Тепловизионный канал



Тепловизионный канал
Тепловизионный канал

 


Владельцы патента RU 2558351:

Открытое акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (ОАО "НПО ГИПО") (RU)

Изобретение относится к тепловизионным устройствам с матричным фотоприемным устройством. Техническим результатом является повышение скорости обработки цифровых видеоданных без существенного увеличения потребляемой мощности и усложнения конструкции устройства, а также снижение задержки прохождения видеосигнала. Результат достигается тем, что в тепловизионный канал, содержащий объектив, в фокальной плоскости которого расположено матричное фотоприемное устройство, выходами подключенное к входам многоканального предварительного усилителя, аналого-цифровой преобразователь, мультиплексор, блок управления, выход которого подключен к управляющему входу фотоприемного устройства, видеопроцессор, управляющим выходом подключенный к входу блока управления и управляющему входу мультиплексора, блок вывода видеосигнала, выход которого является выходом тепловизионного канала, дополнительно введен блок аппаратной обработки сигналов, включенный между выходом мультиплексора и входом блока вывода видеосигнала и подключенный портом ввода-вывода данных к соответствующему порту видеопроцессора, а управляющим входом к управляющему выходу видеопроцессора, при этом блок аппаратной обработки сигналов реализован с возможностью одновременного выполнения как минимум двух различных вычислительных операций цифровой обработки данных. 2 ил.

 

Изобретение относится к области оптико-электронного приборостроения и может быть использовано в тепловизионных устройствах, имеющих в качестве детектора инфракрасного излучения матричное фотоприемное устройство.

Известен тепловизионный канал (Волков В.Г., Ковалев А.В., Федчишин В.Г. Тепловизионные приборы нового поколения / Специальная техника, 2001, №6, с. 16-21), содержащий инфракрасный объектив, в фокальной плоскости которого расположено матричное фотоприемное устройство (ФПУ), выходы которого через предусилители подключены к соответствующим входам аналогового мультиплексора, выход которого соединен с последовательно включенными аналоговым корректором разброса характеристик элементов матричного ФПУ, аналого-цифровым преобразователем (АЦП), цифровым корректором разброса характеристик элементов матричного ФПУ, корректором дефектных элементов матричного ФПУ и видеопроцессором, осуществляющим формирование изображения, выход которого подключен к блоку вывода видеосигнала, а также тактовый генератор (блок управления матричного ФПУ), выходы которого подключены к управляющим входам матричного ФПУ, аналогового корректора разброса характеристик элементов матричного ФПУ, аналого-цифрового преобразователя и корректора дефектных элементов матричного ФПУ.

Недостатком данного устройства является длительное время обработки видеосигналов, связанное с последовательным проведением операций аналоговой и цифровой коррекции разброса характеристик элементов матричного ФПУ, коррекции дефектных элементов матричного ФПУ и передачи цифровых данных в видеопроцессор, а также с необходимостью формирования сигнала управления цифроаналоговым преобразователем (ЦАП) аналогового корректора разброса характеристик элементов матричного ФПУ.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому эффекту является тепловизионный канал (см. патент России №2387092, М.кл. Н04N 5/33, опубл. 20.12.2010), выбранный в качестве прототипа, содержащий объектив, в фокальной плоскости которого расположено матричное ФПУ, предварительные усилители, подключенные входами к выходам ФПУ, а выходами к соответствующим входам аналого-цифрового преобразователя (АЦП), выходы которого подключены к соответствующим входам мультиплексора, выход мультиплексора соединен с входом видеопроцессора, первый выход которого подключен к блоку вывода видеосигнала, управляющий выход видеопроцессора подключен к управляющему входу мультиплексора и входу блока управления, выход которого соединен с управляющим входом матричного ФПУ.

Излучение наблюдаемой сцены с помощью инфракрасного объектива фокусируется на чувствительные элементы матричного ФПУ. Аналоговые видеосигналы с выходов матричного ФПУ через предварительные усилители поступают на АЦП и далее, в цифровом виде, на входы мультиплексора. Мультиплексор формирует последовательную цифровую выборку данных, соответствующую кадру тепловизионного изображения, и направляет ее на вход видеопроцессора. Видеопроцессор последовательно производит операции обработки массива цифровых данных: коррекцию разброса характеристик элементов ФПУ; коррекцию дефектных элементов ФПУ; формирование стандартного цифрового видеокадра; автоматическую или ручную регулировку яркости и контраста тепловизионного изображения; наложение служебной информации. Обработанная выборка поступает на вход блока вывода видеосигнала.

