Конусная дробилка



Конусная дробилка
Конусная дробилка

 


Владельцы патента RU 2558435:

САНДВИК ИНТЕЛЛЕКЧУАЛ ПРОПЕРТИ АБ (SE)

Изобретение относится к инерционной конусной дробилке и способу ее балансировки. Дробилка содержит внешний и внутренний дробильные кожухи, образующие между собой камеру дробления, дробильную головку, дебаланс, вертикальный приводной вал. Внутренний дробильный кожух опирается на дробильную головку, прикрепленную к валу, выполненному с возможностью вращения в гильзе. Дебаланс и вертикальный приводной вал прикреплены к гильзе. Дробилка также содержит первый и второй противовесы, прикрепленные к приводному валу. Первый противовес прикреплен в положении, находящемся ниже подшипника приводного вала, а второй - в положении, находящемся выше подшипника приводного вала. Способ балансировки дробилки заключается в том, что первый и второй противовесы крепят на приводном валу, соответственно, ниже и выше подшипника приводного вала. Конструктивное выполнение дробилки и способ ее балансировки обеспечивают увеличение срока службы. 2 н. и 10 з.п. ф-лы, 2 ил.

 

Область изобретения

Настоящее изобретение относится к инерционной конусной дробилке, содержащей внешний дробильный кожух и внутренний дробильный кожух, которые образуют между собой камеру дробления, при этом внутренний дробильный кожух опирается на дробильную головку, которая прикреплена к валу, выполненному с возможностью вращения в гильзе, при этом к гильзе прикреплен дебаланс и вертикальный приводной вал для ее вращения, при этом приводной вал опирается на подшипник приводного вала.

Настоящее изобретение также относится к способу балансировки инерционной конусной дробилки.

Предпосылки создания изобретения

Инерционные конусные дробилки могут применяться для эффективного дробления материала, такого как камень, руда и прочее, на фракции меньшего размера. Пример инерционной конусной дробилки раскрыт в патенте РФ 2174445. В такой инерционной конусной дробилке материал дробится между внешним дробильным кожухом, который установлен на раме, и внутренним дробильным кожухом, который установлен на дробильной головке, которая установлена на сферическом подшипнике. Дробильная головка установлена на дробильном валу. К цилиндрической гильзе, окружающей дробильный вал, прикреплен дебаланс. Цилиндрическая гильза через приводной вал соединена со шкивом. Шкив и, следовательно, цилиндрическая гильза приводятся во вращение электродвигателем. Такое вращение приводит к вращению дебаланса, который наклоняется вбок, заставляя дробильную головку и внутренний дробильный кожух вращаться и дробить материал, подаваемый в камеру дробления, образованную между внешним и внутренним дробильными кожухами.

Краткое описание изобретения

Целью настоящего изобретения является создание инерционной конусной дробилки с повышенным сроком службы по сравнению с известными дробилками.

Эта цель достигается посредством инерционной конусной дробилки, содержащей внешний дробильный кожух и внутренний дробильный кожух, которые образуют между собой камеру дробления, при этом внутренний дробильный кожух опирается на дробильную головку, которая прикреплена к дробильному валу, выполненному с возможностью вращения в гильзе, при этом к гильзе прикреплен дебаланс и вертикальный приводной вал для ее вращения, при этом приводной вал опирается на подшипник приводного вала, причем инерционная конусная дробилка содержит первый противовес и второй противовес, при этом первый противовес прикреплен к приводному валу в положении, находящемся ниже подшипника приводного вала, а второй противовес прикреплен к приводному валу в положении, находящемся выше подшипника приводного вала.

Преимущество этой дробилки заключается в том, что если первый и второй противовесы расположены описанным выше образом, нагрузка на подшипник приводного вала снижается и срок службы подшипника приводного вала по сравнению с прототипом увеличивается.

Согласно одному варианту первый и второй противовесы прикреплены на одной и той же вертикальной стороне приводного вала. Преимущество такого варианта заключается в том, что нагрузка на подшипник приводного вала еще более снижается, что еще больше увеличивает срок службы подшипника приводного вала.

Согласно одному варианту второй противовес установлен на жестком участке приводного вала. Преимущество такого варианта заключается в том, что второй противовес не наклоняется вбок во время работы дробилки, поэтому увеличивается срок службы движущихся частей, таких как шаровой шпиндель.

