Массообменная колонна и корончатый элемент для массообменной колонны

Корончатый элемент для закрепления насадки в массообменной колонне содержит удлиненный лист, который содержит верхний элемент, стеновой элемент и нижний элемент, причем стеновой элемент расположен между верхним элементом и нижним элементом таким образом, что первая линия сгиба образуется между верхним элементом и стеновым элементом. Вторая линия сгиба образуется между стеновым элементом и нижним элементом, причем верхний элемент выполнен с множеством разрезов, причем нижний элемент выполнен с множеством выемок. Количество разрезов меньше, чем количество выемок. 2 н. и 12 з.п. ф-лы, 6 ил.

 

Предпосылки к созданию изобретения

Настоящее изобретение относится к корончатому элементу для насадки массообменной колонны. Изобретение также относится к массообменной колонне, содержащей корончатые элементы данного типа.

Обменная часть такой колонны, в которой, в частности, поднимающийся вверх газ и перемещающаяся навстречу жидкость приводятся в контакт, состоит из насадки, которая заполняет поперечное сечение колонны до кольцевого зазора у стенки колонны. Корончатые элементы, которые окружают насадку, служат для отклонения данных потоков вещества. Посредством корончатых элементов поток газа принудительно направляется в насадку, тем самым газ частично удерживается от прохождения вдоль участка у края колонны без вхождения в контакт с жидкостью. Насадка представляет собой, в частности, упорядоченный наполнитель, который обеспечивает распределение двух потоков вещества по всему поперечному сечению колонны. Такой корончатый элемент, например, раскрыт в US 5456865 или JP 08-000983 А.

Насадка состоит, например, из слоев из волнообразных гофров или слоистых материалов, изогнутых зигзагообразно. Гофры состоят из материала типа фольги; края на сгибах или ребрах продолжаются в направлении, расположенном под углом к оси колонны, например под углом к оси, равным 45° или 30°. Слои, образованные гофрами, выровнены параллельно оси; относительно наклона краев на сгибах они расположены поочередно, так что образуются открытые каналы, которые проходят наискосок и поперек. Насадка сгруппирована в секции, которые различаются по ориентации слоев. Между смежными секциями ориентация изменяется каждый раз приблизительно на 90°.

Через наклонные каналы в насадке, часть жидкости перемещается к участку у края. Для того чтобы предотвратить вхождение данной жидкости в контакт со стенкой колонны, предусмотрен краевой зазор, то есть вышеупомянутый кольцевой зазор. При отсутствии данного зазора значительная часть жидкости проходила бы вдоль стенки колонны.

Наличие краевого зазора позволяет возвращать жидкость, подходящую к краю насадки, внутрь насадки через другие каналы. Однако практически невозможно избежать того, что некоторая часть жидкости просачивается к стенке колонны и тем самым снижает эффективность массообменного процесса. Корончатые элементы выполняют дополнительную функцию пропускания жидкости обратно от стенки колонны в насадку, когда жидкость затем направляется через некоторые из каналов обратно внутрь насадки.

Другие примеры упорядоченных насадок, которые обеспечивают распределение двух потоков вещества по всему поперечному сечению колонны, описаны в европейских патентах ЕР 0070917 В1 и ЕР 0069241 В1.

Насадка массообменной колонны содержит по меньшей мере один элемент насадки. Множество элементов насадки могут быть соединены скобами друг с другом, образуя стопку. Элемент насадки выполнен в виде блока слоев насадки, образующего, по существу, цилиндрическую конструкцию или любую другую конструкцию, помещающуюся внутри массообменной колонны. Такой элемент насадки может быть разделен на множество сегментов насадки. Таким образом, сегменты насадки могут рассматриваться как части, образующие элемент насадки.

Для простого монтажа колонны кольца нужно прикреплять к встроенным элементам уже перед установкой насадки. Поскольку насадка состоит из тонкостенного материала, прикрепление колец, которое может быть осуществлено посредством сварки, соединения винтами или заклепочного соединения, представляет собой дорогой технологический этап.

При использовании элементов насадки без вмонтированных колец, прикрепленных к каждому крайнему элементу насадки, должно быть обеспечено уплотнение посредством зажимного кольца. При сборке зажимные кольца сначала размещают горизонтально вдоль стенки колонны, затем устанавливают элементы насадки. В конце элементы насадки проталкивают из центрального положения к стенке. Таким образом, кольцо растягивается к стенке и вследствие этого устанавливается под натяжением посредством сжимающей силы от насадки. Зажимные кольца в соответствии с известным уровнем техники не являются гибкими и поэтому не обеспечивают надлежащего уплотнения. Вследствие этого при работе образуется обходной канал для жидкости рядом со стенкой колонны, что приводит к снижению эффективности колонны. Вследствие своей геометрической конфигурации зажимные кольца могут расплющиваться и разрушаться, в частности, когда насадка должна быть вмонтирована в стенку колонны, которая имеет горизонтальную продольную ось.

Краткая сущность изобретения

Задачей настоящего изобретения является обеспечение решения, которое является менее дорогим по сравнению с вышеупомянутым уровнем техники и посредством которого обходной канал для жидкости вдоль стенки колонны может быть в значительной степени устранен.

Данная задача решается посредством корончатого элемента для закрепления насадки в массообменной колонне, содержащего удлиненный лист, который содержит верхний элемент, стеновой элемент и нижний элемент. Стеновой элемент расположен между верхним элементом и нижним элементом таким образом, что между верхним элементом и стеновым элементом образуется первая линия сгиба. Вторая линия сгиба образуется между стеновым элементом и нижним элементом. Верхний элемент выполнен с множеством насечек. Нижний элемент выполнен с множеством выемок, причем количество насечек меньше, чем количество выемок.