Предварительно в видеопроцессоре с помощью программных средств формируется три независимых параллельных потока приема, обработки и передачи данных, которые тактируются управляющими импульсами с частотой, равной частоте следования кадров. Таким образом, в видеопроцессоре одновременно производится обработка текущего, ввод последующего и вывод предыдущего кадров тепловизионного изображения.

Недостатком тепловизионного канала является то, что общее время проведения последовательных операций обработки массива цифровых данных, ограниченное длительностью одного кадра, зависит в основном от производительности видеопроцессора. При увеличении формата или частоты кадров тепловизионного изображения, при усложнении алгоритмов обработки цифровых данных вычислительных возможностей видеопроцессора может оказаться недостаточно. Применение более быстродействующего процессора, например многоядерного, приводит к росту потребляемой мощности, что порождает необходимость использования источников питания повышенной мощности и обеспечения отвода выделяемого тепла. Все это, в конечном итоге, влечет за собой усложнение конструкции и увеличение габаритных размеров устройства.

Кроме того, в данном тепловизионном канале имеется задержка прохождения видеосигнала, равная по длительности двум кадрам тепловизионного изображения, в течение которой происходит прием и обработка массива цифровых видеоданных.

Задачей, на решение которой направлено заявляемое изобретение, является повышение скорости обработки цифровых видеоданных без существенного увеличения потребляемой мощности и усложнения конструкции устройства, а также снижение задержки прохождения видеосигнала.

Это достигается тем, что в тепловизионный канал, содержащий объектив, в фокальной плоскости которого расположено матричное фотоприемное устройство, выходами подключенное к входам многоканального предварительного усилителя, аналого-цифровой преобразователь, мультиплексор, блок управления, выход которого подключен к управляющему входу фотоприемного устройства, видеопроцессор, управляющим выходом подключенный к входу блока управления и управляющему входу мультиплексора, блок вывода видеосигнала, выход которого является выходом тепловизионного канала, дополнительно введен блок аппаратной обработки сигналов, включенный между выходом мультиплексора и входом блока вывода видеосигнала и подключенный портом ввода-вывода данных к соответствующему порту видеопроцессора, а управляющим входом к управляющему выходу видеопроцессора, при этом блок аппаратной обработки сигналов реализован с возможностью одновременного выполнения как минимум двух различных вычислительных операций цифровой обработки данных.

На фиг. 1 показана функциональная схема тепловизионного канала.

На фиг. 2 показана функциональная схема блока аппаратной обработки сигналов.

Тепловизионный канал содержит объектив 1, в фокальной плоскости которого расположено матричное фотоприемное устройство 2, выходами подключенное к входам многоканального предварительного усилителя 3, аналого-цифровой преобразователь 4, мультиплексор 5, блок управления 8, выход которого подключен к управляющему входу фотоприемного устройства 2, видеопроцессор 6, управляющим выходом подключенный к входу блока управления 8 и управляющему входу мультиплексора 5, блок вывода видеосигнала 7, выход которого является выходом тепловизионного канала, блок аппаратной обработки сигналов 9, включенный между выходом мультиплексора 5 и входом блока вывода видеосигнала 7 и подключенный портом ввода-вывода данных к соответствующему порту видеопроцессора 6, а управляющим входом к управляющему выходу видеопроцессора 6.

Блок аппаратной обработки сигналов 9, реализованный с возможностью одновременного выполнения как минимум двух различных вычислительных операций алгоритма цифровой обработки данных, содержит ОЗУ ввода данных 10, вход которого является входом блока аппаратной обработки сигналов 9, а выход подключен к порту ввода-вывода данных 11, ОЗУ вывода данных 12, вход которого подключен к порту ввода-вывода данных 11, а выход к первому входу вычислительного устройства 13, ОЗУ предварительных данных 14, вход которого подключен к порту ввода-вывода данных 11, а выходы к соответствующим входам вычислительного устройства 13, выход которого является выходом блока аппаратной обработки сигналов 9, а также устройство синхронизации 15, вход которого является управляющим входом блока аппаратной обработки сигналов 9, а выход подключен к управляющему входу порта ввода-вывода данных 11.

