Способ определения количественного содержания дейтерия в воде и водных растворах


 


Владельцы патента RU 2558433:

Федеральное государственное бюджетное учреждение науки Южный научный центр Российской академии наук (ЮНЦ РАН) (RU)
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный университет" (ФГБОУ ВПО "КубГУ") (RU)

Изобретение относится к анализам количественного определения содержания изотопа дейтерия в жидкостях различной природы с использованием методов ядерного магнитного резонанса. Воздействие на исследуемую пробу производят электромагнитным излучением радиочастотного диапазона в постоянном магнитном поле спектрометра ядерного магнитного резонанса для чего исследуемое вещество помещают в ампулу, затем в эту ампулу вставляют эталонный образец, представляющий собой запаянную ампулу меньшего диаметра, содержащую водный раствор лантаноидного сдвигающего реагента и воды с известным содержанием дейтерия, после чего эту систему ампул опускают в спектрометр ядерного магнитного резонанса и регистрируют спектр на ядрах дейтерия, в котором наблюдают разнесенные по частоте резонанса пики исследуемого и эталонного образцов, затем измеряют интегральную интенсивность каждого пика, сопоставляют их значения и методом пропорции определяют концентрацию дейтерия в исследуемом образце. В качестве лантаноидного сдвигающего реагента используют трифторметансульфонат европия(III) ((Eu(CF3SO3)3), который способен индуцировать парамагнитный химический сдвиг сигнала ядерного магнитного резонанса. Достигается повышение точности и чувствительности, а также упрощение и ускорение анализа. 1 пр., 1 ил.

 

Предлагаемое изобретение относится к методам анализа количественного определения содержания изотопа дейтерия в жидких биологических материалах, в частности в воде, водных растворах, спиртсодержащих напитках и т.п. с использованием методов ядерного магнитного резонанса (ЯМР), т.е. при изотопном анализе водосодержащих жидкостей и может найти применение: при экологическом мониторинге природных, промышленных и питьевых вод; в медицинских целях при исследовании концентрации дейтерия в биологических жидкостях, например, в плазме крови человека; при установлении подлинности алкогольной продукции и напитков и проч.

Водород, входящий в состав жидких биологических материалов, в частности воды, имеет два стабильных изотопа: протий 1Н и дейтерий 2D. В зависимости от природы происхождения и целевого применения воды, изотопное соотношение дейтерия к протию 2D/1Н в ней может варьироваться в широком диапазоне значений. Например, 2D/1Н в природной воде изменяется от 89.09 ppm (стандарт VSMOW (Vienna Standard Mean Ocean Water) до 155.76 ppm (стандарт SLAP (Standard Light Antarctic Precipitation)). Актуальной задачей с точки зрения определения изотопного состава жидкостей, в частности воды, является исследование низких концентраций изотопов, т.к. именно для низких концентраций нет достоверных и быстрых методов анализа.

Известно, что в воде с пониженным содержанием дейтерия изменяется скорость протекания химических реакций, сольватация ионов, их подвижность и т.д. Легкая вода (вода в с пониженным относительно природного содержанием дейтерия) оказывает стимулирующее действие на живые системы, существенно повышает их активность, жизнестойкость к различным негативным факторам, репродуктивную деятельность, улучшает и ускоряет обмен веществ. Реакция биосистем при воздействии на них воды может изменяться в зависимости от количественных и качественных изменений изотопного состава воды. Применение воды с повышенной концентрацией тяжелых изотопов, в частности дейтерия, вызывает выраженные токсические эффекты на уровне организма, ограничивая возможность ее использования в лечебно-профилактических целях [Kushner D.J., Baker P., Dunstall T.G., Can. J. Physiol. Pharmacol. 1999, Feb. 77(2):79-88]. В то же время на разных объектах зарегистрирована положительная биологическая активность вод, полученных с помощью различных технологических процессов, относящихся к категории изотопно-легких, со сниженной в той или иной мере по сравнению с исходной концентрацией дейтерия. Т.е. количественные и качественные показатели изотопного состава воды существенным образом отражаются на ее эффективности при использовании в качестве растворителя или ингредиента. Поэтому очевидна необходимость в разработке эффективных, точных (прецизионных), не требующих большого количества времени методов количественного анализа на содержание дейтерия в жидкостях.

