Способ упрочнения поверхности титановых сплавов в вакууме

Изобретение относится к области термической, химико-термической обработки и может быть использовано в машиностроении и других областях промышленности. Способ упрочнения поверхностей деталей из титановых сплавов включает азотирование с последующим отжигом. Азотирование деталей проводят в вакуумной камере в газовой смеси 15 мас.% азота и 85 мас.% аргона при температуре 650-700°C путем вакуумного нагрева в плазме повышенной плотности с эффектом полого катода. Плазму повышенной плотности формируют между деталью и экраном, выполненным с отверстиями и изготовленным из титанового сплава, затем проводят вакуумный диффузионный отжиг в аргоне при температуре 800-850°C. Повышается твердость и контактная износостойкость титановых сплавов, при меньшем давлении рабочего процесса и меньшем временем выдержки. 3 ил., 1 пр.

 

Изобретение относится к области термической, химико-термической обработки и может быть использовано в машиностроении и других областях промышленности.

Известен способ поверхностного упрочнения изделий из титана и титановых сплавов (патент РФ №2318077, C23C 8/06, 04.07.2006), который проводят при помощи термообработки. Термообработку проводят в активной газовой среде. Затем осуществляют частичное удаление газонасыщенного слоя, обладающего повышенной хрупкостью, травлением. Глубину зоны, обладающей повышенной хрупкостью, определяют по формуле, также глубина может быть определена по среднему расстоянию между трещинами, образующимися в газонасыщенном слое при разрушении образца изгибом.

Недостатками данного способа являются:

- высокая трудоемкость;

- снижение ресурса работы в условиях интенсивного износа, так как при обработке данным способом травитель может удалить часть диффузионной зоны с поверхности деталей.

Известен способ модификации поверхности изделий из титановых сплавов (патент РФ №2346080, C23C 8/02, 25.01.2007), который проводят при помощи электроискрового легирования поверхностного слоя с последующим оксидированием или азотированием. Электроискровое легирование проводят нитридообразующими элементами или сплавами на их основе. Затем осуществляют термическое оксидирование в окислительной воздушной среде при температуре 600-800°C в течение 2-16 часов или диффузионное азотирование, проводят в каталитически приготовленных газовых аммиачных средах при температуре 500-680°C в течение 15-40 часов.

Недостатками данного способа являются:

- высокая трудоемкость;

- большая длительность процесса;

- азотирование титанового сплава проводят в аммиачной среде, что может приводить к охрупчиванию поверхности вследствие образования гидридов титана.

Известен способ азотирования стальных изделий в тлеющем разряде (патент РФ №2276201, C23C 8/36, 9.11.2004), который осуществляют путем вакуумного нагрева изделий в плазме азота повышенной плотности, формируемой между деталью и экраном за счет эффекта полого катода. Процесс азотирования проводят при температуре 700-750°C. После азотирования проводят поверхностную закалку охлаждением в потоке аргона со скоростью, превышающей критическую скорость закалки стали.

Недостатками данного способа являются:

- невозможность проведения азотирования титановых сплавов в плазме повышенной плотности, так как применение стальных экранов может приводить к попаданию распыленных частиц железа на обрабатываемую поверхность и блокированию диффузии азота вглубь обрабатываемой поверхности;

- снижение эффективности диффузии азота вглубь изделий, так как азотирование проводят в среде азота, что приводит к образованию сплошной нитридной пленки на поверхности.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому является способ упрочнения титановых сплавов в газовой среде (патент РФ №2365671, C23C 8/80, 06.12.2007), по которому проводят высокотемпературное азотирование при температурах 700-750°C в течение 10-30 мин. Затем проводят восстановительный отжиг в аргоне при температуре, превышающей температуру азотирования на 100-150°C, время отжига вычисляют по формуле

τотж=0,75·(Kазот/Kр)·exp(Eр/RTотж-Eазот/RTазот)·τазот,

где Kазот, Kр - эмперические коэффициенты учитывающие соответственно скорость образования и скорость растворения нитридного газонасыщенного слоя, мкм2/с;

Eазот - энергия активации процесса, контролирующего повышение концентрации азота в охрупченном азотированием слое, Дж/моль;

Eр - энергия активации процесса, контролирующего понижение концентрации азота в охрупченном азотированием слое, Дж/моль;

R - газовая постоянная, Дж/К·моль;

Tазот - температура азотирования, К;

Tотж - температура восстановительного отжига, К;

τазот - время азотирования, с.

Недостатками прототипа являются:

- снижение эффективности процесса насыщения при азотировании, так как высокотемпературная обработка в открытой атмосфере приводит к образованию оксидных пленок на обрабатываемой поверхности;

- небольшая продолжительность азотирования, вследствие чего образуется малая толщина диффузионной зоны либо диффузионная зона не образуется.