Верхний элемент содержит край верхнего элемента, и насечки продолжаются от края верхнего элемента до первой линии сгиба. Таким образом, по меньшей мере, некоторые из насечек могут перекрывать только часть расстояния между краем верхнего элемента и первой линией сгиба. В предпочтительном варианте осуществления насечки могут представлять собой прорези.

Нижний элемент содержит край нижнего элемента, причем канавки продолжаются от края верхнего элемента до второй линии сгиба.

Предпочтительно, на стеновом элементе может быть расположен выступ.

В предпочтительном варианте осуществления часть насечек расположена в шахматном порядке относительно выемок. Тем самым может быть устранен обходной канал для жидкости вдоль стенки колонны. Любая жидкость, стекающая вниз по общей стенке, захватывается верхним элементом и направляется через насечки к насадке. Если по какой-то причине часть данной жидкости проходит через первую линию сгиба, то, вероятнее всего, она проходит через первую линию сгиба на участке, где расположены насечки. При дальнейшем стекании она наталкивается на вторую линию сгиба. Там она может быть либо направлена в ближайшую канавку, либо, как вариант, в отверстие, предусмотренное в стеновом элементе. Таким образом, жидкость будет проходить через данное отверстие в стеновом элементе и направляться к насадке.

В предпочтительном варианте осуществления по меньшей мере один из стенового элемента, верхнего элемента и нижнего элемента имеет толщину в пределах от 0,05 мм до меньше 0,2 мм. Лист, имеющий меньшую толщину по сравнению с листом известного уровня техники, может более точно повторять кривизну стенки колонны. Таким образом, любые протечки между первой линией сгиба и стенкой колонны устраняются в значительной степени.

Таким образом, по сравнению с известным уровнем техники, количество насечек меньше, чем количество выемок. Вследствие этого сегменты верхнего элемента увеличиваются по длине. В результате менее вероятно, что такие более длинные сегменты верхнего элемента повторяют кривизну стенки колонны. Поэтому количество насечек в известном уровне техники обычно соответствует количеству выемок.

Как ни удивительно, авторы изобретения могли быть продемонстрировать, что при использовании более длинных и/или более высоких сегментов верхнего элемента, кривизна стенки колонны более точно повторяется сегментами верхнего элемента, когда они установлены в колонне.

Край верхнего элемента также повторяет кривизну стенки колонны благодаря деформации сегмента верхнего элемента, особенно когда толщина верхнего элемента мала, например, находится в пределах от 0,05 мм до меньше 0,2 мм.

Отверстие может быть предусмотрено в по меньшей мере одном из стенового элемента, верхнего элемента или нижнего элемента. Такое отверстие используется для направления любой жидкости, которая просачивается вдоль стенки колонны, обратно к насадке. Таким образом, такая обходная жидкость может снова участвовать в переносе массы, когда она направляется к насадке. Следовательно, можно повысить эффективность массообменной колонны.

На стеновом элементе может быть предусмотрен распорный элемент. Такой распорный элемент может быть выполнен с возможностью увеличения механической прочности стенового элемента. Данные распорные элементы могут представлять собой выступы и могут иметь любые из форм, соответствующих US 6170805 В1.

Перед монтажом верхний элемент, предпочтительно, расположен под углом в пределах от 5° до 60° относительно стенового элемента, предпочтительно под углом от 10° до 40°. Данный угол уменьшается, когда корончатый элемент находится в своем смонтированном состоянии в колонне. После монтажа данный угол находится в пределах примерно от 2° до 30°, предпочтительно от 5° до 20°. Насадка помещается в колонну только тогда, когда верхний элемент деформирован. То есть когда угол между верхним элементом и стеновым элементом уменьшается.

Верхний элемент состоит из множества сегментов верхнего элемента, а нижний элемент состоит из множества сегментов нижнего элемента, причем каждый сегмент верхнего элемента имеет длину, которая по меньшей мере для одного из сегментов верхнего элемента больше, чем длина сегмента нижнего элемента. Длина сегмента верхнего элемента или сегмента нижнего элемента представляет собой размер, продолжающийся, по существу, в направлении стенки колонны, следовательно, в горизонтальном направлении, если ось массообменной колонны вертикальная.

Длина сегмента верхнего элемента представляет собой расстояние между двумя смежными насечками. Длина сегмента нижнего элемента представляет собой расстояние между двумя смежными канавками. Если насечка или канавка имеет, например, V-образную форму, то длина представляет собой размер, измеренный от самой нижней точки V-образной канавки, соответственно крайней точки или самой глубокой точки, образованной V-образной канавкой. Необходимо отметить, что в зависимости от места установки корончатого элемента, крайней точкой насечки или канавки быть самая высокая точка насечки или канавки. Таким образом, упомянутое определение относится к общей концепции v-образной формы, а не к месту установки корончатого элемента.

Сегмент верхнего элемента, предпочтительно, имеет длину, которая находится в пределах от 40 мм до 120 мм, особенно предпочтительно в пределах от 60 мм до 90 мм.

Предпочтительно верхний элемент имеет высоту, которая находится в пределах от 15 мм до 4 0 мм, особенно предпочтительно в пределах от 25 мм до 35 мм. Высота представляет собой расстояние, измеренное между первой линией сгиба и краем верхнего элемента.