В настоящее время существует ряд способов определения количественного содержания дейтерия в водосодержащих жидкостях. Они основаны на различных физико-химических методах исследования таких как: масс-спектрометрия изотопных соотношений, инфракрасная спектрометрия, газовая хроматография и др. Однако каждый из них имеет свои недостатки: сложность пробоподготовки, недостаточная точность, высокая стоимость анализа за счет потребности большого количества расходных материалов и другие. Уровень техники известных способов анализа жидкостей на содержание дейтерия в низких концентрациях может быть представлен рядом патентов: SU 1340334, US 4066404, US 3208826, US 5042488, US 20100315083, US 20090114809 и др.

Наиболее близким техническим решением к заявляемому может быть принят патент SU 1340334, опубликованный 30.05.1988, бюллетень №20. Согласно прототипу способ определения содержания дейтерия в воде, включает облучение исследуемой пробы потоком ионизирующего излучения и измерения наведенной активности аналитического радионуклида, при этом для приготовления исследуемой пробы образец воды обрабатывают окисью щелочноземельного металла, фильтруют и высушивают образовавшуюся гидроокись, а облучение ее проводят потоком тяжелых ионов.

Недостатками данного способа являются: ограниченная возможность его применения из-за использования радиоактивных изотопов, недостаточно высокая чувствительность, приводящая к невозможности производить измерение дейтерия в концентрациях природного уровня и ниже с высокой точностью, сложная пробоподготовка и длительное время для получения результатов анализа.

Технической задачей заявляемого решения является: получение возможности определения концентраций дейтерия с высокой точностью, в том числе и для сверхнизких концентраций, относительная доступность способа, требующая только наличия спектрометра ядерно-магнитного резонанса (ЯМР) и сокращение времени требуемого для получения результатов анализа.

Для решения технической задачи предлагается способ определения количественного содержания дейтерия в воде и водных растворах, состоящий в воздействии излучения на исследуемую пробу. При этом воздействие производят в постоянном магнитном поле спектрометра ядерного магнитного резонанса (ЯМР) электромагнитным излучением радиочастотного диапазона. Для этого исследуемое вещество помещают в ампулу для ЯМР. Затем в эту ампулу вставляют эталонный образец, представляющий собой запаянную ампулу меньшего диаметра, содержащую водный раствор лантаноидного сдвигающего реагента и воды с известным содержанием дейтерия. Эту систему ампул - ампулу с исследуемой пробой и помещенным в нее эталоном, опускают в спектрометр ЯМР и записывают спектр на ядрах дейтерия, в котором наблюдают разнесенные по частоте резонанса за счет использования лантаноидного сдвигающего реагента пики исследуемого и эталонного образцов, измеряют интегральную интенсивность каждого пика, сопоставляют их значения и методом пропорции определяют концентрацию дейтерия в исследуемом образце. В качестве лантаноидного сдвигающего реагента используют трифторметансульфонат ервопия(III) ((Eu(CF3SO3)3), который способен индуцировать парамагнитный химический сдвиг ЯМР сигнала.

Т.е. для определения концентрации дейтерия используют метод ядерного магнитного резонанса (ЯМР), при котором способ включает съемку спектров ЯМР исследуемого вещества, содержащегося в ампуле, и ампулы меньшего диаметра с эталонным образцом, вставленной в нее, с последующим определением в полученном спектре соотношения интегральных интенсивностей ЯМР сигналов исследуемого образца и эталонного, при этом внутренняя ампула меньшего диаметра содержит эталонный образец воды с точно известным изотопным составом и растворенным в этой воде лантаноидным сдвигающим реагентом.

Пример реализации способа

Для проведения анализа был взят образец воды и набран в микропипетку. Из микропипетки в ампулу налили 600 мкл исследуемого образца. В эту же ампулу поместили запаянную ампулу меньшего диаметра, содержащую водный раствор лантаноидного сдвигающего реагента - трифторметансульфонат ервопия(III) ((Eu(CF3SO3)3) с молярной концентрацией Eu3+, равной 0.05±0.01 моль/л, и воды с концентрацией дейтерия 100 ppm. Ампулу погрузили в постоянное магнитное поле ЯМР спектрометра марки JEOL JNM-ECA 400 MHz, где она облучалась электромагнитным излучением радиочастотного диапазона, частота которого соответствует ядерному магнитному резонансу дейтерия для индукции магнитного поля 9 Тл. Спектр ЯМР регистрировали в течение 20 минут. В полученном спектре наблюдали два пика, представленных на рис.1.