Согласно одному варианту момент инерции дебаланса не превышает десятикратной суммы моментов инерции первого и второго противовесов. Преимуществом такого варианта является то, что чистая центробежная сила, действующая на дробилку во время работы, будет ограниченной, что уменьшает вибрации и повышает срок службы дробилки. Если момент инерции дебаланса будет более чем в 10 раз превышать сумму моментов инерции противовесов, дробилка будет подвержена сильным вибрациям, что потребует использования очень тяжелой рамы для демпфирования таких вибраций или снижения производительности при дроблении.

Согласно одному варианту момент инерции дебаланса составляет от 1 до 10 сумм моментов инерции первого и второго противовесов. Если момент инерции дебаланса будет меньше, чем сумма моментов первого и второго противовесов, дробилка будет работать менее эффективно.

Согласно одному варианту момент инерции первого противовеса отличается в пределах +/-30% от момента инерции второго противовеса. Преимущество такого варианта заключается в том, что во время работы дробилки на подшипник приводного вала действует ограниченная или не действует изгибающая сила. Это еще больше увеличивает срок службы подшипника приводного вала.

Другой целью настоящего изобретения является создание способа балансировки инерционной конусной дробилки для повышения срока службы дробилки по сравнению с дробилками по прототипу.

Эта цель достигается посредством способа балансировки инерционной конусной дробилки, содержащей внешний дробильный кожух и внутренний дробильный кожух, которые образуют между собой камеру дробления, при этом внутренний дробильный кожух опирается на дробильную головку, которая прикреплена к дробильному валу, выполненному с возможностью вращения в гильзе, при этом к гильзе прикреплен дебаланс и вертикальный приводной вал для ее вращения, причем приводной вал опирается на подшипник приводного вала, при этом способ содержит использование первого противовеса и второго противовеса, крепление первого противовеса к приводному валу в положении, находящемся ниже подшипника приводного вала, и крепление второго противовеса в положении, находящемся выше подшипника приводного вала.

Преимущество этого способа заключается в том, что срок службы подшипника приводного вала увеличивается, поскольку уменьшаются изгибающие силы.

Согласно одному варианту способ содержит крепление первого и второго противовесов на одну вертикальную сторону приводного вала. Преимущество этого варианта заключается в том, что нагрузка на подшипник приводного вала дополнительно снижается и увеличивается срок службы подшипника приводного вала.

Согласно одному варианту способ содержит крепление первого и второго противовесов на ту сторону приводного вала, которая не является вертикальной стороны гильзы, на которой прикреплен дебаланс. Преимущество такого варианта заключается в том, что инерционная конусная дробилка лучше сбалансирована, что дополнительно уменьшает вибрации, возникающие при работе дробилки.

Согласно одному варианту предотвращается смещение второго противовеса от центральной оси приводного вала во время работы дробилки.

Согласно одному варианту величина центробежной силы, создаваемой первым противовесом, отличается в пределах +/-30% от величины центробежной силы, создаваемой вторым противовесом и действующей на приводной вал над подшипником приводного вала. Преимущество этого варианта заключается в том, что дробилка хорошо сбалансирована так, что вибрации сведены к минимуму. Дополнительным преимуществом является то, что срок службы подшипника приводного вала дополнительно увеличивается.

Другие цели и признаки настоящего изобретения будут очевидны из нижеследующего подробного описания и формулы изобретения.

Краткое описание чертежей

Далее следует более подробное описание изобретения со ссылками на приложенные чертежи, на которых показано следующее:

фиг.1 изображает схематический вид сбоку в сечении инерционной конусной дробилки.

Фиг.2 - схематический вид сверху в сечении дробильного вала в направлении, показанном стрелками II-II на фиг.1.

Описание предпочтительных вариантов

На фиг.1 показана инерционная конусная дробилка 1 по одному варианту настоящего изобретения. Инерционная конусная дробилка 1 содержит раму 2 дробилки, на которой смонтированы различные части дробилки 1. Рама 2 дробилки содержит верхнюю часть 4 рамы и нижнюю часть 6 рамы. Верхняя часть 4 рамы имеет форму чаши и содержит наружную резьбу 8, которая взаимодействует с внутренней резьбой 10 нижней части 6 рамы. Верхняя часть 4 рамы поддерживает своей внутренней частью внешний дробильный кожух 12. Внешний дробильный кожух 12 является изнашиваемой частью, которая может быть изготовлена, например, из марганцовистой стали.

Нижняя часть 6 рамы поддерживает конструкцию 14 внутреннего дробильного кожуха. Конструкция 14 внутреннего дробильного кожуха содержит дробильную головку 16, которая имеет форму конуса и которая поддерживает внутренний дробильный кожух 18, который является изнашиваемой частью, которая может быть изготовлена, например, из марганцовистой стали. Дробильная головка 16 опирается на сферический подшипник 20, который поддерживается на внутреннем цилиндрическом участке 22 нижней части 6 рамы.