Таким образом, высота верхнего элемента и соответственно высота каждого из сегментов верхнего элемента больше, чем высота соответствующих решений известного уровня техники, что дополнительно улучшает совмещение сегментов верхнего элемента с криволинейной стенкой колонны. Таким образом, в соответствии с предпочтительным вариантом осуществления, край верхнего элемента имеет криволинейную форму. Другими словами, край верхнего элемента повторяет кривизну стенки колонны благодаря вышеупомянутой возможности деформации, которая невозможна, если высота сегмента верхнего элемента меньше 15 мм, а толщина сегмента верхнего элемента составляет примерно 2 мм или больше.

Дополнительным следствием изменения размеров длины и высоты сегментов верхнего элемента является уменьшение угла между верхним элементом и стенкой колонны при монтаже.

В качестве альтернативы или в дополнение к этому, нижний элемент содержит край нижнего элемента, который имеет криволинейную форму. В частности, если толщина нижнего элемента находится в пределах от 0,05 мм до меньше 2 мм, то край нижнего элемента повторяет кривизну контура насадки благодаря вышеупомянутой возможности деформации.

Корончатый элемент в соответствии с любым из предыдущих вариантов осуществления содержит первую поверхность и вторую поверхность, причем первая поверхность имеет, по существу, форму трапеции, а вторая поверхность является треугольной.

Массообменная колонна содержит насадку, а также содержит трубчатую стенку. Насадка расположена в пределах трубчатой стенки. Корончатый элемент в соответствии с любым из предыдущих вариантов осуществления расположен между трубчатой стенкой и насадкой.

Стеновой элемент находится в контакте с насадкой, когда он смонтирован, и стеновой элемент расположен на расстоянии от стенки колонны, когда он расположен в пределах стенки колонны. Верхний элемент и нижний элемент проходит от стенового элемента под непрямым углом относительно стенового элемента таким образом, что верхний элемент продолжается в направлении стенки колонны, а нижний элемент продолжается в направлении насадки, в результате чего корончатый элемент может быть упруго деформирован с возможностью приложения удерживающей силы к насадке, чтобы зафиксировать насадку в пределах стенки колонны в таком положении, чтобы обеспечить осуществление переноса массы, когда массообменная колонна находится в своем рабочем состоянии.

Насадка может содержать множество элементов насадки и каждый из элементов насадки может содержать множество сегментов насадки, в частности, для колонн, имеющих большие диаметры.

Краткое описание чертежей

Фиг. 1 представляет собой подробный вид поперечного сечения корончатого элемента.

Фиг. 2 представляет собой вид спереди корончатого элемента в соответствии с фиг. 1.

Фиг. 3 представляет собой часть корончатого элемента в соответствии с фиг. 1, расположенную в пределах стенки колонны.

Фиг. 4 представляет собой поперечное сечение фиг. 1, показывающее корончатый элемент и насадку.

Фиг. 5 изображает вид сверху насадки.

Фиг. 6 изображает подробный вид потока по краю насадки.

Описание предпочтительных вариантов осуществления

Фиг. 1 представляет собой подробный вид поперечного сечения корончатого элемента 3. Корончатый элемент 3 содержит удлиненный лист 4, часть которого показана также на фиг. 2. Данный удлиненный лист 4 содержит верхний элемент 5, стеновой элемент 6 и нижний элемент 7. Стеновой элемент 6 расположен между верхним элементом 5 и нижним элементом 7. Верхний элемент расположен под углом 13 относительно стенового элемента 6. Нижний элемент 7 расположен под углом 14 относительно стенового элемента 6.

Стеновой элемент 6 может содержать выступ 16. Такой выступ может представлять собой ребро, продолжающееся, по существу, параллельно первой и второй линиям сгиба, а также может содержать множество пузырчатых элементов. В смонтированном состоянии корончатого элемента выступ 16 предназначен для поддержания расстояния, краевого зазора 12 между стенкой 10 колонны, как показано на фиг. 3, и стеновым элементом 6.

Фиг. 2 представляет собой вид спереди части удлиненного листа 4, образующего корончатый элемент в соответствии с фиг. 1.

Удлиненный лист 4 состоит из верхнего элемента 5, стенового элемента 6 и нижнего элемента 7. Стеновой элемент 6 соединен с верхним элементом 5 и с нижним элементом 7. Первая линия 8 сгиба образована между верхним элементом 5 и стеновым элементом 6. Вторая линия 9 сгиба образована между стеновым элементом 6 и нижним элементом 7.

Верхний элемент 5 выполнен с множеством насечек 15. Верхний элемент 5 имеет край 18 верхнего элемента. Край 18 верхнего элемента продолжается, по существу, параллельно первой линии 8 сгиба. Насечки 15 продолжаются от края 18 верхнего элемента до первой линии 8 сгиба. По меньшей мере, некоторые из насечек могут также проходить только по части верхнего элемента 5. В соответствии с предпочтительным вариантом осуществления, насечки выполнены в виде прорезей.

Нижний элемент 7 выполнен с множеством выемок 17. В предпочтительном варианте осуществления канавки имеют V-образную форму. Количество насечек 15 меньше, чем количество выемок 17.

Стеновой элемент 6 содержит первую поверхность 31 и вторую поверхность 32, причем первая поверхность 31 имеет, по существу, форму трапеции, а вторая поверхность 32 является, по существу, треугольной. Предпочтительно, стеновой элемент 6 состоит из множества первых поверхностей 31 и вторых поверхностей 32. Каждая из первых поверхностей 31 контактирует с двумя смежными вторыми поверхностями 32 вдоль пары общих краевых линий 33, 34. Каждая из общих краевых линий 33, 34 может также быть линией сгиба. Каждая из вторых поверхностей 32 контактирует с двумя смежными первыми поверхностями 31 вдоль пары общих краевых линий 34, 35. Каждая из общих краевых линий 34, 35 может также быть линией сгиба.