Пик «а» (рис.1) соответствовал дейтерию воды эталонного образца, пик «б» - дейтерию воды исследуемого образца. Измерили интегральную интенсивность (площадь под пиком) каждого пика. Сравнили полученные значения и получили концентрацию дейтерия в исследуемом образце равной 150±2 ppm, что соответствует артезианской воде в г. Краснодаре.

Используемый эталонный образец остается неизменным и может применяться многократно для различных испытуемых объектов.

Таким образом, способ количественного определения изотопного состава жидких сред на ЯМР с применением лантаноидных сдвигающих реагентов обеспечивает высокую точность результатов, в том числе и при сверхнизких концентрациях дейтерия, он универсален, т.к. может быть применен, кроме воды, для различных водосодержащих жидкостей, обеспечивает экспрессность, имеет относительно невысокую стоимость проведения эксперимента и сравнительно доступен.

Способ определения количественного содержания дейтерия в воде и водных растворах включающий воздействие излучения на исследуемую пробу, отличающийся тем, что воздействие производят электромагнитным излучением радиочастотного диапазона в постоянном магнитном поле спектрометра ядерного магнитного резонанса, для чего исследуемое вещество помещают в ампулу, затем в эту ампулу вставляют эталонный образец, представляющий собой запаянную ампулу меньшего диаметра, содержащую водный раствор трифторметансульфонат европия (III) Eu(CF3SO3)3, который способен индуцировать парамагнитный химический сдвиг сигнала ядерного магнитного резонанса, и воды с известным содержанием дейтерия, после чего эту систему ампул опускают в спектрометр ядерного магнитного резонанса и регистрируют спектр на ядрах дейтерия, в котором наблюдают разнесенные по частоте резонанса пики исследуемого и эталонного образцов, измеряют интегральную интенсивность каждого пика, сопоставляют их значения и методом пропорции определяют концентрацию дейтерия в исследуемом образце.



 

Похожие патенты:

Изобретение относится к аналитической химии, а именно к способу определения концентрации гидрохлорида полигексаметиленгуанидина (ПГМГ) в водах различных типов. Способ основан на взаимодействии катионов ПГМГ с реагентом, представляющим собой предварительно полученный коллоидный раствор отрицательно заряженных наночастиц серебра в цитратном буфере.

Изобретение относится к исследованию и анализу материалов и может быть использовано для определения структурного состояния талой воды в разное время после таяния.

Изобретение относится к устройству и способу детектирования качества жидкости, используемых в устройствах очистки воды. Устройство детектирования «визуализирует» качество воды в виде видимого излучения вместо преобразования интенсивности ультрафиолетового излучения в цифровую форму и содержит первое окно детектирования, покрытое первым материалом для преобразования принятого первого ультрафиолетового излучения, которое испускается источником ультрафиолетового излучения и проходит через жидкость, в первое видимое излучение.

Изобретение относится к области аналитической химии применительно к анализу природных, поверхностных, подземных, сточных и технологических вод. Способ включает разделение с последующей идентификацией ацетона и метанола на капиллярной хроматографической колонке в потоке газа-носителя, представляющем собой азот; образование и регистрацию пламенно-ионизационным детектором исследуемых ионов, образующихся в пламени, при этом готовят основной раствор, хорошо сохраняющийся 2 месяца, при температуре от -2°C до -5°C, готовят промежуточный раствор с концентрацией 6,32 мг/дм3 разведением основного раствора очищенной водой, готовят градуировочные растворы для диапазона концентраций: ацетон 0,025-6,32 мг/дм3, метанол 0,025-6,32 мг/дм3 разведением водой промежуточного раствора, градуируют хроматограф, вводя в него предварительно отобранную паровую фазу градуировочных растворов, строят градуировочный график, после термостатирования исследуемого раствора отбирают паровую фазу парофазным шприцем и вводят в испаритель хроматографа, данные обрабатывают компьютерной программой ChemStation, которой комплектуется хроматографический комплекс МАЭСТРО 7820А.

Изобретение относится к области биотехнологии и может быть использовано для повышения эффективности и достоверности определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях путем проведения твердофазного иммуноферментного анализа.

Способ определения влияния токсичности сточных вод на водные соленые среды относится к водной токсикологии и предназначен для оценки токсичности морской среды, содержащей сточные воды. Способ состоит из определения показателей роста культуры морской одноклеточной водоросли в тестируемой воде и включает культивирование культуры морской одноклеточной водоросли, процедуру биотестирования, состоящую из отбора проб воды, внесения в контроль и в тестируемую среду инокулята культивируемой водоросли, подсчета численности клеток водоросли.