Тепловизионное изображение наблюдаемого пространства, формируемое входным объективом 1, проецируется на матрицу чувствительных элементов ФПУ 2, преобразующую поток излучения в электрический сигнал. Блок управления 8, по команде от видеопроцессора 6, периодически, с частотой кадров запускает в ФПУ 2 процесс накопления видеосигнала. После завершения процесса накопления аналоговый видеосигнал через многоканальный предварительный усилитель 3 поступает на вход АЦП 4, где преобразуется в цифровую форму. Далее, мультиплексор 5, в порядке следования видеосигнала с ФПУ 2, формирует последовательную цифровую выборку данных. Выборка поступает на ОЗУ ввода данных 10 блока аппаратной обработки сигналов 9. По мере заполнения объема памяти видеопроцессор 6 периодически производит считывание видеоданных через порт ввода-вывода данных 11 и формирует в своем внутреннем ОЗУ цифровой массив, соответствующий кадру тепловизионного изображения. При необходимости запоминания нескольких кадров изображения, например в режиме микросканирования, может быть использовано внешнее ОЗУ.

После завершения формирования кадра тепловизионного изображения видеопроцессор 6 с управляющего выхода выдает сигнал на блок управления 8, по которому запускается очередной процесс накопления видеосигнала в ФПУ 2 и начинает запись цифрового массива кадра изображения через порт ввода-вывода данных 11 в ОЗУ вывода данных 12. В процессе проведения операций формирования кадра тепловизионного изображения и его записи в ОЗУ вывода данных 12 видеопроцессор 6 выстраивает входные видеоданные в последовательность, определяемую выходным форматом, в том числе при переходе в режимы масштабирования и стоп-кадра. В промежутках между этими операциями видеопроцессор 6 вычисляет коэффициенты регулировок уровня яркости и контраста изображения в ручном и автоматическом режиме, определяет расположение дефектных элементов, формирует служебные символы. Коэффициенты, необходимые для проведения коррекции разброса характеристик чувствительных элементов ФПУ 2, рассчитываются предварительно в режиме калибровки и хранятся во внутреннем или внешнем ОЗУ видеопроцессора 6 (на схеме не показано). Вся информация, необходимая при проведении вычислительным устройством 13 операций цифровой обработки, записывается процессором 6 через порт ввода-вывода данных 11 в ОЗУ предварительных данных 14 параллельно с записью цифровой выборки в ОЗУ вывода данных 12. Из ОЗУ вывода данных 12 цифровая выборка в порядке, определяемом выходным форматом, последовательно с частотой 1/t, где t - длительность одного такта выборки видеоданных, поступает в вычислительное устройство 13.

Вычислительное устройство 13 выполнено таким образом, что операции цифровой обработки данных разбиты на ряд простейших последовательных арифметических действий, выполняемых одновременно. Для этого в вычислительном устройстве 13 реализована цепочка последовательно подключенных вычислительных ячеек от N1, N2 до Na, где а - суммарное количество простейших арифметических действий всех операций цифровой обработки видеоданных. Каждая вычислительная ячейка состоит из двухвходового арифметического устройства и выходного регистра.

Данные Dn, соответствующие n-ному элементу кадра тепловизионного изображения, поступают на первую вычислительную ячейку N1, где осуществляется первая арифметическая операция. Необходимая для расчета информация считывается из ОЗУ предварительных данных 14. Полученные результаты данных Dn сохраняются в регистре. Следующим тактом данные Dn поступают на вторую вычислительную ячейку N2, где происходит вторая арифметическая операция. Одновременно, данные Dn+1 обрабатываются на первой вычислительной ячейке N1. Подобным образом массив видеоданных поочередно проходит через все вычислительные ячейки и поступает с выхода вычислительного устройства 13 на вход блока вывода видеосигнала 7. Для достижения максимального быстродействия вычислительное устройство 13 может быть дублировано, а последовательная цифровая выборка распараллелена.

Устройство синхронизации 15 задает последовательность работы устройств в составе блока аппаратной обработки сигналов 9 через порт ввода-вывода данных 11. Блок вывода видеосигнала 7 формирует выходной поток видеоданных.

При изменении температурных условий функционирования тепловизионного канала, блок управления 8 по команде от видеопроцессора 6 изменяет длительность накопления видеосигнала в ФПУ, компенсируя смещение постоянной составляющей видеосигнала для согласования с входным диапазоном АЦП 4.

Видеопроцессор 6 может быть выполнен на типовом цифровом сигнальном процессоре - digital signal processor (DSP). Блок аппаратной обработки сигналов 9 и мультиплексор 5 могут быть выполнены на программируемой логической интегральной схеме (ПЛИС) с низкой потребляемой мощностью, изготовленной на базе технологии field-programmable gate array (FPGA).