Фиг. 3 представляет собой часть корончатого элемента 3, расположенную в пределах стенки 10 колонны. На фиг. 3 корончатый элемент 3 показан в перспективе, отделенный от насадки, но, тем не менее, расположенный на месте его использования в стенке 10 колонны. Корончатый элемент 3 может быть изготовлен очень просто из удлиненного листа 4, такого как полоска фольги.

Фиг. 3 также показывает, что верхний элемент 15, по существу, перекрывает краевой зазор 12. В верхнем элементе 5 предусмотрены насечки 15, которые предназначены для облегчения сгибания верхнего элемента под непрямым углом относительно стенового элемента. Когда стеновой элемент 6 сгибают из плоского удлиненного листа 4 в цилиндрическую поверхность, верхний элемент 5 может быть согнут благодаря наличию насечек, при этом может быть образовано множество v-образных выемок. Данные канавки показаны на фиг. З. Между насечками 15 образуются лапки. При сгибании нижнего элемента 5 вдоль первой линии 8 сгиба, верхний элемент 5, по существу, перекрывает краевой зазор 12, как показано на фиг. 4 или фиг. 5. Жидкость, которая подходит к стенке колонны, когда колонна находится в своем рабочем состоянии, пропускается обратно к насадке посредством верхнего элемента 5.

Благодаря тому что толщина верхнего элемента 5 находится в пределах от 0,05 мм до 0,2 мм, верхний элемент может быть легко деформирован из цилиндрической формы в, по существу, коническую форму. Стеновой элемент 6, по существу, сохраняет цилиндрическую форму. Нижний элемент 7 также сгибают, однако направление загиба противоположно направлению сгибания верхнего элемента 5.

Фиг. 4 изображает поперечное сечение корончатого элемента 3 в его смонтированном состоянии. Кроме того, показана часть насадки 2, которая размещена в заданном месте в колонне посредством корончатого элемента 3. Верхний элемент 5 может быть также согнут перед монтажом насадки и корончатого элемента в стенку колонны. До вставки корончатого элемента 3 в стенку колонны угол 13 между верхним элементом 5 и стеновым элементом 6 может быть больше, чем после данной вставки. Таким образом, верхний элемент подвергается воздействию изгибающего момента и силы, действующей в направлении, перпендикулярном оси колонны. Данный изгибающий момент и сила помогают удерживать корончатый элемент 3 на требуемом месте в пределах колонны. Другими словами, верхний элемент 5 может действовать как пружина.

В отличие от известных колец, корончатый элемент 3 настоящего изобретения является отдельным элементом, который не прикреплен к краю насадки и удерживается прочно в краевом зазоре 12 между стенкой 10 колонны и насадкой 2 посредством упругих сил и/или сил трения.

Кроме того, стеновой элемент 6 может быть выполнен с распорным элементом 22, который может быть, в частности, выполнен в виде множества выступов 16. Когда он смонтирован, выступы 16 находятся в контакте со стенкой колонны. Если глубина выступов в сумме с диаметром стенового элемента 6 превышает внутренний диаметр колонны, то на выступы действует сжимающая сила. Данная сжимающая сила помогает удерживать выступы и соответственно стеновой элемент 6 в требуемом положении внутри колонны. Таким образом, сочетание силы трения и упругой силы помогает удерживать корончатый элемент 3 в колонне. Кроме того, он удерживается в правильной ориентации, в частности вертикальной ориентации стенового элемента 6.

Нижний элемент 7 помогает удерживать насадку 2 в требуемом положении и/или ориентации, как показано на фиг. 4. Нижний элемент 7, по меньшей мере, частично подвергается сжатию между первым и вторым элементами насадки, когда он проходит в зазор между двумя смежными элементами насадки, расположенными друг над другом. Благодаря тому что первый и второй элементы насадки образуют стопку элементов насадки, по меньшей мере, край нижнего элемента зафиксирован в своем положении между двумя элементами насадки. В результате весь корончатый элемент 3 зафиксирован в надлежащем положении в массообменной колонне. В случае массообменной колонны с вертикальной осью колонны, надлежащим положением является горизонтальное положение. Нижний элемент помогает перенаправить жидкость, просачивающуюся по стенке колонны, обратно в насадку. Фиг. 5 изображает часть кольцевого или краевого зазора 12, который находится между стенкой 10 массообменной колонны 1 и насадкой 2. Слои насадки состоят из гофров 20 и 21, согнутых зигзагообразно, пропускают жидкость в направлении стрелок 25 из внутренней части насадки к краю, который образован посредством краев 200 и 210 гофров, или соответственно в противоположном направлении в соответствии со стрелками 26. Условия у края насадки показаны на фиг. 6. Частично показанные гофры 20 и 21 контактируют в точках С и С′ и содержат пленку жидкости, просачивающуюся через них. Посредством жидкости, пропущенной наружу через гофр 20, как показано стрелкой 25, у края 200 образуется более сильный поток жидкости, как показано стрелками 27. Часть данного потока в соответствии со стрелками 27 перескакивает у выступов А, А′, А″ на край 210 смежного гофра 21 в точки В, В′, как показано стрелками 28, откуда жидкость затем пропускается обратно внутрь насадки, как показано стрелками 26. Если бы существовал контакт между насадкой 2 и стенкой 10 колонны, то жидкость, пропущенная к краю, имела бы тенденцию перемещаться вдоль внутренней поверхности 11 стенки 10 колонны.