Способ биологической оценки токсичности морской среды относится к биологическим способам оценки экологического риска и анализа загрязнения водной среды и может быть использован в марикультуре, водной токсикологии, рыбоводстве. В способе в качестве биологических тест-объектов используются личинки черноморских рыб атерины (Atherina hepsetus, Atherina mochon pontica), которые помещаются в тестируемую среду и в стерилизованную морскую воду.

Группа изобретений относится к области биотехнологии. Более подробно группа изобретений относится к способу определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-системе.

Изобретение относится к экологии, охране окружающей среды, к способам и средствам мониторинга окружающей среды и может быть использовано для контроля загрязнений водоемов полихлорированными бифенилами.

Изобретение относится к водной токсикологии и может быть использовано для биоиндикации и биотестирования загрязненных вод и отдельных поллютантов и может быть использовано в качестве дополнительного метода к биотестам обязательного применения при определении качества вод, в которых (представительным) доминирующим видом является губка (Spongia).

Использование: для осуществления динамической контрастной улучшенной магнитно-резонансной визуализации объекта. Сущность изобретения заключается в том, что способ содержит получение наборов данных магнитного резонанса в k-пространстве с использованием сбора Диксона в пространстве кодирования химического сдвига и динамического временного разрешения в динамическом временном пространстве, причем сбор набора данных осуществляют с использованием субдискретизации, причем способ дополнительно содержит применение способа реконструкции сжатого измерения в k-пространстве, пространстве кодирования химического сдвига и динамическом временном пространстве, указанная реконструкция сжатого измерения дает в результате реконструированные наборы данных, осуществление реконструкции Диксона в отношении реконструированных наборов данных и анализ динамического контраста в отношении реконструированных наборов данных Диксона.

Использование: для обработки импульсных сигналов на основе ядерного спинового эха. Сущность изобретения заключается в том, что возбуждают ядерное спиновое эхо в магнитоупорядоченном рабочем веществе радиочастотными информационными и управляющими импульсами, при этом к рабочему веществу прикладывают импульсное магнитное поле, действующее на протяжении интервала времени, в течение которого на вещество поступают возбуждающие радиочастотные импульсы и возникают отклики рабочего вещества в виде полезных эхо-сигналов, при этом амплитуду импульсного магнитного поля задают из условия смещения доменных границ, при котором происходит подавление паразитных откликов.

Изобретение относится к медицине, травматологии и ортопедии и может быть использовано для диагностики контрактуры Дюпюитрена (КД) пальцев кисти. Методом МРТ со спектроскопией высокого разрешения в зоне интереса ладонного апоневроза кисти регистрируют время ядерной магнитной релаксации Т2 * на ядрах водорода изотропной составляющей сигнала СН2 группы липидов.

Использование: для визуализации химических соединений. Сущность изобретения заключается в том, что собирают первые и вторые данные эхо-сигналов с разными временами появления эхо-сигнала, приводящими к первому и второму собранным комплексным наборам данных, моделируют первый и второй собранные наборы данных с использованием спектральной модели сигнала, по меньшей мере, одного из химических соединений, причем упомянутое моделирование приводит к первому и второму смоделированным комплексным наборам данных, причем упомянутые первый и второй смоделированные наборы данных содержат первую и вторую фазовые погрешности и раздельные наборы данных сигналов для двух химических соединений, определяют по первому и второму собранным наборам данных и первому и второму смоделированным наборам данных разделенные наборы данных сигналов для двух химических соединений.

Использование: для определения газохроматографичеких индексов удерживания соединений ряда О-алкилметилфторфосфонатов (ОАМФФ) по данным ЯМР 13С. Сущность изобретения заключается в том, что выполняют построение корреляционных уравнений для известной выборки изомеров и последующее определение значения индексов удерживания неизвестных изомеров по установленной зависимости, при этом в качестве спектральной характеристики используется суммарное значение химических сдвигов ядер 13C атомов углерода, находящихся в разветвлении углеродного скелета О-алкильного радикала рассчитанных по спектрам ЯМР 13C.