Дробильная головка 16 установлена на валу 24. На его нижнем конце вал 24 окружен цилиндрической гильзой 26. Цилиндрическая гильза 26 снабжена внутренним цилиндрическим подшипником 28, что позволяет цилиндрической гильзе 26 вращаться вокруг вала 24.

На одной стороне цилиндрической гильзы 26 установлен дебаланс 30. Своим нижним концом цилиндрическая гильза 26 соединена с вертикальным приводным валом 32. Приводной вал 32 содержит шаровой шпиндель 34, вал 36 шкива, промежуточный вал 37, соединяющий шаровой шпиндель 34 с валом 36 шкива, верхний соединитель 38, который соединяет шаровой шпиндель 34 с цилиндрической гильзой 26, и нижний соединитель 40, который расположен на промежуточном валу 37 и соединяет шаровой шпиндель 34 с промежуточным валом 37. Эти два соединителя 38, 40 соединены с шаровым шпинделем 34 без возможности относительного вращения так, что вращение можно передавать от вала 36 шкива на цилиндрическую гильзу 26 через промежуточный вал 37 и шаровой шпиндель 34. Нижняя часть 42 нижней части 6 рамы содержит цилиндрический подшипник 44 вертикального приводного вала, который поддерживает вертикальный приводной вал 32. Как показано на фиг.1, подшипник 44 приводного вала расположен вокруг промежуточного вала 37 приводного вала 32, а промежуточный вал 37 проходит вертикально сквозь подшипник 44 приводного вала.

Шкив 46 установлен на маловибрирующей части (не показана) дробилки 1 и соединен с валом 36 шкива под подшипником 44 приводного вала. Со шкивом 46 ремнями или зубчатой передачей может быть соединен двигатель (не показан). Согласно одному альтернативному варианту двигатель может быть соединен непосредственно с валом 36 шкива.

Приводной вал 32 снабжен первым противовесом 48 и вторым противовесом 50. Как показано на фиг.1, первый и второй противовесы 48, 50 расположены на одной и той же вертикальной стороне (на фиг.1 - на левой стороне) приводного вала 32.

Первый противовес 48 расположен под подшипником 44, что означает, что первый противовес 48 также расположен под нижней частью 42 нижней части 6 рамы. В варианте, показанном на фиг.1, первый противовес 48 установлен на промежуточном валу 37, непосредственно под подшипником 44.

Второй противовес 50 расположен над подшипником 44, что означает, что второй противовес 50 также расположен над нижней частью 42 нижней части 6 рамы. Второй противовес 50 в варианте, показанном на фиг.1, установлен на промежуточном валу 37 приводного вала 32 и точнее на нижнем соединителе 40, который интегрирован с промежуточным валом 37. Таким образом, второй противовес 50 установлен на жесткой части приводного вала 32, т.е. на части, являющейся нижним соединителем 40 промежуточного вала 37, который не наклоняется вбок, когда дробилка 1 работает. Таким образом, во время работы дробилки 1 предотвращается смещение второго противовеса 50 от центральной оси С вращения приводного вала 32, которая совпадает с центральной осью С дробилки 1.

Дробилка 1 может быть подвешена на пружинах 52 для демпфирования вибраций, возникающих во время ее работы.

Внешний и внутренний дробильные кожухи 12, 18 между собой образуют камеру 54 дробления, в которую подается материал, подлежащий дроблению. Выпускное отверстие камеры 54 дробления и, следовательно, производительность дробления можно регулировать путем поворота верхней части 4 рамы с помощью резьб 8, 10 так, чтобы расстояние между кожухами 12, 18 менялось.

Когда дробилка 1 действует, приводной вал 32 приводится во вращение не показанным двигателем. Вращение приводного вала 32 приводит к вращению гильзы 26 и в результате этого вращения гильза наклоняется наружу за счет дебаланса 30, смещая дебаланс 30 дальше от центральной оси С дробилки 1, в ответ на центробежную силу, действующую на дебаланс 30. Такое смещение дебаланса 30 и цилиндрической гильзы 26, к которой прикреплен дебаланс 30, становится возможным благодаря шаровому шпинделю 34 и благодаря тому, что гильза 26 может в некоторой степени проскальзывать, благодаря цилиндрическому подшипнику 28, в вертикальном направлении вдоль вала 24. Комбинация вращения и наклона цилиндрической гильзы 26 с установленным на ней дебалансом 30 приводит к наклону вала 24 и заставляет вал 24 вращаться так, что материал дробится между внешним и внутренним дробильными кожухами 12, 18, между которыми образована камера 54 дробления.