Отверстие может быть предусмотрено в по меньшей мере одном из стенового элемента 6, верхнего элемента 5 или нижнего элемента 7. Отверстия позволяют жидкости, которая удаляется от стенки 10 колонны, проходить через корончатый элемент. Данные отверстия могут иметь одинаковую форму, как отверстия в документе US 6170805 В1.

Установка насадки осуществляется сегмент за сегментом. При этом, например, на предварительно вмонтированном сегменте насадки, прежде всего, корончатые элементы 3 распределяют по периметру поперечного сечения колонны. Затем следующий сегмент насадки проталкивают в кольцо, образованное корончатым элементом 3, при этом корончатые элементы 3 прижимаются к стенке 10 колонны.

Массообменная колонна 1 с корончатыми элементами 3, выполненными в соответствии с изобретением, содержит на одну секцию насадки, по меньшей мере одно кольцо корончатых элементов, замкнутое по окружности; причем данное кольцо может также состоять из только одного корончатого элемента. Корончатые элементы, предпочтительно, изготовлены из, по существу, того же материала, что и насадка. Материал насадки или корончатых элементов, предпочтительно, состоит из металлического сплава. В качестве альтернативы, корончатый элемент может быть изготовлен из пластмассы. Насадка, изображенная на фиг. 1 и 2, следует воспринимать только в качестве примера. Таким образом, насадка может иметь любую структуру, которая обеспечивает распределение обрабатываемых текучих сред в направлениях, поперечных линии падения. Корончатые элементы, подобные насадке, предпочтительно, изготовлены из материала типа фольги, толщина стенки которого находится в пределах от 0,05 мм до 2 мм, предпочтительно приблизительно 0,15 мм.

1. Корончатый элемент (3) для закрепления насадки (2) в массообменной колонне (1), содержащий удлиненный лист (4), который содержит верхний элемент (5), стеновой элемент (6) и нижний элемент (7), причем стеновой элемент (6) расположен между верхним элементом (5) и нижним элементом (7) таким образом, что первая линия (8) сгиба образована между верхним элементом (5) и стеновым элементом (6) и вторая линия (9) сгиба образована между стеновым элементом (6) и нижним элементом (7), причем верхний элемент (5) выполнен с множеством насечек (15), причем нижний элемент (7) выполнен с множеством канавок (17), причем количество насечек (15) меньше, чем количество канавок (17), и причем каждый из стенового элемента (6), верхнего элемента (5) и нижнего элемента (7) имеет толщину в пределах от 0,05 мм до меньше чем 0,2 мм.

2. Корончатый элемент (3) по п. 1, в котором верхний элемент (5) имеет край (18) верхнего элемента и в котором насечки (15) проходят от края (18) верхнего элемента до первой линии (8) сгиба.

3. Корончатый элемент (3) по п. 2, в котором, по меньшей мере, некоторые из насечек (15) перекрывают только часть расстояния между краем (18) верхнего элемента и первой линией (8) сгиба.

4. Корончатый элемент (3) по любому из предыдущих пунктов, в котором нижний элемент (7) содержит край (19) нижнего элемента и в котором выемки (17) проходят от края (19) нижнего элемента до второй линии (9) сгиба.

5. Корончатый элемент (3) по п. 1, в котором на стеновом элементе (6) расположен выступ (16).

6. Корончатый элемент (3) по п. 1, в котором часть канавок (17) расположена в шахматном порядке относительно насечек (15).

7. Корончатый элемент (3) по п. 1, в котором верхний элемент (5) расположен под углом от 5° до 60° относительно стенового элемента (6), предпочтительно под углом от 10° до 40°.

8. Корончатый элемент (3) по п. 1, в котором верхний элемент (5) состоит из множества сегментов верхнего элемента, причем каждый из сегментов верхнего элемента имеет длину, которая находится в пределах от 40 мм до 120 мм, особенно предпочтительно в пределах от 60 мм до 90 мм.

9. Корончатый элемент (3) по п. 1, в котором верхний элемент имеет высоту, которая находится в пределах от 15 мм до 40 мм, особенно предпочтительно в пределах от 25 мм до 35 мм.

10. Корончатый элемент (3) по п. 1, в котором верхний элемент имеет край верхнего элемента, причем край верхнего элемента является изогнутым и/или нижний элемент имеет край нижнего элемента, причем край нижнего элемента является изогнутым.

11. Массообменная колонна (1), содержащая насадку (2), в которой массообменная колонна (1) содержит трубчатую стенку (27), и насадка (2) расположена в пределах стенки (10) колонны, причем между стенкой (10) колонны и насадкой (2) расположен корончатый элемент (3) по любому из предыдущих пунктов.

12. Массообменная колонна (1) по п. 11, в которой стеновой элемент (6) находится в контакте с насадкой (2), когда смонтирован, и стеновой элемент (6) расположен на расстоянии от внутренней поверхности (27) стенки (10) колонны, когда расположен в пределах стенки (10) колонны, причем верхний элемент (5) и нижний элемент (7) проходят от стенового элемента (6) под непрямым углом относительно стенового элемента (6) таким образом, что верхний элемент (5) проходит в направлении стенки (10) колонны, а нижний элемент (7) проходит в направлении насадки (2), причем корончатый элемент (3) является упругодеформируемым с возможностью приложения удерживающей силы к насадке, чтобы зафиксировать насадку (2) в пределах стенки (10) колонны в таком положении, чтобы обеспечить осуществление переноса массы, когда колонна (1) находится в своем рабочем состоянии.