Задачей, на решение которой направлено предлагаемое изобретение, является повышение содержания азота в обрабатываемой поверхности за счет азотирования в плазме повышенной плотности, что приведет к повышению твердости и, как следствие, к износостойкости, а также улучшение эксплуатационных характеристик, расширение функциональных возможностей способа, за счет последующего диффузионного отжига, что приведет к снижению хрупкости и повышению пластичности.

Техническим результатом является повышение твердости и контактной износостойкости титановых сплавов, при меньшем давлении рабочего процесса и меньшем времени выдержки.

Задача решается и технический результат достигается способом упрочнения титановых сплавов, включающим азотирование с последующим отжигом, по которому, согласно изобретению, азотирование проводят в вакуумной камере в газовой смеси 15 мас.% азота и 85 мас.% аргона при температуре 650-700°C путем вакуумного нагрева в плазме повышенной плотности с эффектом полого катода, причем плазму повышенной плотности формируют между деталью и экраном, выполненным с отверстиями и изготовленным из титанового сплава, затем проводят вакуумный диффузионный отжиг в аргоне при температуре 800-850°C.

Вакуумный диффузионный отжиг в аргоне проводят после азотирования с целью уменьшения толщины нитридного слоя, вследствие эффективной диффузии азота с поверхности вглубь материала под температурным воздействием.

Плазма повышенной плотности обеспечивается за счет эффекта полого катода.

Эффект полого катода проявляется в значительном повышении плотности тока, увеличении степени ионизации при одновременном снижении напряжения горения разряда.

Экран выполнен из титановой пластины с отверстиями.

Существо изобретения поясняется чертежами.

На фиг. 1 изображены параметры экрана для создания эффекта полого катода, где a - диаметр отверстия, b - расстояние между центрами отверстий. На фиг. 2 изображен экран из титанового сплава для создания эффекта полого катода. На фиг. 3 изображена схема реализации способа ионного азотирования титанового сплава в тлеющем разряде с эффектом полого катода.

Схема содержит источник питания 1, анод 2, катод 3, катод-деталь 4, экран 5, изготовленный из титанового сплава в виде пластины с отверстиями, установленный на определенном расстоянии от катод-детали 4, корпус из металла вакуумной камеры 6.

Пример конкретной реализации способа.

Способ осуществляется следующим образом: в вакуумной камере (фиг. 3) на определенном расстоянии от обрабатываемой поверхности устанавливают экран, выполненный из титанового сплава с расчетными параметрами a и b (b=2a) (фиг. 1), деталь и экран подключают к отрицательному электроду, герметизируют камеру и откачивают воздух до давления 133 Па. После эвакуации воздуха камеру продувают рабочим газом в течение 5-15 мин при давлении - 1330 Па, затем откачивают камеру до давления 20-30 Па, подают на электроды напряжение и возбуждают тлеющий разряд. При напряжении 900-1100 В на этой стадии осуществляется катодное распыление. После 5-20-минутной обработки поверхности по режиму катодного распыления напряжение понижают до рабочего, а давление повышают до 90 Па. Рабочая смесь имеет состав газов - 15% азота - 85% аргона.

С помощью эффекта полого катода, возникающего в полости между экраном и обрабатываемой поверхностью, происходит нагрев и азотирование детали в плазме повышенной плотности, обеспечивающий повышение твердости поверхности титанового сплава. Продолжительность насыщения составляет 4 часа при температуре 650-700°C.

После азотирования в камере повышают давление до 300 Па и проводят диффузионный отжиг при температуре 800-850°C в газовой среде аргона в течение 1 часа.

Азотирование в плазме повышенной плотности приводит к интенсификации процесса насыщения обрабатываемой поверхности азотом, что способствует увеличению диффузионной зоны, вследствие увеличения концентрации ионов азота в приповерхностном слое под действием осциллирующих электронов.

На поверхности после азотирования образуется нитридный слой толщиной 2…5 мкм для деталей, работающих при циклических нагрузках (деталь типа стакан), может произойти зарождение трещин под действием знакопеременных нагрузок.

Для ликвидации нитридного слоя после азотирования проводят диффузионный отжиг в газовой среде аргона, что приводит к уменьшению хрупкости, повышению на 10…15% характеристик пластичности сплавов, интенсификации диффузии азота вглубь рабочей поверхности.

Способ упрочнения поверхностей деталей из титановых сплавов, включающий азотирование с последующим отжигом, отличающийся тем, что азотирование деталей проводят в вакуумной камере в газовой смеси 15 мас.% азота и 85 мас.% аргона при температуре 650-700°C путем вакуумного нагрева в плазме повышенной плотности с эффектом полого катода, причем плазму повышенной плотности формируют между деталью и экраном, выполненным с отверстиями и изготовленным из титанового сплава, затем проводят вакуумный диффузионный отжиг в аргоне при температуре 800-850°C.