На фиг.2 показан вал 24 в направлении, показанном стрелками II-II на фиг.1, т.е. сверху и в сечении, когда дробилка 1 находится в работе. На фиг.2 вращение гильзы 26, т.е. вращение, созданное не показанным двигателем, вращающим шкив 46, показанный на фиг.1, направлено по часовой стрелке, как показано стрелкой R. То положение в камере 54 дробления, в котором в конкретный момент времени расстояние между внешним дробильным кожухом 12 и внутренним дробильным кожухом 18 является наименьшим, можно назвать "зазором на закрытой стороне" и показано на фиг.2 позицией CSO. Не показанный двигатель через шкив 46 и приводной вал 32 приводит во вращение гильзу 26 и дебаланс 30, что приводит к вращению положения CSO по часовой стрелке с такой же частотой вращения, что и у гильзы 26. В момент, показанный на фиг.2, CSO находится сверху на чертеже, т.е. в положении "12 часов". Как видно на фиг.2, соответствующий дебаланс 30 находится приблизительно в положении между "1 часом" и "2 часами". Поэтому дебаланс 30 движется впереди CSO и угол α между положением дебаланса 30 и положением CSO равен приблизительно 45°. Угол α между положением дебаланса 30 и положением CSO будет меняться в зависимости от массы дебаланса 30 и частоты вращения дебаланса 30. Типично угол α составляет от 10° до 90°. Первый и второй противовесы 48, 50, из которых на фиг.2 первый из упомянутых спрятан за вторым, предпочтительно расположены на одной и той же вертикальной стороне приводного вала 23, который на фиг.2 не виден. Таким образом, при виде сверху на фиг.2 второй противовес 50 расположен вертикально над первым противовесом 48 и закрывает его. Противовесы 48, 50 соединены с гильзой 26 через шаровой шпиндель 34 и промежуточный вал 37, как показано на фиг.1, и, следовательно, вращаются с такой же частотой, что и дебаланс 30. Как показано на фиг.2, первый и второй противовесы 48, 50 установлены на другой вертикальной стороне вала 24 относительно дебаланса 30. В момент, показанный на фиг.2, первый и второй противовесы 48, 50 находятся в положении, которое можно назвать положением между "7 часами" и "8 часами". Таким образом, угол β между положением дебаланса 30 и положением противовесов 48, 50 приблизительно равен 180°. Угол β можно регулировать в зависимости от массы дебаланса 30, частоты вращения дебаланса 30 и типа и количества материала, который подлежит дроблению. Типично угол β составляет от 120° до 200°. Для учета разных материалов и частот вращения угол β можно регулировать, например, повернув дебаланс 30 вокруг гильзы 26 в нужное положение, т.е. получив нужный угол β относительно противовесов 48, 50.

Центробежная сила, действующая на дебаланс 30, показанная стрелкой FU на фиг.1, стремится сдвинуть всю дробилку 1 в направлении, показанном стрелкой FU. Центробежной силе FU, действующей на дебаланс 30, когда дробилка 1 работает, противодействует центробежная сила FC1, действующая на первый противовес 48, плюс центробежная силе FC2, действующая на второй противовес 50. Поэтому чистая центробежная сила, действующая на дробилку 1, уменьшается.

Силы, действующие на дробилку 1 во время работы, можно оценить, рассчитав момент инерции. Момент инерции твердого тела, вращающегося вокруг оси, в данном случае вокруг оси С вращения приводного вала 32, можно рассчитать, например, с помощью следующего уравнения точечной массы:

I=m × r2 (уравнение 1.1),

где m = масса тела (кг)

r = расстояние между сосредоточенной нагрузкой и осью вращения (м)

I = момент инерции (кгм2).

Для неточечной нагрузки для расчета момента инерции можно использовать другие уравнения. Например, для получения правильного момента инерции безразмерную постоянную с, которая называется инерционной постоянной и относится к форме нагрузки, можно умножить на массу и длину. Так,

I=с × m × L2 (уравнение 1.2),

где с = безразмерная постоянная, изменяющаяся вместе с формой рассматриваемого объекта

m = масса объекта (кг)

L = длина, коррелирующая с с (м)

I = момент инерции (кгм2).

Таким образом, можно рассчитать момент инерции I для каждого из дебаланса 30, первого противовеса 48 и второго противовеса 50 на основе соответствующей массы m, соответствующего расстояния L и соответствующей инерционной постоянной с. Соответствующие моменты инерции можно обозначить I30 для момента инерции дебаланса 30, I48 для момента инерции первого противовеса 48 и I50 для момента инерции второго противовеса 50.