13. Массообменная колонна по п. 12, в которой насадка (2) содержит множество сегментов насадки.

14. Массообменная колонна (1) по п. 12 или 13, в которой нижний элемент (7) подвергается, по меньшей мере, частично сжатию между первым и вторым элементами насадки.



 

Похожие патенты:

Изобретение описывает систему супервысушивания биомассы, которая содержит множество резервуаров, включая, по меньшей мере, один высушивающий резервуар, содержащий расплавленную соль в качестве жидкого средства теплопередачи, которое находится в контакте с биомассой и превращает ее в биоуголь; и, по меньшей мере, один резервуар с водой, содержащий воду для промывки соли, которая находится в контакте с биоуглем и охлаждает биоуголь, для удаления соли, прилипшей к биоуглю, и систему транспортирования, перемещающую биомассу через множество резервуаров в первом направлении при перемещении биоугля во втором направлении, противоположном первому направлению, таким образом, что, по меньшей мере, один резервуар с водой, содержащий воду для промывки соли, предварительно нагревает биомассу и одновременно охлаждает биоуголь.
Изобретение относится к способу получения углеводородного автомобильного топлива, который заключается в том, что исходное углеводородное автомобильное топливо смешивают с дистиллированной водой в равных весовых пропорциях, полученную водотопливную смесь в трубчатом проточном реакторе подвергают воздействию волн СВЧ частотой 10-30 ГГц, затем обрабатывают в вихревом трубчатом реакторе при избыточном давлении 0,5-3,5 МПа и температуре 10-30°C в присутствии сплавов металлов Cr, Ni, Fe, из которых выполнены завихрители вихревого трубчатого реактора.

Описано устройство, трубчатый проточный реактор идеального вытеснения с ламинарным потоком, для производства силиламинов и, в частности, трисилиламина (TSA) с высоким выходом из газообразного аммиака и газообразного моногалосилана.

Изобретение относится к реакторам непрерывной обработки, системе, содержащей такой реактор, и способу обработки текучей среды. Реактор содержит внешний резервуар, имеющий внутреннюю поверхность, напротив которой может находиться обрабатываемая текучая среда, внутренний резервуар, находящийся внутри внешнего резервуара и имеющий внешнюю поверхность, служащую в качестве поверхности теплообмена для обрабатываемой текучей среды, и внутреннюю поверхность, разработанную так, чтобы позволять теплообменной текучей среде течь в, по существу, равномерной тонкой пленке, и кольцевое пространство, заданное между внешним резервуаром и внутренним резервуаром, для обеспечения прохода, вдоль которого может подаваться обрабатываемая текучая среда, где данное кольцевое пространство разработано так, чтобы поддерживать разность температур между внешним резервуаром и внутренним резервуаром, придавая обрабатываемой текучей среде относительно высокие скорости переноса.

Изобретение относится к области нефтепереработки. Изобретение касается установки комплексной переработки нефти, включающей в себя взаимосвязанные конвертер газообразных углеводородов, реактор паровой конверсии оксида углерода, влагоотделитель, совмещенный аппарат гидрирования и сероочистки, блок очистки синтез-газа от диоксида углерода, средство перекачивания жидких сред, теплообменник.

Изобретение относится к химической промышленности, конкретно к технике получения экологически чистых углеводородных газов - пропеллентов, применяемых в качестве газа-вытеснителя для аэрозольных упаковок.

Изобретение относится к способу и устройству для охлаждения подвергающихся воздействию высокой температуры агрегатов в охлаждаемых реакторах для газификации углеродосодержащих видов топлива с помощью кислородосодержащих газифицирующих агентов, при этом стенки ректора охлаждаются посредством циркуляционного контура охлаждающего вещества.

Изобретение относится к отрасли переработки нефти и газа и может быть использовано для получения синтетических жидких углеводородов и метанола на установке, интегрированной в объекты промысловой подготовки газовых, газоконденсатных и нефтяных месторождений.

Изобретение относится к способу и установке для производства метанола из газа газовых и газоконденсатных месторождений через синтез-газ с использованием избыточного тепла основного процесса для регенерации метанола из водно-метанольного раствора, возвращаемого после ингибирования гидратообразования в системе сбора, подготовки и дальнейшего транспорта газа установки комплексной подготовки газа (УКПГ).

Установка для проведения химических процессов включает в себя средства для непосредственного проведения химического превращения в виде средств для разработки продукции и/или в виде по меньшей мере одного реактора для непрерывного промышленного производства продукции, устройства для приема и/или выработки исходных веществ и/или продуктов, а также устройства для управления химическим превращением, причем указанные средства и устройства собраны в единый интегрированный и передвижной функциональный блок, который служит в качестве инфраструктуры и предпочтительно выполнен в виде стандартного транспортного контейнера.

