Способ и устройство рафинирования алюминия



Способ и устройство рафинирования алюминия
Способ и устройство рафинирования алюминия
Способ и устройство рафинирования алюминия
Способ и устройство рафинирования алюминия
Способ и устройство рафинирования алюминия
Способ и устройство рафинирования алюминия
Способ и устройство рафинирования алюминия

 


Владельцы патента RU 2558316:

Общество с ограниченной ответственностью "Легкие металлы" (RU)

Изобретение относится к способу и устройству для рафинирования алюминия и его сплавов от электроположительных примесей. Устройство содержит контейнер с подиной, футерованной огнеупорными материалами, для размещения в нем расплавленного алюминиевого сплава с электроположительными примесями и расплавленного рафинированного алюминия, одну или несколько пористых мембран, пропитанных электролитом, непроницаемых для расплавленного алюминиевого сплава с электроположительными примесями и проницаемых для электролита и катионов алюминия, для разделения расплавленного алюминиевого сплава с электроположительными примесями, используемого в качестве анода с токоподводом, и расплавленного рафинированного алюминия в качестве катода с токоподводом и по крайней мере один МГД перемешиватель анодного расплава, установленный на границе раздела пористая мембрана - анодный расплав. Раскрыт также способ рафинирования алюминия и его сплавов от электроположительных примесей. Технический результат - обеспечение повышенной степени очистки. 2 н. и 10 з.п. ф-лы, 7 ил.

 

Известно электрохимическое рафинирование металлов трехслойным способом [1], согласно которому алюминий, подлежащий рафинированию от электроположительных примесей, таких как железо, кремний, медь, никель и другие, специально утяжеляется добавлением меди (около 30%) и такой сплав является анодом при электролизе. Электролитом служит хлоридно-фторидный расплав, содержащий хлорид бария. Температура рафинирования составляет около 800°C. В этом случае чистый алюминий оказывается легче электролита и, являясь, катодом, плавает на поверхности электролита.

Схема такого электролизера представлена на фиг.1, где:

1. Бортовые блоки

2. Угольный блок подовый

3. Теплоизоляция

4. Анодный токоподвод

5. Алюминиево-медный анодный сплав

6. Хлоридно-фторидный электролит

7. Рафинированный алюминий

8. Катодный токоподвод

9. Крышка

10. Летка для заливки алюминия

При поляризации в соответствие со вторым законом термодинамики запрещается анодное растворение электроположительных металлов, которые накапливаются в анодном сплаве, который периодически очищается от кристаллизующихся при накоплении примесей интерметаллидов железа, кремния и меди.

Недостатком известного электролизера является то, что, чтобы исключить случайное загрязнение катодного металла частичками анодного сплава, большое межэлектродное расстояние поддерживается на уровне около 15 см, следствием чего является большое напряжение на электролизере (около 5,5 В) и, как результат, высокий удельный расход энергии, даже при выходе по току η=0,98 составляющий более 18 кВт*ч/кг Al.

Известен способ и электролизер для рафинирования алюминия (прототип) [2], где техническое решение основано на том, что два слоя металла - первичный, подлежащий очистке, и очищенный, имеющие приблизительно одинаковую плотность, разделяются слоем электролита, который удерживается капиллярными силами в порах смачиваемой им сетчатой мембраны, изготовленной из материала инертного по отношению к электролиту и металлу.

Недостатком является то, что сетчатая мембрана выполняет роль фильтра, который со временем «загрязняется», происходит пассивация поверхности и затрудняется ионный массообмен в сетчатой мембране.

Задача изобретения - уменьшить или устранить пассивацию, увеличить возможности ионного массообмена в сетчатой мембране, а также снизить рабочее напряжение, уменьшить удельный расход энергии, увеличить выход по току, увеличить производительность электролизера.

Технический результат достигается применением виброакустического, и/или ультразвукового, и/или электромагнитного, и/или МГД воздействия на следующие компоненты электролизера: мембрану (с одной стороны и/или с обеих сторон), электролит, первичный неочищенный металл, рафинированный металл, поверхности раздела сред между неочищенным металлом, мембраной и рафинированным металлом.