Предпочтительно момент инерции дебаланса 30 не более чем в 10 раз превышает сумму моментов инерции первого и второго противовесов 48, 50. Следовательно, I30<=10×(I48+I50). Более предпочтительно момент инерции дебаланса 30 равен 1-10 суммы моментов инерции первого и второго противовесов 48, 50. Следовательно, момент инерции I30 дебаланса 30 должен удовлетворять условиям следующего уравнения: 1×(I48+I50)<=I30<=(I48+I50).

Величина центробежной силы FC1, действующей на первый противовес 48 при работе дробилки 1, предпочтительно приблизительно равна величине центробежной силы FC2, действующей на второй противовес 50. Если FC1 приблизительно равна FC2, например, FC1=FC2, возникнет очень ограниченная изгибающая сила, действующая на подшипник 44 приводного вала. При наличии низкой изгибающей силы, действующей на подшипник 44 приводного вала, возникает возможность установить тяжелые противовесы 48, 50, не подвергая подшипник 44 приводного вала воздействию сил, которые могли бы существенно снизить срок его службы.

Центробежную силу FC1, FC2, действующую на каждый противовес 48, 50, можно рассчитать по следующей формуле:

FC=m × v2/r (уравнение 1.3),

где FC = центробежная сила (Н)

m = масса тела (кг)

v = скорость на траектории (м/с)

r = расстояние от оси вращения до центра масс (m).

Согласно одному предпочтительному варианту величина центробежной силы FC1, действующей на приводной вал 32 под подшипником 44 приводного вала при работе дробилки 1, отличается в пределах +/-30%, более предпочтительно +/-20% от величины центробежной силы FC2, действующей на приводной вал 32 над подшипником 44 приводного вала. Поэтому, например, если центробежная сила FC2, действующая на приводной вал 32 над подшипником 44 приводного вала, равна 50 кН, то центробежная сила FC1, действующая на приводной вал 32 под подшипником 44 приводного вала, предпочтительно должна быть в диапазоне от 35 до 65 кН, более предпочтительно от 40 до 60 кН. Наиболее предпочтительно силы FC1 и FC2 по существу равны, поскольку это дает наименьшую изгибающую нагрузку на подшипник 44 приводного вала. Центробежная сила FU на дебалансе 30 при работе дробилки 1 предпочтительно составляет 1-10 величин суммы центробежных сил FC1 и FC2, т.е. 1×(FC1+FC2)<=FU<=10×(FC1+FC2).

Кроме того, момент инерции в кг/м2 первого противовеса 48 предпочтительно составляет +/-30% от момента инерции в кгм2 второго противовеса 50.

Выше было указано, что весь дисбаланс, действующий на вал 24, создается дебалансом 30. Следуют понимать, что можно использовать и другие, обычно небольшие дебалансы, и даже небольшие противовесы, прикрепленные к цилиндрической гильзе 26, а также другие детали, такие как средства крепления дебаланса, которые установлены не абсолютно симметрично на гильзе 26. При расчете центробежной силы FU или момента инерции I влияние других таких дебалансов предпочтительно также учитывается так, чтобы можно было рассчитать чистую центробежную силу FU, действующую на цилиндрическую гильзу 26. Аналогично могут иметься другие, обычно небольшие противовесы или даже дебалансы, расположенные выше и/или ниже подшипника 44 приводного вала, включая устройства для монтажа противовесов 48, 50 на приводной вал 32, которые не являются абсолютно симметричными относительно приводного вала 32. При расчете центробежных сил FC1 и FC2 или момента инерции I эффект таких противовесов также предпочтительно учитывается так, чтобы можно было рассчитать чистые центробежные силы FC1 и FC2, действующие на приводной вал 32 и особенно на подшипник 44 приводного вала.

Следует понимать, что в рамках приложенной формулы возможны различные варианты, описанные выше.

Выше были описаны дебаланс 30 и противовесы 48, 50, каждый из которых состоит из одного груза. Следует понимать, что любой из дебаланса 30, первого противовеса 48 и второго противовеса 50 может содержать несколько сегментов груза и/или несколько вспомогательных грузов, установленных в разных положениях.