Изобретение описывает способ получения биодизельного топлива из сырья растительного происхождения, включающий обработку смеси растительного масла, спирта и щелочи физическим воздействием, при этом обработку проводят потоком СВЧ-энергии, а в качестве спирта используют изопропанол, причем смесь помещают в резонатор, выполняющий функцию реакционной емкости, над резонатором размещают магнетрон, между резонатором и магнетроном устанавливают с возможностью перемещения в вертикальной плоскости волновод и в процессе получения биодизельного топлива обрабатываемую смесь перекачивают по замкнутому контуру. Технический результат заключается в ускорении процесса при одновременном улучшении потребительских характеристик готового продукта - биодизельного топлива и исключении из процесса метанола. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области биотехнологии. Система состоит из следующих элементов: а) модуля подготовки образца, выполненного с возможностью захвата аналита из биологического образца в немикрожидкостном объеме на захватывающей частице, реагирующей на магнитное поле, и направления связанной с аналитом захватывающей частицы, реагирующей на магнитное поле, через первый микрожидкостный канал; б) реакционного модуля, включающего реакционную камеру, имеющую жидкостное сообщение с первым микрожидкостным каналом, и выполненного с возможностью иммобилизации связанной с аналитом захватывающей частицы, реагирующей на магнитное поле, и проведения реакции амплификации множества STR-маркеров аналита. При этом модуль подготовки образца и реакционный модуль интегрированы в одноразовый картридж, который состоит из: 1) по меньшей мере одной совокупности жидкостных камер, 2) платы с реагентами или картриджа с реагентами и 3) одного или более чем одного пневматически активируемого MOVe-клапана; в) модуля анализа. Причем система сконфигурирована для захвата аналита, для проведения химической или биохимической реакции с аналитом и для проведения анализа продукта реакции менее чем за 4 часа. За счет использования в данной системе MOVe-клапанов осуществляется перенос текучих средств, устойчивый к утечкам, и появляется возможность уменьшить размеры устройства для подготовки образцов. Также с помощью данной системы можно отбирать организмы мишени из образцов с большим количеством фоновых примесей, различать два разных штамма бактерий, эффективно захватывать клетки и токсины, значительно уменьшить объем целевого образца. 1 н. и 29 з.п. ф-лы, 104 ил., 3 пр.

Изобретение относится к реактору для проведения газожидкостных двухфазных химических реакций. Вертикальный реактор для получения мочевины с помощью прямого синтеза, начинающегося с аммиака и диоксида углерода, в газожидкостной двухфазной смеси, включает полую конструкцию, ограниченную внешней стенкой, имеющей цилиндрическую форму, закрытую на концах полукруглыми крышками и содержащую отверстия для впуска и выпуска технологических жидкостей, так чтобы обеспечить возможность попутного протекания газовой и жидкой фаз внутри реактора, множество наложенных друг на друга перфорированных тарелок, проходящих горизонтально внутри конструкции до внутренней поверхности цилиндрической стенки и подходящим образом разнесенных вдоль вертикальной оси таким образом, что между каждой парой соседних тарелок имеется сектор, находящийся в гидравлическом соединении с сектором, расположенным соответственно выше и/или ниже него, при этом по меньшей мере один сектор содержит разделительную перегородку, расположенную между двумя соседними тарелками и перпендикулярно им и закрепленную на поверхности тарелок и на внутренней поверхности футеровки внешней стенки, так чтобы разделить сектор на две секции, объемы которых находятся в отношении друг к другу, составляющем от 1/3 до 3/1, предпочтительно от 0,95 до 1,05, более предпочтительно равном 1. Изобретение обеспечивает эффективность и экономичность газожидкостных реакций, а также увеличение производственной мощности реактора. 3 н. и 12 з.п. ф-лы, 5 ил.
Изобретение относится к дегазации полимерного порошка. Описана блокировка для применения в способе дегазации полимерного порошка в сосуде для дегазации. Измеряют температуры паровой фазы, полученной при разделении жидкости и пара, которую применяют в качестве продувочного газа в сосуде для дегазации. Затем сравнивают указанную температуру с пороговой величиной. В случае, если измеренная температура выше пороговой величины, прекращают или снижают степень применения пара в качестве продувочного газа. Также описана блокировка, включающая измерение уровня жидкости, температуры и давления паровой фазы. Описан способ дегазации полимерного порошка. Технический результат - создание улучшенной системы для отслеживания качества возвратного продувочного газа, применяемого в дегазаторах, надежной, быстрой и простой в применении. 4 н. и 6 з.п. ф-лы, 1 пр.

Изобретение относится к универсальному устройству для осуществления деструкции материалов в различных режимах и может быть использовано в агрохимических методах анализа кормов, растений, пищевого сырья, в аналитических лабораториях и т.д. Устройство содержит теплоизоляционный корпус с двумя нагревательными камерами, автоматический выключатель, программируемый блок управления терморежимом и четыре быстросменные крышки: крышка для сухой деструкции с низкой поддерживающей вставкой в термостойких емкостях кассеты термостойкой со стаканом модернизированной в нагревательных камерах, крышка для мокрой деструкции с высокой поддерживающей вставкой в песочной бане в термостойких емкостях кассеты термостойкой со стаканом модернизированной над нагревательными камерами, крышка для мокрой деструкции в термостойких пробирках кассеты с пробирками модернизированной с требуемой глубиной погружения в нагревательные камеры и крышка для мокрой деструкции в колбах Къельдаля над нагревательными камерами. Изобретение позволяет унифицировать, упростить и ускорить подготовку материалов. 1 табл., 12 ил.
Изобретение относится к установке для получения ангидрида малеиновой кислоты путем гетерогенно-каталитического газофазного окисления исходного потока, содержащего углеводороды, по меньшей мере, с 4 углеродными атомами на молекулу, включающей реактор с пучком реакционных труб, в которых размещен твердофазный катализатор, на котором происходит экзотермическое взаимодействие исходного потока с кислородсодержащим газовым потоком, один или несколько насосов и один или несколько установленных вне реактора теплообменников, через которые протекает теплоноситель, представляющий собой солевой расплав, который протекает через промежуточное пространство между реакционными трубами, воспринимая теплоту реакции, причем температура солевого расплава лежит в диапазоне между 350 и 480°C. А реакционные трубы выполнены из легированной термостойкой стали, содержащей, по меньшей мере, 0,25 вес. % молибдена или, по меньшей мере, 0,5 вес. % хрома и, по меньшей мере, 0,25 вес. % молибдена. Установка отличается повышенной устойчивостью. 4 з.п. ф-лы, 4 пр.
Изобретение относится к дегазации полимерного порошка. Описана блокировка для применения в способе дегазации полимерного порошка в сосуде для дегазации. Блокировка включает измерение температуры полимерного порошка внутри или на выходе из сосуда для дегазации. Сравнение указанной измеренной величины с пороговым значением, чтобы выяснить, превышает ли измеренная величина пороговое значение или не превышает. Если измеренная температура ниже указанного порогового значения, осуществление одного или более действий, направленных на снижение концентрации углеводородов в полимерном порошке, выходящем из сосуда для дегазации, и/или прекращение выгрузки полимерного порошка из сосуда. Также описан способ дегазации полимерного порошка в сосуде для дегазации. Технический результат - обеспечение системой блокировки определения повышения содержания углеводородов, выходящих из сосуда дегазации, действующей быстро и простой в применении. 2 н. и 10 з.п. ф-лы, 2 пр.