 

Похожие патенты:

Изобретение относится к области цементации стальных изделий и может быть использовано для поверхностного упрочнения деталей машин и механизмов из низкоуглеродистой стали.
Изобретение относится к области металлургии, а именно к химико-термической обработке, в частности к азотированию сталей в газовой среде, и может быть использовано для упрочнения стальных деталей, работающих при относительно высоких температурах 500-7000С, в том числе в коррозионной среде.

Изобретение относится к металлургии, а именно к способам упрочнения металлов азотированием, и может быть использовано при изготовлении деталей из титановых сплавов, работающих при циклических нагрузках.

Изобретение относится к области металлургии, а именно к способам химико-термической обработки сталей, и может быть использовано в машиностроении для упрочнения стальных мелкоразмерных деталей и инструмента.

Изобретение относится к области металлургии, в частности к химико-термической обработке деталей с формированием диффузионных и поверхностных слоев с повышенной износостойкостью и высокой прирабатываемостью в условиях трения металла о металл, и может быть использовано в машиностроении.

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения деталей машин режущего инструмента из конструкционных сложнолегированных и инструментальных сталей, работающих при высоких контактных напряжениях и в условиях повышенного износа.

Изобретение относится к области химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для высокотемпературного азотирования стальных деталей машин.
Изобретение относится к химико-термической обработке металлов и сплавов и может быть использовано для упрочнения поверхности рабочих органов технологического оборудования пищевых производств и потребительской транспортной тары для упаковки пищевых продуктов.

Изобретение относится к способам изготовления стабильных поверхностных покрытий за счет катодного распыления, напыления, осаждения из ванных или MOCVD и может найти применение при защите и модификации поверхностей, в том числе со скрытыми структурами, а также при нанесении функциональных слоев, в частности, в гелиотехнике и технике материалов.

Изобретение относится к металлургии, а именно к химико-термической обработке, и может быть использовано для поверхностного упрочнения изделий и повышения их эксплуатационной стойкости.

Изобретение относится к плазменной химико-термической обработке, а именно к способу ионно-плазменного прецизионного азотирования металлических поверхностей, и может быть использовано в машиностроении, двигателестроении, металлургии и других отраслях промышленности.
Изобретение относится к области технологии машиностроения и может быть использовано в процессах упрочнения деталей машин и инструментов. Способ включает воздействие на поверхность детали ионизированным газом, полученным пропусканием его через электроразряд, при этом покрытие формируют, по меньшей мере, локальным с помощью сопла, расположенного на расстоянии 8-10 мм от поверхности детали под углом 70-80° к ней, при этом в качестве ионизированного газа используют озонированный воздух, который получают с помощью коронного электроразряда силой тока 400 мкА, создаваемого внутри упомянутого сопла, а воздействие озонированным воздухом на поверхность детали осуществляют с давлением 0,2 кгс/см2 при комнатной температуре.
Изобретение относится к области машиностроения, в частности к методу образования защитного нанокомпозитного покрытия на поверхности изделия из жаропрочного никелевого сплава, подверженного высоким температурам и механическим нагрузкам.

Изобретение относится к области химико-термической обработки металлов, в частности к ионному азотированию, и может быть использовано в машиностроении, автостроении и арматуростроении.
Изобретение относится к области машиностроения, к способам образования защитных покрытий на изделиях, имеющих тонкостенные и толстостенные части и выполненных из стали или титанового сплава.

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов.

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов.

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности, для поверхностного упрочнения материалов.

Изобретение относится к машиностроению, в частности к способу ионоазотирования деталей машин с использованием импульсов электромагнитного поля. Обеспечивают подачу в камеру для азотирования реакционного газа, его нагрев с одновременным генерированием в камере переменного электромагнитного поля посредством соленоида.
Изобретение относится к способу ионно-плазменного азотирования длинномерной стальной детали. Способ включает нагрев детали, изотермическую выдержку, предварительное азотирование, окончательное азотирование и охлаждение.
Изобретение относится к металлургии, в частности к способам химико-термической обработки металлов и сплавов, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, а также режущего инструмента и штамповой оснастки. Способ химико-термической обработки детали из легированной стали включает размещение детали в рабочей камере, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температуры химико-термической обработки и выдержку при этой температуре до формирования необходимой толщины диффузионного слоя. Активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 25 до 30 кэВ, дозе облучения от 1,6·1017 см-2 до 2·1017 см-2, скорости набора дозы облучения от 0,7·1015 с-1 до 1·1015 с-1 и при использовании в качестве имплантируемых ионов следующих элементов: С, N или их комбинации. В частных случаях осуществления изобретения химико-термическую обработку детали проводят ионно-плазменным методом. В качестве ионно-плазменного метода используют ионно-плазменное азотирование, или ионно-плазменную цементацию, или ионно-плазменную нитроцементацию. Обеспечивается повышение производительности и качества процесса химико-термической обработки, а также повышение износостойкости деталей после нее. 2 з.п. ф-лы, 1 пр.
Наверх