В этом случае:

1) Уменьшается или устраняется пассивация мембраны, увеличиваются возможности ионного массообмена в сетчатой мембране;

2) Межэлектродное расстояние (МЭР) приблизительно равно толщине слоя пористой сетки/мембраны (0,5-5 мм), что делает напряжение на ванне весьма малым, т.к. сегодняшние МЭР составляют около 50 мм и напряжение на ванне пропорционально МЭР;

3) Используются низкоплавкие хлоридные электролиты, например, системы NaCl-KCl-AlCl3, что делает возможным снижение температуры электролиза до 700°C;

4) Катодная часть ванны может быть съемной, состоящей из мешков, изготовленных из разделительной ткани, пропитанных электролитом, внутри которых находится отрафинированный катодный металл.

Сущность изобретения поясняется эскизами (Фиг.2-5). Электролизер содержит бортовые блоки 1, подовые блоки 2, теплоизоляцию 3, катодный токоподвод 4, катодный алюминий 5, пористую мембрану 6, пропитанную хлоридно-фторидным электролитом 7, анодный алюминий 8, анодный токоподвод 9, крепление 10 пористой мембраны 6, устройство аккумулирования и эвакуации алюминия 11, солевой слой 12 для питания пористой мембраны, крышки 13; одного или нескольких виброрезонансных, акустических, ультразвуковых 14 и/или электромагнитных, и/или МГД генераторов 15; уменьшающих или устраняющих загрязнение и пассивацию пористой мембраны 6 примесями, интерметаллидами 16. В подовых блоках 2 могут быть выполнены дренирующие каналы 17 для аккумулирования и эвакуации алюминия или загрязнений и интерметаллидов. Верхняя поверхность катодного и анодного алюминия может быть защищена от окисления на воздухе солями 11 и/или аргоном 18 или вакуумом.

Пористая мембрана 6 может быть неэлектропроводная или электропроводная. В случае неэлектропроводной мембраны катодный и анодный металлы могут соприкасаться с мембраной 6. При этом достигается минимальное межэлектродное расстояние и минимальное энергопотребление. В случае электропроводной пористой мембраны рафинированный алюминий не должен соприкасаться с пористой мембраной, чтобы не образовать короткозамкнутой электрической цепи, поэтому он должен быть регулярно эвакуирован по мере его наработки и аккумулирования.

Электромагнитные МГД генераторы 15 при вертикальном расположении электродов (Фиг 6, Фиг.7) могут выполнять функции не только воздействия на пористые мембраны с целью уменьшения или устранения загрязнения и пассивации последних, но и функции МГД насоса и МГД-летки при аккумулировании и эвакуации расплавов. В частности, функциями МГД-летки являются режим «замораживания» летки при отключении МГД-индуктора летки, режим «размораживания» при включении МГД-индуктора летки и режимы МГД-насоса, в т.ч. реверсы и генерация колебаний расплава.

Электролизер может иметь разновидности, например:

1. Пористая сетка/мембрана может крепиться посередине (по высоте) и разделять 2 слоя металла (катодный и анодный).

2. В стенке ванны могут быть выполнены каналы для гарантированного снабжения пористой сетки/мембраны электролитом.

3. Пористая мембрана может быть многослойной для надежного сохранения электролита и для повышения ее механической прочности, химической устойчивости.

4. Пористая мембрана может состоять из слоев электропроводного материала (например, графит) и электроизолятора (например, корунд), чередующихся между собой.

5. Перегородка может быть выполнена из перфорированных пластин с размерами отверстий любой формы, исключающих продавливание металла.

При этом происходит улучшение следующих ТЭП электролиза алюминия: уменьшение удельного расхода энергии, увеличение выхода по току, снижение рабочего напряжения и увеличение производительности электролизера.

ЛИТЕРАТУРА

1. Х. Чанг, В. де Нора и Дж.А. Секхар. «Материалы, используемые в производстве алюминия методом Эру-Холла». - Изд. Красноярск. гос. ун-т, Красноярск, 1998.