С целью оптимизации алгоритмов цифровой видеообработки данных и сокращения задержки прохождения цифрового видеосигнала некоторые из вычислительных операций могут быть перенесены в видеопроцессор 6, а последовательность проведения операций может изменяться.

Задержка прохождения цифрового видеосигнала в тепловизионном канале, выбранном в качестве прототипа, составляет два кадра: один кадр длится ввод, второй - обработка массива цифровых данных. Задержка прохождения цифрового видеосигнала в рассматриваемом тепловизионном канале слагается из времени ввода массива цифровых данных, составляющего один кадр, и времени обработки цифровой выборки. Время обработки цифровой выборки вычисляется по формуле:

Т=t×а, где

Т - время обработки цифровой выборки;

t - длительность одного такта выборки видеоданных;

а - суммарное количество простейших арифметических действий всех операций цифровой обработки видеоданных.

Учитывая высокую частоту следования выборки видеоданных, процесс цифровой обработки протекает значительно быстрее, чем длительность одного кадра, следовательно, задержка прохождения цифрового видеосигнала в рассматриваемом тепловизионном канале уменьшается в сравнении с прототипом.

Таким образом, введением блока аппаратной обработки сигналов, выполненного с возможностью одновременного выполнения как минимум двух различных вычислительных операций цифровой обработки данных, достигается повышение скорости обработки цифровых видеоданных без существенного увеличения потребляемой мощности и усложнения конструкции устройства, а также снижение задержки прохождения видеосигнала.

Тепловизионный канал, содержащий объектив, в фокальной плоскости которого расположено матричное фотоприемное устройство, выходами подключенное к входам многоканального предварительного усилителя, аналого-цифровой преобразователь, мультиплексор, блок управления, выход которого подключен к управляющему входу фотоприемного устройства, видеопроцессор, управляющим выходом подключенный к входу блока управления и управляющему входу мультиплексора, блок вывода видеосигнала, выход которого является выходом тепловизионного канала, отличающийся тем, что в него дополнительно введен блок аппаратной обработки сигналов, включенный между выходом мультиплексора и входом блока вывода видеосигнала и подключенный портом ввода-вывода данных к соответствующему порту видеопроцессора, а управляющим входом к управляющему выходу видеопроцессора, при этом блок аппаратной обработки сигналов реализован с возможностью одновременного выполнения как минимум двух различных вычислительных операций цифровой обработки данных.



 

Похожие патенты:

Изобретение относится к области цветного телевидения с высокой разрешающей способностью. Техническим результатом является улучшение качества восстановления отсутствующих значений пикселей сигналов цветовых составляющих, увеличение четкости изображений, уменьшение искажений и сохранение цветности.

Изобретение относится к устройству формирования цветного изображения, которое подавляет генерацию цветовых комбинационных искажений (цветного муара). Техническим результатом является подавление генерации ложного цвета высокочастотной секции путем простой обработки изображения.

Изобретение относится к устройствам на основе инфракрасного видикона, служит для низкоуровневых применений, т.е. для регистрации сигналов малой интенсивности, таких, что уровень сигнала может быть сравним с уровнем шумов.

Изобретение относится к устройству формирования цветного изображения, которое подавляет формирование цветного муара (цветовых комбинационных искажений). Техническим результатом является подавление формирования ложного цвета высокочастотного сегмента посредством простой обработки изображения.

Изобретение относится к области телевизионной техники. Техническим результатом является обеспечение устройства, позволяющего производить точную коррекцию уровня черного и усиление для разных каналов фотоприемника, используя лишь в качестве априорных данных захваченное изображение.

Изобретение относится к устройству формирования изображения, такому как датчик изображения CMOS, и к системе камеры. Техническим результатом является формирование изображений или измерение при низкой интенсивности, с низким уровнем шумов, даже при низкой освещенности и с широким динамическим диапазоном.

Изобретение относится к формирователям сигналов изображения. Техническим результатом является уменьшение эффективной емкости затвора усиливающего транзистора без изменения площади затвора для значительного уменьшения общей паразитной емкости.

Изобретение относится к области обнаружения инфракрасного излучения низколетящих объектов. Комплекс аппаратуры для воздушного наблюдения включает размещение тепловизионной камеры на привязном аэростате с возможностью кругового вращения камеры вокруг вертикальной оси и изменения угла наклона камеры к вертикальной оси за счет размещения ее на горизонтальном валу.