1. Инерционная конусная дробилка, содержащая внешний дробильный кожух (12) и внутренний дробильный кожух (18), образующие между собой камеру (54) дробления, при этом внутренний дробильный кожух (18) опирается на дробильную головку (16), прикрепленную к валу (24), выполненному с возможностью вращения в гильзе (26), дебаланс (30), прикрепленный к гильзе (26), и вертикальный приводной вал (32), прикрепленный к гильзе (26) для ее вращения и опирающийся на подшипник (44) приводного вала, отличающаяся тем, что содержит первый противовес (48) и второй противовес (50), при этом первый противовес (48) прикреплен к приводному валу (32) в положении, находящемся ниже подшипника (44) приводного вала, а второй противовес (50) прикреплен к приводному валу (32) в положении, находящемся выше подшипника (44) приводного вала.

2. Дробилка по п.1, отличающаяся тем, что первый и второй противовесы (48, 50) прикреплены на одной и той же вертикальной стороне приводного вала (32).

3. Дробилка по п.1 или 2, отличающаяся тем, что первый и второй противовесы (48, 50) прикреплены к стороне приводного вала (32), которая не является стороной гильзы (26), к которой прикреплен дебаланс (30).

4. Дробилка по п.1 или 2, отличающаяся тем, что второй противовес (50) установлен на жестком участке (37, 40) приводного вала (32).

5. Дробилка по п.1 или 2, отличающаяся тем, что момент инерции дебаланса (30) не более чем в 10 раз превышает сумму моментов первого и второго противовесов (48, 50).

6. Дробилка по п.1 или 2, отличающаяся тем, что момент инерции дебаланса (30) составляет от 1 до 10 сумм моментов инерции первого и второго противовесов (48, 50).

7. Дробилка по п.1 или 2, отличающаяся тем, что момент инерции первого противовеса (48) отличается в пределах +/-30% от момента инерции второго противовеса (50).

8. Способ балансировки инерционной конусной дробилки, содержащей внешний дробильный кожух (12) и внутренний дробильный кожух (18), образующие между собой камеру (54) дробления, при этом внутренний дробильный кожух (18) опирается на дробильную головку (16), прикрепленную к валу (24), выполненному с возможностью вращения в гильзе (26), дебаланс (30), прикрепленный к гильзе (26), и вертикальный приводной вал (32), прикрепленный к гильзе (26) для ее вращения и опирающийся на подшипник (44) приводного вала, отличающийся тем, что используют первый противовес (48) и второй противовес (50), крепят первый противовес (48) к приводному валу (32) в положении, находящемся ниже подшипника (44) приводного вала, и крепят второй противовес (50) к приводному валу (32) в положении, находящемся выше подшипника (44) приводного вала.

9. Способ по п.8, отличающийся тем, что первый и второй противовесы (48, 50) крепят на одну и ту же вертикальную сторону приводного вала (32).

10. Способ по п.8 или 9, отличающийся тем, что первый и второй противовесы (48, 50) крепят к стороне приводного вала, которая не является стороной гильзы (26), к которой прикреплен дебаланс (30).

11. Способ по п.8 или 9, отличающийся тем, что предотвращают смещение второго противовеса (50) от центральной оси (С) приводного вала (32) во время работы дробилки.

12. Способ по п.8 или 9, отличающийся тем, что величина центробежной силы (FC1), создаваемой первым противовесом (48) и действующей на приводной вал (32) ниже подшипника (44) приводного вала, составляет +/-30% от величины центробежной силы (FC2), создаваемой вторым противовесом и действующей на приводной вал (32) выше подшипника (44) приводного вала.



 

Похожие патенты:

Изобретение относится к конусной дробилке для дробления камня, руды и прочих материалов на фракции меньшего размера и способу экранирования зоны рабочей части дробилки.

Изобретение относится к области машиностроения и может быть использовано в сельском хозяйстве, строительной, химической, пищевой и других отраслях промышленности для измельчения различных сыпучих материалов.

Изобретение относится к устройствам для дробления и измельчения различных материалов и может быть использовано в горно-обогатительной, строительной, дорожной и других отраслях промышленности.

Сборный противовес (48) конусной дробилки (10) для дробления горной породы содержит корпус, выполненный из основного материала. Первый и второй балласты расположены на корпусе и выполнены из различных материалов, отличных от основного.

Изобретение относится к устройствам для тонкого измельчения, смешивания и механической активации материалов, в том числе с наноструктурой, и может быть использовано в различных отраслях промышленности, где применяется дезинтеграторная технология.

Изобретение относится к сельскохозяйственному производству, а именно к машинам для измельчения концентрированных кормов. Измельчитель фуражного зерна содержит корпус, выполненный в виде трубы, жестко закрепленной на раме.