2. Patent US 4115215, Das et al. Aluminum purification, 1978.

1. Устройство для электролитического рафинирования алюминия и его сплавов от электроположительных примесей, содержащее контейнер с подиной, футерованной огнеупорными материалами, для размещения в нем расплавленного алюминиевого сплава с электроположительными примесями и расплавленного рафинированного алюминия, по меньшей мере одну пористую мембрану, пропитанную электролитом, непроницаемую для расплавленного алюминиевого сплава с электроположительными примесями и проницаемую для электролита и катионов алюминия, для разделения расплавленного алюминиевого сплава с электроположительными примесями, используемого в качестве анода с токоподводом, и расплавленного рафинированного алюминия в качестве катода с токоподводом, отличающееся тем, что оно снабжено по крайней мере одним магнитогидродинамическим (МГД) перемешивателем анодного расплава, установленным на границе раздела пористая мембрана - анодный расплав.

2. Устройство по п. 1, отличающееся тем, что пористая мембрана изготовлена из углеродистых материалов.

3. Устройство по п. 1, отличающееся тем, что пористая мембрана изготовлена на основе карбида кремния.

4. Устройство по п. 1, отличающееся тем, что пористая мембрана выполнена многослойной.

5. Устройство по п. 1, отличающееся тем, что пористая мембрана состоит из слоев углеродистого электропроводного материала и электроизолятора, чередующихся между собой.

6. Устройство по п. 1, отличающееся тем, что пористая мембрана выполнена из перфорированных пластин с отверстиями, форма которых исключает продавливание металла.

7. Устройство по п. 1, отличающееся тем, что пористая мембрана изготовлена из диэлектрических материалов, например, на основе карбида кремния и расположена в электролизере с вертикальными чередующимися полярными электродами.

8. Устройство по п. 1, отличающееся тем, что пористые мембраны выполнены парными, изготовлены из электропроводных материалов, например углеродистых, и расположены в электролизере с вертикальными чередующимися полярными электродами, причем между парными пористыми мембранами залит электролит, пропитывающий пористые мембраны.

9. Устройство по п. 1, отличающееся тем, что в подине имеется по крайней мере одна летка для аккумулирования и эвакуации рафинированного алюминия.

10. Устройство по п. 1, отличающееся тем, что в подине имеется по меньшей мере одна летка для аккумулирования и эвакуации примесей, загрязнений, интерметаллидов алюминия и его сплава.

11. Устройство по п. 1, отличающееся тем, что в подине имеется по меньшей мере одна летка для аккумулирования и эвакуации рафинированного алюминия, примесей, загрязнений, интерметаллидов алюминия и его сплава, совмещенная с МГД-насосом и/или МГД-леткой.

12. Способ электролитического рафинирования алюминия и его сплавов от электроположительных примесей, включающий помещение расплава алюминия или его сплава и электролита, содержащего по крайней мере одну соль из группы, включающей фторид алюминия, хлорид алюминия, и по крайней мере одну соль из группы, содержащей натрий, калий, литий, магний и магния галогенид, или по крайней мере одну соль из группы, включающей натрий, калий, литий, магний и магния хлорид, в устройство для электролитического рафинирования и проведение электролитического рафинирования, отличающийся тем, что используют устройство по одному из пп. 1-11, при этом дополнительно перемешивают анодный расплав на границе раздела пористая мембрана - анодный расплав.



 

Похожие патенты:

Изобретение относится к графитированному фасонному катодному устройству для получения алюминия. Катодное устройство содержит основной блок и графитированный катодный замедлительный блок.
Изобретение относится к способу электролитического получения алюмокремниевых сплавов -силуминов с использованием кремнезема и кремнеземсодержащих материалов, например, отработанной подины, содержащей большое количество кремнезема, глинозема и электролита, необходимых для электролиза.

Изобретение относится к очистке основного потока неочищенного газа из предприятия, например, по получению алюминия. Газоочистное устройство содержит множество газоочистных камер (34a-c), входную магистраль (32) для разделения основного потока неочищенного газа, текущего через нее, на множество отдельных фракционных потоков неочищенного газа для втекания во входы (46a-c) очистных камер и множество теплообменников (40a-c).

Изобретение относится к получению алюминия электролизом глинозема в расплаве фтористых солей и может быть использовано при технологическом контроле состава электролита методом количественного рентгенофазового анализа (РФА) калийсодержащего электролита с добавками кальция либо кальция и магния.

Изобретение относится к электролизерам для получения алюминия с верхним подводом тока, в частности к устройству отвода газов из-под подошвы самообжигающегося анода.