Изобретение относится к средствам формирования спектрозональных электронных изображений. Техническим результатом является обеспечение оперативного изменения ширины спектра спектрозональных видеокадров.

Изобретение относится к твердотельным устройствам формирования изображения. Техническим результатом является повышение чувствительности твердотельного устройства формирования изображения.

Сайдоскоп // 2560247
Изобретение относится к области оптического приборостроения, а именно телескопам. Телескоп содержит корпус, входной объектив, фильтр, параболическое зеркало и приемник излучения, расположенный в стороне от оптической оси телескопа, защитный экран с приемным окном, фильтр расположен на пути излучений перед главным зеркалом, приемник излучения включает приемную резисторную матрицу, расположенную в приемном окне так, чтобы лучи, отраженные от зеркала, фокусировались бы только на приемной резисторной матрице, состоящей из N столбцов и M строк, N-канальный аналоговый ключ, M малошумящих дифференциальных усилителей, M цифроаналоговых преобразователей, источник опорного напряжения, М аналого-цифровых преобразователей, M цифровых сумматоров, M-входовый регистр сдвига, микроконтроллер, персональный компьютер, приемник спутниковой навигационной системы, устройство синхронизации, цифровой датчик температуры, конструктивно связанный с подложкой резисторной матрицы, и вентилятор воздушного охлаждения, конструктивно связанный с обратной стороной резисторной матрицы, питание на который поступает от микроконтроллера через устройство синхронизации. Изобретение позволяет обеспечить создание устройства, обладающего повышенной чувствительностью при построении двухмерных изображений небесных объектов. 3 ил.

Изобретение относится к устройствам захвата изображений. Техническим результатом является предоставление элемента захвата изображения и устройства захвата изображения, которые уменьшают время переноса данных и устраняют потерю качества изображения. Результат достигается тем, что элемент захвата изображения генерирует значение оценки автоматической фокусировки, подлежащее использованию для захвата изображения в соответствии с сигналом изображения, соответствующим сигналу напряжения, полученному от первой группы пикселей среди множества пикселей. Элемент захвата изображения дополнительно выводит сигнал изображения, соответствующий сигналу напряжения, полученному от второй группы пикселей среди множества пикселей, в качестве сигнала отображения для визирования по экрану для отображения изображения. В соответствии со значением оценки автоматической фокусировки блок управления управляет механическо-оптическим блоком, имеющим фокусирующую линзу, и выполняет отображение для визирования по экрану на блоке отображения изображения в соответствии с сигналом отображения для визирования по экрану. 5 н. и 11 з.п. ф-лы, 22 ил.

Изобретение относится к тепловизионным приборам, которые обеспечивают наблюдение как в видимой, так и в инфракрасной области. В указанном приборе инфракрасный объектив формирует тепловое изображение в плоскости чувствительных элементов матричного фотоприемника, выходные сигналы с которого поступают в блок обработки информации, управляющий яркостью каждого элемента устройства отображения информации, расположенного в фокальной плоскости окуляра, в соответствии с формируемым тепловым изображением. Коллимированный пучок лучей, сформированный окуляром, отражается зеркалом и спектроделителем и попадает в глаз наблюдателя одновременно с видимым изображением наблюдаемой сцены. Блок управления фокусировкой служит для компенсации расфокусировки изображения инфракрасного объектива в результате изменения температуры окружающей среды. Технический результат заключается в повышении углового разрешения тепловизионного прибора и расширении эксплуатационных возможностей. 1 ил.

Изобретение относится к телевидению и может быть использовано для пространственно-временной обработки изображений. Техническим результатом изобретения является обеспечение адаптации к уровню освещенности без каких-либо ограничений на значения отсчетов импульсной характеристики при выделении неподвижных и движущихся слабоконтрастных объектов на нестационарном фоне при пространственно-временной обработке изображений. Способ пространственно-временной обработки изображений на основе матриц ФПЗС заключается в пространственно-временной обработке изображения в виде свертки изображения, проецируемого на матрицу фоточувствительных приборов с зарядовой связью (ФПЗС), с импульсной характеристикой реализуемого пространственно-временного фильтра (ПВФ). Пространственно-временная свертка изображения осуществляется на двух матрицах фоточувствительных приборов с зарядовой связью. На одной из матриц производится свертка изображения с положительными отсчетами импульсной характеристики, а на второй - с отрицательными. Формируется разность сигналов с выходов фоточувствительных приборов с зарядовой связью как общего выходного.