Изобретение относится к системе для головки конусной дробилки, содержащей корпус, верхний кожух и вертикальный вал, установленные в корпусе, в котором коническая головка расположена внутри верхнего кожуха, образуя полость дробления между ними, с возможностью колебаний посредством эксцентрикового элемента.

Изобретение относится к устройствам для дробления и измельчения различных материалов, в частности к конусным дробилкам. Конусная дробилка 10 содержит расположенный с возможностью вращения на вертикальном валу 18 дробильный конус 22, на котором закреплена первая футеровка 30, и корпус 12, на котором закреплена вторая футеровка 32.

Группа изобретений относится к дробильному оборудованию и включает конусную дробилку, опорное устройство и эксцентрик для использования в конусной дробилке. Опорное устройство конусной дробилки (10) обеспечивает увеличенный контакт между эксцентриком (22) и нижней втулкой (44) подвижного конуса (24) во время работы в режиме холостого хода.

Группа изобретений относится к способу управления работой конусной дробилки, управляющему устройству и конусной дробилке. Способ управления работой дробилки, содержащей первую (4) и вторую (5) дробящие брони, установленные на дробящем конусе (3) и станине (16) станка соответственно, заключается в том, что сначала измеряют параметр, характеризующий напряжения, которым подвергается дробилка во время измельчения материала.

Изобретение относится к строительной и горной технике, а именно к средствам для дробления полезных ископаемых. Конусная дробилка содержит корпус с дебалансными вибраторами и коническим кольцом, дробящий конус, размещенный внутри корпуса и смонтированный на станине. На стойках станины установлен верхний наружный дробящий корпус с коническим кольцом, снабженный дебалансными вибраторами, которые выполнены с возможностью вращения дебалансов в противофазе относительно дебалансов вибраторов, установленных на нижнем наружном корпусе. Верхний внутренний конус установлен на неподвижной опоре, смонтированной на опорных балках. Дробилка обеспечивает высокую степень дробления и уравновешенность сил, действующих на корпус. 1 ил.

Изобретение относится к конусной дробилке, содержащей поршень. Цилиндрический полый поршень (31) содержит стенку (34) поршня, верхнюю часть (32) поршня и нижнюю часть (33) поршня. Стенка поршня содержит по меньшей мере одно отверстие (391). Отверстие стенки ведет во внутреннюю камеру поршня. Стенка поршня содержит наружную поверхность скольжения и внутреннюю поверхность камеры. Поршень содержит по меньшей мере одну поддерживающую структуру (36). Для усиления поддержки верхней части поршня поддерживающая структура соединяет верхнюю часть (32) поршня и нижнюю часть (33) поршня. Изобретение обеспечивает увеличение дробящей силы без увеличения размеров элементов дробилки. 2 н. и 15 з.п. ф-лы, 12 ил.

Изобретение относится к конусной дробилке. Дробилка содержит внешний (22) и внутренний (28) дробящие корпусы с разгрузочной щелью (30) между ними. Элемент (14) верхней рамы поддерживает внешний корпус в зацеплении с элементом (16) нижней рамы. Зацепление выполнено с возможностью регулирования вертикального положения внешнего корпуса относительно элемента нижней рамы для обеспечения регулирования ширины разгрузочной щели. Конструкция (64) датчика снабжена элементом (72) датчика на одном из элементов нижней рамы и верхней рамы для измерения вертикального положения внешнего корпуса. Одно из индикаторного средства (76, 80, 70) и элемента (72) датчика выполнено с возможностью следования за вертикальным перемещением элемента верхней рамы и перемещения относительно другого. Элемент датчика содержит вертикальный чувствительный массив (74) в вертикальном направлении вдоль по меньшей мере участка диапазона. Индикаторное средство имеет возможность перемещаться при регулировании вертикального положения элемента верхней рамы в пределах участка диапазона. Индикаторное средство выполнено с возможностью быть детектированным в различных вертикальных положениях вдоль вертикального чувствительного массива. Изобретение повышает точность измерения вертикального положения регулируемого дробящего корпуса. 11 з.п. ф-лы, 4 ил.

Группа изобретений относится к управлению дроблением в инерционной конусной дробилке. Подлежащий дроблению материал (49) загружают из подающего бункера (50) в камеру дробления (48) дробилки (1). Камера дробления образована между внутренним (18) и внешним (12) дробящими корпусами. Дробящий конус (16) поддерживает внутренний дробящий корпус (18). Дебалансная втулка (26) присоединена с возможностью вращения к дробящему конусу. Дебалансную втулку вращают приводным валом (38). Дебалансная втулка снабжена дебалансным грузом (30) для наклона. При вращении дебалансной втулки центральная ось (S) дробящего конуса совершает гирационное движение вокруг гирационной оси (C). Количество оборотов дебалансной втулки измеряют с помощью датчика (47) частоты вращения. Управляют количеством оборотов дебалансной втулки с помощью системы управления (46). Внутренний дробящий корпус подходит к внешнему дробящему корпусу для дробления материала. Обеспечивается эффективность системы управления дробилкой. 2 н. и 8 з.п. ф-лы, 3 ил.

