится низким UВЫХ≈0. Этим напряжением снова закрывается полевой транзистор 3, после чего начинается следующий цикл разряда емкости С1 фототоком IФ фотодиода 1, т.е. процесс повторяется аналогичным образом.

Зона гистерезиса триггера Шмитта 2 зависит от его напряжения питания ΔUГ=UСРАБ-UОТП≈UПИТ/3, поэтому частота импульсов на его выходе прямо пропорциональна измеряемому фототоку IФ и зависит от зоны гистерезиса триггера Шмитта 2, сопротивления R4 резистора 4 и сопротивления R3 открытого канала полевого транзистора 3:

fВЫХ≈IФ(R3+R4)/2ΔUГtРАЗ.

Время разряда tРАЗ емкости С1 фотодиода 1 в пределах зоны гистерезиса нелинейно зависит от измеряемого фототока IФ и определяется выражением

tРАЗ=(R3+R41·[ln2+ln(1+IФtРАЗ1ΔUГ)].

Линейное преобразование фототока IФ в частоту импульсов обеспечивается при большом токе разряда IРАЗ=2ΔUГ/(R3+R4)>>IФ емкости C1, с учетом которого время ее разряда составляет

tРАЗ≈(R3+R41·ln2≈0,7(R3+R41,

а частота выходных импульсов фотодатчика определяется выражением

fВЫХ≈0,7IФ/ΔUГС1.

Высокая чувствительность предлагаемого устройства к потоку излучения Ф при одновременном расширении диапазона преобразования обеспечивается за счет разделения цепей заряда и разряда емкости С1 фотодиода 1 посредством применения в цепи обратной связи полевого транзистора 3, выполняющего функцию высококачественного диода с малым обратным током. Разрешающая способность предлагаемого фотодатчика ограничивается снизу обратным током IОБР≈(10…20) нА закрытого фотодиода 1, входным током IВХ≤1 нА триггера Шмитта 2 и током затвора IЗ≤1 нА полевого транзистора 3. Максимальное значение фототока в этом устройстве ограничивается только сопротивлением R4 резистора 4 и определяется выражением

IФ.МАХ≤(UПИТ-UСРАБ-U3)/R4.

Например, при напряжении питания UПИТ=5 В и пороге срабатывания UСРАБ=3 В триггера Шмитта, падении напряжения U3≈0,5 В на открытом канале полевого транзистора 3 и сопротивлении R4=1 кОм резистора 4 максимальное значение фототока составляет IФ.МАХ≤1,5 мА. При минимальном значении IФ.MIN≥30 нА фототока диапазон преобразования превышает четыре порядка: D=IФ.МАХ/IФ.МIN≈1,5·10-3/30·10-9=50000.

Уменьшение потребляемой мощности в предлагаемом устройстве по сравнению с аналогами и прототипом обеспечивается за счет применения одного логического КМОП элемента типа «Триггер Шмита» вместо нескольких логических инверторов, а также за счет использования собственной емкости фотодиода в качестве времязадающего элемента. Это позволило исключить ток перезаряда дополнительного конденсатора, применяемого в известных устройствах для формирования колебаний в генераторах с положительной обратной связью. Вследствие этого ток питания предлагаемого фотодатчика зависит, в основном, от значения измеряемого фототока IФ и не превышает единиц микроампер при контроле слабых потоков Ф оптического и рентгеновского излучения.

Проведенный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного технического решения (применение полевого транзистора в качестве диода с малым обратным током, использование собственной емкости фотодиода в качестве времязадающего элемента и триггера Шмитта в качестве инвертора), отсутствуют, что указывает на соответствие изобретения условию патентоспособности «новизна».

Отличительные признаки изобретения: применение полевого транзистора в диодном включении для разделения цепей заряда и разряда емкости фотодиода, использование этой емкости в качестве времязадающего звена в аналогах не встречаются.

Результаты поиска известных решений с целью выявления признаков, совпадающих с отличительными от прототипа признаками, показали, что они не следуют явным образом из уровня техники. Из уровня техники также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на достижение указанного технического результата. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».

Промышленная применимость изобретения обусловлена тем, что оно может быть осуществлено с помощью современной элементной базы, с достижением указанного в изобретении назначения. В частности, для преобразования светового потока в фототек можно использовать фотодиод типа ФД253, для формирования тока разряда - полевой транзистор КП303Е с током стока IC≤0,1 нА, резистор 4 типа С2-29В с сопротивлением R4=1 кОм и инвертирующий триггер Шмитта на микросхеме типа К561ТЛ2 или КР1554ТЛ2.