Изобретение относится к реактору вертикально-наборной конструкции. Реактор включает компонент реактора, такой как вентилятор, установленный на центральном стержне в камере реактора, содержащий радиальные каналы для направления потока флюида при его прохождении сквозь реактор, эффективно направляющие флюид в радиальном направлении для контакта со стенкой камеры реактора, и компонент реактора, такой как вентилятор, имеющий верхнюю поверхность, нижнюю поверхность и поверхность внешнего диаметра, так что радиальные каналы заканчиваются у поверхности внешнего диаметра вентилятора, образуя отверстия флюидных каналов, обращенные к реакторной камере. Реактор также может содержать прокладку, имеющую внутренний диаметр и наружный диаметр, которая находится в контакте с верхней поверхностью или нижней поверхностью компонента реактора и радиально выступает за пределы кольцевой поверхности внешнего диаметра компонента реактора. Изобретение обеспечивает повышение теплопередачи реакции и высокую эффективность и производительность реактора. 2 н. и 13 з.п. ф-лы, 22 ил.

Изобретение относится к области химии высокомолекулярных соединений и нанотехнологиям и касается, в частности, способа получения полимерного материала, содержащего неорганические нано- или микрочастицы, который может найти применение в технике, например, в качестве: полимерных материалов с улучшенными механическими свойствами, газопроницаемых материалов, наполнителей резин, каучуков и нанокатализаторов. Способ получения полимерного материала, содержащего неорганические нано- или микрочастицы, включает формирование реакционной системы, в состав которой вводят неорганические частицы в смеси с мономером, и последующее проведение реакции полимеризации с образованием полимера на поверхности частиц под воздействием микроволнового излучения, при этом в качестве мономера используют жидкий органический мономер, выбранный из группы, включающей акриловую кислоту, N-винилпирролидон, изопрен и полимеризацию проводят в течение 10-30 мин под действием микроволнового излучения мощностью 5-10 Вт в среде чистого мономера или его смеси с диоксаном или этиленгликолем. В качестве неорганических нано- или микрочастиц используют вещества, выбранные из группы, включающей высокодисперсные металлы, интерметаллиды, оксиды и смешанные оксиды металлов, карбиды металлов, углеродные наноматериалы. Использование микроволнового излучения низкой мощности (5-10 Вт) в течение короткого времени (10-30 мин) позволяет проводить процесс контролируемой полимеризации с образованием продукта - неорганических нано- или микрочастиц, иммобилизированных в массе полимеров или в полимерные микросферы с заданной молекулярной массой и с необходимой толщиной покрытия. Использование смесей мономера с диоксаном или этиленгликолем позволяет дополнительно создавать пористую структуру образующихся полимеров. 1 з.п. ф-лы, 3 ил., 4 пр.

Изобретение относится к способу получения полимера с использованием устройства блокировки. Устройство блокировки представляет собой инструментальную систему, которая сконструирована для действия в ответ на условия, указывающие на потенциальную опасную ситуацию или последовательность, и предназначено для применения в способе получения полимера, который включает стадии: полимеризацию мономера и необязательно сомономера в реакторе с получением полимера, необязательно в присутствии инертного углеводорода, и выгрузку полученного полимера из реактора, при этом блокировка основана на температуре в реакторе и включает стадии: измерение температуры в реакторе и сравнении измеренной температуры с пороговым значением температуры, которое находится ниже обычного интервала температуры в реакторе, ожидаемого для получения соответствующего полимера, при этом выгрузку допускают, если измеренная температура выше, чем пороговое значение, и предотвращают, если измеренная температура ниже, чем пороговое значение. Блокировка также может быть дополнительно основана на измерении давления в реакторе и сравнении измеренного давления с пороговым значением давления, которое ниже обычного рабочего давления процесса, при этом выгрузку допускают, если измеренное давление меньше порогового значения или измеренное давление выше порогового значения и одновременно измеренная температура выше порогового значения, и выгрузку предотвращают, если измеренное давление выше, чем пороговое значение, но измеренная температура ниже порогового значения. Изобретение обеспечивает эффективное предотвращение или смягчение опасных ситуаций. 3 н. и 11 з.п. ф-лы.
Наверх