Изобретение относится к конусной дробилке, опорной пластине и набору опорных пластин для конусной дробилки. Конусная дробилка выполнена с первой и второй дробящей бронями, образующими рабочий зазор. Первая дробящая броня выполнена с возможностью вращения вокруг вертикальной оси и вертикально поддерживается упорным подшипником, содержащим первую и вторую опорные пластины, образующие сферическую поверхность скользящего контакта. Одна из опорных пластин конусной дробилки имеет одну или более охлаждающих и/или смазочных канавок на поверхности скользящего контакта, выполненных в виде одной или более спиралей, продолжающихся от центра поверхности скользящего контакта к ее периферии. Опорные пластины, набор таких пластин обеспечивают равномерное распределение охлаждающих/смазочных материалов. 3 н. и 11 з.п. ф-лы, 6 ил.

Изобретение относится к способам управления инерционной конусной дробилки, в частности к способам управления опустошением дробильной камеры. Способ заключается в том, что в инерционной конусной дробилке, содержащей дробильную камеру, внутреннюю дробильную броню на дробильной головке, центральную ось дробильной головки, выполняющей гирационное перемещение вокруг оси гирационного перемещения, прерывают подачу материала к дробилке, измеряют прямо или косвенно положение и движение дробильной головки во время периода контроля амплитуды, сравнивают измеренные положения и/или движения с по меньшей мере одной заданной уставкой, определяют на основании упомянутого сравнения измеренного положения и/или движения с по меньшей мере одной уставкой, следует ли регулировать упомянутую частоту оборотов, и при необходимости регулируют частоту оборотов. В способе обеспечивается безопасность опустошения дробильной камеры и предупреждение ее повреждений при остановке конусной дробилки. 2 н. и 7 з.п. ф-лы, 5 ил.

Изобретение предназначено для дробления в строительной и горной промышленности. Конусная дробилка (10) содержит раму (40) с верхней (41) и нижней (42) частями и дробильную головку (70) с возможностью вращения вокруг, по существу, вертикального вала (60). Нижняя часть рамы содержит ступицу (43) с гнездом (64) ведущего кольца. Ступица содержит центрированно расположенное сквозное отверстие (404) с центральной осью (80). Центральная ось простирается через упомянутое отверстие (404) и ступицу. Отверстие выполнено с возможностью взаимодействия с валом. Вал расположен с возможностью вращения в упомянутом отверстии. Ступица присоединена посредством плеч (44) к нижней части рамы. Ступица содержит поясную часть (402) с толщиной в радиальном направлении от центральной оси большей, чем ширина гнезда ведущего кольца. Изменение конструкции ступицы обеспечивает выдерживание увеличенной дробящей силы и напряжений. Изобретение позволяет увеличить дробящую силу при сохранении наружных размеров дробилки для сборки на фундаменте от соответствующей старой дробилки при замене. 9 з.п. ф-лы, 10 ил.

Изобретение относится к конусной дробилке и способу подготовки конусной дробилки к эксплуатации. Конусная дробилка содержит внешнюю дробящую броню и внутреннюю дробящую броню с разгрузочной щелью между ними. Внешняя дробящая броня поддерживается на верхнем элементе рамы в резьбовом зацеплении с нижним элементом рамы. Резьбовое зацепление выполнено с возможностью регулирования вертикального положения внешней дробящей брони и ширины разгрузочной щели. Верхний элемент рамы для поворота верхнего элемента рамы в резьбовом зацеплении снабжен периферийным зубчатым кольцом, которое соединено с верхним элементом рамы. При этом дробилка содержит зажимную конструкцию для зажатия по вертикали зубчатого кольца между верхним зажимным элементом и нижним зажимным элементом. Способ подготовки конусной дробилки после регулирования разгрузочной щели содержит этап, на котором зажимают по вертикали зубчатое кольцо регулирования разгрузочной щели. Устройство конусной дробилки и способ подготовки данного устройства к эксплуатации обеспечивают возможность регулирования степени зажатия измельчаемого материала. 2 н. и 10 з.п. ф-лы, 5 ил.
Наверх