Для оценки энергопотребления предлагаемого фотодатчика проведено его экспериментальное исследование, в результате которого установлено, что при питающем напряжении UПИТ=+5 В ток потребления фотодатчика изменяется от минимального значения IПИТ.MIN=4 мкА при затемнении светочувствительного окна фотодиода до максимального уровня IПИТ.MAX=112 мкА при возрастании фототока до значения IФ=100 мкА. Предварительно была измерена собственная емкость закрытого фотодиода типа ФД253, которая составила С1=985 пФ. В результате установлено, что при изменении фототока в диапазоне IФ=(0,02…100) мкА частота выходных импульсов изменяется от начального значения fВЫХ НАЧ=9 Гц до fВЫХ MAX=43 кГц, что также подтверждает высокую чувствительность предлагаемого устройства к измеряемому излучению.

Таким образом, при такой совокупности существенных признаков предлагаемый микромощный фотодатчик с частотным выходом позволяет значительно повысить чувствительность к оптическому излучению, расширить диапазон преобразования и уменьшить среднее энергопотребление при минимальных аппаратурных затратах, что позволяет его использовать в устройствах фотоэлектрического контроля различного функционального назначения.

Микромощный фотодатчик с частотным выходом, содержащий фотодиод, катод которого подключен к входу логического инвертора, выход которого соединен с первым выводом резистора, отличающийся тем, что в него дополнительно введен полевой транзистор, объединенные сток и исток которого подключены к второму выводу резистора, а затвор полевого транзистора подключен к входу логического инвертора, в качестве которого применен инвертирующий триггер Шмитта, причем анод фотодиода соединен с нулевой цепью, а выход инвертирующего триггера Шмитта является выходом устройства.



 

Похожие патенты:

Изобретение относится к области измерительной техники и касается частотно-селективного фотопреобразователя оптического излучения. Устройство включает в себя фотодиод, источник питания, дифференциальный усилитель, полевой транзистор, затвор которого подключен к обкладке первого конденсатора, источник управляющего напряжения, варикап и индуктивно-емкостной контур.

Изобретение относится к измерительной технике и может быть использовано для выделения одиночных импульсов на фоне низкочастотного шума. Устройство содержит датчик, первый и второй операционные усилители (ОУ1, ОУ2), первый, второй, третий, четвертый, пятый и шестой резисторы, первый, второй, третий, четвертый и пятый конденсаторы, первый и второй выпрямители, ограничитель, шину смещения.

Изобретение относится к светоизмерительной технике и касается устройства для преобразования яркости цветного излучения в коды. Устройство содержит корпус, микрообъектив, полупрозрачные микрозеркала, усилители импульсов, блок индикации и дисковые фотоприемные устройства.
Изобретение относится к технике фотометрии и предназначено для повышения точности измерения электрических характеристик фотодиода. Способ заключается в том, что исследуемую электрическую характеристику измеряют в выбранной последовательности точек, осуществляя контроль температуры с использованием датчика температуры в процессе измерений.

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами.

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами.

Изобретение относится к области фотометрии и может быть использовано в оптико-электронных приборах с фотодиодными преобразователями излучений. .

Пирометр // 2462693
Изобретение относится к контрольно-измерительной технике, а именно к устройствам бесконтактного измерения температуры поверхности нагретых тел путем регистрации теплового излучения.

Изобретение относится к фотометрии и может быть использовано в оптико-электронных приборах с фотодиодными преобразователями излучений. .

Изобретение относится к контрольно-измерительной технике. .

Изобретение относится к области измерительной техники и может быть использовано для контроля переменного и импульсного оптического излучения. Фотодатчик переменного оптического излучения содержит фотодиод, источник питания, дифференциальный усилитель и полевой транзистор, затвор которого подключен к одной обкладке первого конденсатора и через первый резистор соединен с выходом дифференциального усилителя, при этом в него введены второй, третий резисторы и второй конденсатор, который включен между выходом и инвертирующим входом дифференциального усилителя, неинвертирующий вход которого соединен с нулевой шиной и анодом фотодиода, катод которого подключен ко второй обкладке первого конденсатора, через второй резистор соединен с истоком полевого транзистора и через третий резистор соединен с инвертирующим входом дифференциального усилителя, причем сток полевого транзистора подключен к источнику питания, а исток полевого транзистора является выходом устройства. Технический результат - повышение чувствительности фотодатчика к переменному оптическому сигналу в условиях большой постоянной освещенности и изменения уровня внешней засветки в широком диапазоне. 1 ил.