Изобретение относится к способу подготовки изображений в визуально неразличимых спектральных областях, а также к соответствующей тепловизионной камере (ТПВ-камере) и измерительной аппаратуре. Техническим результатом является улучшение четкости изображения в ТПВ-камере в визуально неразличимой спектральной области другим способом. Указанный технический результат достигается тем, что в тепловизионной камере (1) предусмотрено, что во время случайного движения ТПВ-камеры (1) принимается поток данных (5) изображения в инфракрасных лучах (4) и эти изображения в инфракрасных лучах (4) совмещаются для получения высокочеткого изображения в инфракрасных лучах (9). 2 н. и 8 з.п. ф-лы, 4 ил.

Изобретение относится к оптико-электронному приборостроению и может быть использовано в тепловизионных приборах с многоэлементными фотоприемниками и многоэлементными излучателями. Техническим результатом является снижение потребляемой мощности резистором токоограничивающего элемента и габаритов конденсатора при использовании устройства в компактных (ручных) тепловизионных приборах с питанием от миниатюрных электрических батарей. Результат достигается тем, что в устройстве формирования изображения, содержащем входной объектив, блок сканирования, многоэлементный фотоприемник, подключенный к входам блока видеообработки, выходы которого подключены к входам многоэлементного излучателя, выходной объектив, а также токоограничивающий элемент, содержащий последовательно соединенные резистор, вторым выводом подключенный к первой шине питания, и конденсатор, вторым выводом подключенный к второй шине питания, дополнительно введен транзистор, база которого подключена к точке соединения резистора и конденсатора, коллектор соединен с первой шиной питания, а эмиттер соединен с выходами многоэлементного излучателя. 1 ил.

Изобретение относится к области неразрушающего контроля и может быть использовано при проведении наружной тепловизионной съемки для диагностики состояния строительных сооружений и энергетических объектов. Тепловизионная система для проведения наружной тепловизионной съемки содержит блок обработки - микропроцессорный контроллер, блок памяти и блок визуализации, представляющие собой компьютер, тепловизор и устройство для определения температурных параметров окружающей среды, состоящее из двух пластин, выполненных из материалов с разными коэффициентами отражения и поглощения. Повышение точности измерения температурных значений объекта контроля достигается путем их корректировки в соответствии с измеренными температурными значениями окружающей среды, регистрируемыми двумя пластинами и принимаемыми как эталонные. Технический результат - повышение точности измерения температурных значений объекта контроля. 1 ил.

Изобретение относится к технологиям обработки изображений в инфракрасной спектральной области. Техническим результатом является упрощение выделения признаков для изображений, полученных для кадров в видимой спектральной области. Предложен способ обработки изображений для серии кадров в инфракрасной спектральной области, снятых тепловизионной камерой. Согласно способу проводят анализ признаков, согласно которому выделяют признаки из серии, состоящей, по меньшей мере, из двух ИК-кадров или им присвоенным ВИЗ-кадров. Далее определяют оптимальное совпадение между признаками, выделенными из кадров, и устанавливают для местоположений изображений совпадающих признаков, вектор трансляции, который соотносит точки изображения первого ИК-кадра с точками изображения второго ИК-кадра. 2 н. и 7 з.п. ф-лы, 6 ил.

Твердотельное устройство формирования изображения содержит первую полупроводниковую область первого типа проводимости, обеспеченную на подложке методом эпитаксиального выращивания, вторую полупроводниковую область первого типа проводимости, обеспеченную на первой полупроводниковой области, и третью полупроводниковую область второго типа проводимости, обеспеченную во второй полупроводниковой области так, чтобы образовать p-n-переход со второй полупроводниковой областью, причем первая полупроводниковая область сформирована так, что концентрация примеси уменьшается от стороны подложки к стороне третьей полупроводниковой области, и распределение концентрации примеси во второй полупроводниковой области формируется методом ионной имплантации. Изобретение обеспечивает повышение эффективности переноса зарядов, генерируемых посредством фотоэлектрического преобразования. 3 н. и 22 з.п. ф-лы, 6 ил.

Изобретение относится к приборам ночного видения. Устройство содержит блок наблюдения, телевизионный канал, блок управления и синхронизации, импульсный инфракрасный осветитель и блок деления частоты, блок преобразования задержки, два электромеханических привода, блок регулировки амплитуды тока накачки и последовательно соединенные измеритель естественной освещенности, блок преобразования сигнала и блок управления частотой. Технический результат - повышение качества изображения наблюдаемого объекта. 1 ил.
Наверх