Использование: для разделения изображений воды и жира в магнитно-резонансной томографии. Сущность изобретения заключается в том, что осуществляют получение двух комплексных изображений I1 и I2 с различными временами эха, в которых сигналы от воды и жира находятся соответственно в фазе и в противофазе, вычисление значений фазы 2φ комплексного вектора I 2 = ( I 2 I 1 * / | I 1 | ) 2 для каждого пиксела матриц изображений, построение матрицы "развернутой" фазы 2φ и в диапазоне главных значений -180°…180° определение знака комплексного вектора Ie-iφu в каждом пикселе матрицы, формирование изображения по воде как полусуммы абсолютного значения изображения в фазе и изображения в противофазе, умноженного на знак Ie-iφu, изображения жира как полуразности абсолютного значения изображения в фазе и изображения в противофазе, умноженного на знак Ie-iφu, при этом оценивают усредненные градиенты изменения фазы полученных изображений жира и воды по формулам: GF=(|I1|-|I2|)2/NF при Ie-iφu<0 GW=(|I1|-|I2|)2/NW при Ie-iφu<0, сравнивают значения GF и GW и, в случае, если GF<GW, пиксели изображений жира и воды обменивают местами.

Использование: для измерения состава и расхода многокомпонентных жидкостей методом ядерного магнитного резонанса. Сущность изобретения заключается в том, что устройство для измерения состава и расхода многокомпонентных жидкостей с использованием метода ядерного магнитного резонанса (ЯМР) включает релаксометр ЯМР с датчиком, имеющим трубку, для облучения потока жидкости и получения сигналов спин-эхо ЯМР, по которым определяются параметры жидкости, систему пробоотбора, содержащую измерительную трубу, соединенную трубкой пробоотбора с релаксометром ЯМР, при этом измерительная труба имеет конический расширитель, а в трубке пробоотбора установлен патрубок, имеющий возможность перемещения по сечению конического расширителя, при этом конический расширитель расположен вертикально, в измерительной трубе, перед входом потока жидкости в конический расширитель, установлена защитная сетка, в коническом расширителе установлены тензометрические датчики давления, а в полости нижней части конического расширителя по периметру размещены зубчатые кольца, на трубке пробоотбора размещены электромагнитные катушки управления перемещением патрубка, при этом контроль перемещения патрубка по сечению конического расширителя осуществляется введенным контроллером, соединенным с электромагнитными катушками.

Изобретение относится к радиоспектроскопии ЯКР и может быть использовано для измерения размеров микрокристаллов, содержащих квадрупольные ядра. Способ включает регистрацию сигналов квадрупольного спинового эха, определение времени релаксации T 2 * посредством инверсии преобразования Лапласа, расчет эквивалентного радиуса гранул с помощью полученной формулы и предварительно измеренных констант, характерных для данного вещества.

Использование: для дистанционного обнаружения вещества посредством магнитного резонанса. Сущность изобретения заключается в том, что выполняют поляризационную селекцию и фазовый анализ для поиска и обнаружения запрещенных веществ, упакованных в неметаллическую оболочку.

Использование: для оперативного контроля качества нефти и нефтепродуктов. Сущность изобретения заключается в том, что выполняют возбуждение в образце, помещенном в постоянное магнитное поле, сигналов спин-эхо протонного магнитного резонанса (ПМР) сериями радиочастотных импульсов, регистрируют амплитуды спин-эхо в эталонном и измеряемом образцах, причем в качестве эталонных образцов берут компоненты исследуемой смеси - воды и нефти (или нефтепродукта), измеряют эффективные времена спин-спиновой релаксации в эталонных и измеряемом образцах по начальным участкам огибающих эхо-сигналов в интервале, который выбирают определенным образом, при этом в образец добавляют компоненту смеси, обуславливающую величину сигнала ПМР компоненты с наименьшим содержанием, после чего определяют концентрацию воды и нефти согласно соответствующим математическим выражениям, кроме этого, дополнительно определяют интегральные параметры дисперсного распределения капель воды из времен спин-решеточной релаксации воды по определенной формуле.

Использование: для измерения содержания воды на основе ядерного магнитного резонанса. Сущность изобретения заключается в том, что подвергают образец действию магнитного поля постоянного тока, образец под действием магнитного поля постоянного тока подвергают действию последовательности импульсов возбуждения на радиочастоте с интервалом между импульсами для возбуждения ядер водорода, и измеряют ЯМР-сигнал возбужденных ядер водорода, при этом оценивают время спин-решеточной релаксации для каждого образца на основе отклика на последовательность импульсов возбуждения, и регулируют интервал между импульсами как минимальный при поддержании интервала между импульсами, превышающим оцененное время спин-решеточной релаксации. Технический результат: обеспечение возможности оптимизации частоты повторения импульсов для различных уровней влажности образца. 2 н. и 17 з.п. ф-лы, 4 ил.
Наверх