Изобретение относится к области приема оптических сигналов и касается однофотонного приемника для пространственно-временного поиска оптических импульсных сигналов. Приемник включает в себя диссектор с фокусирующе-отклоняющей системой и динодной умножительной системой, блок питания динодов с регулируемым потенциалом, блок управления, блок развертки, импульсный усилитель, импульсный дискриминатор, формирователи импульсов, генераторы тактовых и синхроимпульсов, реле и логические элементы. Кроме того, приемник содержит приемный телескоп с блоком управления и светофильтр. Технический результат заключается в увеличении вероятности правильного обнаружения сигнала, снижении времени поиска и уменьшении временной неопределенности приема импульсных сигналов. 15 ил.

Изобретение относится к способам коррекции собственной температурной зависимости кремниевых фотопреобразователей (ФЭП) и может быть использовано при тепловакуумных испытаниях (ТВИ) космического аппарата (КА) или его составных частей с использованием имитатора солнечного излучения. В предложенном способе коррекции собственной температурной зависимости кремниевых ФЭП нелинейная температурная зависимость конкретного ФЭП определяется непосредственно перед тепловакуумными испытаниями путем измерения показаний температуры и освещенности ФЭП на разных уровнях освещенности, построением и аппроксимацией графиков полученных данных, анализом угловых коэффициентов зависимостей с последующим построением и решением трансцендентного уравнения. Получены следующие результаты: коррекция собственной температурной зависимости кремниевых ФЭП осуществляется аналитическим способом, исключая при этом ввод в вакуумную камеру дополнительных термостабилизирующих устройств. При этом в процессе ТВИ корректируются отклонения в показаниях ФЭП от реально установленной освещенности в пределах ±12%. Технический результат - упрощение способа коррекции собственной температурной зависимости кремниевых ФЭП. 3 ил.

Изобретение относится к области оптических измерений и касается фотоприемного устройства. Фотоприемное устройство содержит последовательно соединенные лавинный фотодиод, усилитель и фильтр, а также компаратор, дискриминатор длительности импульсов, регулируемый источник питания, блок оценки сигналов, источник опорного напряжения, высокочастотный генератор и блок синхронизации. Кроме того, устройство включает в себя последовательно соединенные дополнительный усилитель и детектор. При этом выход детектора соединен с первым входом компаратора, вход дополнительного усилителя соединен с фильтром. В качестве фильтра используется полосовой фильтр с полосой пропускания около середины рабочей полосы частот усилителя. Технический результат заключается в увеличении отношения сигнал/шум при регулировании коэффициента умножения лавинного фотодиода непосредственно по принимаемому оптическому сигналу. 2 ил., 1 табл.

Изобретение относится к области оптических измерений и касается способа и устройства для получения информации о входном оптическом сигнале. Способ основан на преобразовании модулированных оптических сигналов с помощью гетеродинного фотоприемного устройства и заключается в том, что модулируют излучение по частоте и подают на вход фотодетектора фотоприемного устройства, который запитывают модулированными электрическими импульсами той же частоты с синхронизацией по фазовой задержке. Одновременно модулированное оптическое излучение подают на вход фотодетектора дополнительного фотоприемного устройства, который запитывают электрическими импульсами от гетеродина с частотой модулированного оптического излучения квадратурно относительно запитывающих импульсов основного фотоприемного устройства. На основе сигнала от дополнительного фотоприемного устройства получают информацию о фазовой задержке входного оптического сигнала, которую используют для синхронизации гетеродина. Технический результат заключается в повышении информативности, чувствительности, селективности и отношения сигнал/шум. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к области контрольно-измерительной техники и может быть использовано для измерения интенсивности оптического излучения и в системах контроля оптических параметров объектов. Техническим результатом является повышение точности преобразования, уменьшение энергопотребления и расширение функциональных возможностей преобразователя оптического излучения в ширину импульсов напряжения. Преобразователь оптического излучения в ширину импульсов напряжения содержит фотодиод, источник питания и операционный усилитель, инвертирующий вход которого соединен с первым резистором и катодом фотодиода. Анод фотодиода подключен к общей шине источника питания, которая через делитель напряжения на втором и третьем резисторах подключена к выходу операционного усилителя, который является выходом устройства. В схему введен четвертый резистор, через который потенциальная шина источника питания соединена с неинвертирующим входом операционного усилителя и подключена к средней точке делителя напряжения. Клеммы питания операционного усилителя подключены соответственно к общей и к потенциальной шине источника питания. 1 ил.
Наверх