Изобретение относится к способу обжига подины алюминиевого электролизера с обожженными анодами. Способ включает нагрев подины, выполненной из катодных блоков с катодными блюмсами, электропроводным материалом, размещение на нем обожженных анодов, соединение анододержателей установленных обожженных анодов с анодными шинами анодной ошиновки электролизера, пропускание электрического тока через электропроводный материал и регулирование токовой нагрузки обожженных анодов.

РЕФЕРАТ Изобретение относится к устройству для сбора твердых отходов и шлама из ванны электролизера для получения алюминия. Устройство содержит ковш для сбора корки, предназначенный для чистки анодных отверстий, подвижную вертикальную стойку, приводимую в движение первым приводом, раму, закрепленную на подвижной вертикальной стойке, и шарнирный черпак, при этом первый привод выполнен в виде гидроцилиндра, питаемого гидравлическим контуром, выполненным таким образом, что при приведении в движение черпака посредством второго привода давление масла в камере штока удерживается, по существу, постоянным, для удерживания нагрузки, соответствующей весу устройства для сбора, уменьшенной на заданную величину, предпочтительно, меньше 1000 даН, обычно от 200 до 600 даН.

Изобретение относится к системе и способу для выливки расплавленного алюминия из электролизера для получения алюминия. Система содержит контейнер, имеющий корпус, приспособленный для помещения в него расплавленного алюминия, и желоб, имеющий участок-основание, соединенный с корпусом контейнера, участок-наконечник, соприкасающийся с расплавом в электролизере, и канал, соединяющий участок-основание с участком-наконечником, для прохождения расплава в корпус контейнера, причем расплав в электролизере содержит расплавленный алюминий и электролит, и электрический источник, соединенный с электролизером и выполненный с возможностью подачи вспомогательного тока на желоб для создания вспомогательного электромагнитного поля по меньшей мере вблизи участка-наконечника желоба, обеспечивающего по меньшей мере частичное увеличение потока расплавленного алюминия в желоб при поступлении вспомогательного тока на желоб, находящийся в жидкостном сообщении с расплавом в электролизере.
Изобретение относится к композиции для материала смачиваемого покрытия катода алюминиевого электролизера для производства алюминия из криолит-глиноземных расплавов.
Изобретение относится к способу защиты смачиваемого покрытия на основе диборида титана катодных блоков алюминиевого электролизера от окисления при обжиге и пуске.

Изобретение относится к способу рентгенофазового определения криолитового отношения при электролитическом получении алюминия и может быть использовано при определении состава электролита. Способ включает отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 и фторида натрия NaF, при этом концентрации вышеперечисленных фаз электролита определяют по формуле: C j = ( I j a / K j a ) / ( ∑ l M I l a / K j a ) , а криолитовое отношение определяют по формуле: K O = 2 × ∑ j α j C j ∑ j β j C j где: - интенсивность аналитической линии j-й фазы, - корундовое число j-й фазы, рассчитанное для данной аналитической линии, М- количество фторидных фаз, Cj - концентрации минералогических фаз пробы; αj, βji - массовые доли соответственно NaF и AlF3 в j-й фазе. Обеспечивается упрощение и повышение его точности определения состава электролита. 2 ил., 4 табл.

Изобретение относится к электролизерам для производства жидких металлов, в частности алюминия, электролизом расплавленных солей. Электролизер содержит корпус, подину, крышку, установленные вертикально или наклонно малорасходуемые полые перфорированные и/или открыто пористые электроды, подсоединенные к источнику постоянного тока, при этом в электродах выполнены внутренние каналы для транспортировки по ним продуктов электролиза. Электроды выполнены в поперечном сечении в виде прямоугольника, закреплены в крышке электролизера и/или в углублениях корпуса и подины, причем в подине катодной частью, и соединены от 1 до 100 параллельных рядов с последовательно соединенными биполярными электродами в ряду от 2 до 100, при расстоянии между электродами от 0,5 до 5 см, а от боковой поверхности электрода до боковой стенки электролизера от 0,01 до 1 см, при этом каждый ряд эквипотенциальных электродов соединен с накопителем металла, расположенным в нижней части электролизера. Обеспечивается увеличение удельной производительности, снижение удельного расхода электроэнергии и массы токоподводящей ошиновки. 2 з.п. ф-лы, 13 ил., 1 табл.
Наверх