Способ сборки источников ионизирующего излучения на основе радионуклида кобальта-60 и устройство для его осуществления

Авторы патента:


Способ сборки источников ионизирующего излучения на основе радионуклида кобальта-60 и устройство для его осуществления
Способ сборки источников ионизирующего излучения на основе радионуклида кобальта-60 и устройство для его осуществления

 


Владельцы патента RU 2558752:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный университет" (RU)

Изобретение относится к ядерной технике и может быть использовано при изготовлении источников для медицинских целей. Источники ионизирующего излучения (ИИИ) в виде заготовок из кобальта диаметром 1 мм и длиной 1 мм, заранее складированные в открытом бункере, порционно транспортируются сепаратором через узел загрузки в капсулу. При этом нижняя часть узла загрузки капсулы, в процессе загрузки капсулы, опущена ниже верхней части капсулы, а количество порционно транспортируемых ИИИ и их масса определяется размерами пазов сепаратора и их количеством. Устройство сборки ИИИ на основе радионуклида кобальта-60 включает в себя накопительный открытый бункер с ИИИ, устройство передачи порции ИИИ в капсулу, узел загрузки капсулы. Кроме того, устройство передачи порции ИИИ в капсулу выполнено в виде сепаратора, подключенного к шаговому двигателю, причем сепаратор оснащен пазами для транспортирования ИИИ от накопительного открытого бункера в узел загрузки капсулы. Технический результат: упрощение конструкции и снижение трудоемкости загрузки ИИИ в капсулы. 2 н. и 4 з.п. ф-лы, 2 ил.

 

Изобретение относится к области ядерной техники и может быть использовано при изготовлении источников, предназначенных специально для медицинских целей.

Известен способ изготовления радионуклидных источников и устройство для его осуществления (см. патент РФ №2206134, кл. G21G4/04, опубл. 10.06.2003г.), заключающийся в порционном заполнении капсулы источника радионуклидом, герметизации капсулы и измерении мощности экспозиционной дозы готового источника. Количество порций определяют по формуле N=100/С, где N - число порций; С - планируемое отклонение измеряемой мощности экспозиционной дозы от ее заданного номинального значения, %. Устройство для осуществления способа состоит из бункера с радионуклидом, тележки с устройством, открывающим шибер бункера и отбирающим из него порцию радионуклида, устройства передачи порции в корпус источника, узла загрузки капсулы и коллиматора с ионизационной камерой. Преимущество изобретения заключается в том, что оно обеспечивает максимально возможное приближение измеренной величины мощности экспозиционной дозы источника к ее заданному номинальному значению.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного изобретения, относится то, что способ и устройство более трудоемко при получении одного и того же конечного продукта.

Сущность предлагаемого способа сборки источников ионизирующего излучения (ИИИ) на основе радионуклида кобальта-60 заключается в том, что ИИИ в виде заготовок из кобальта диаметром 1 мм и длиной 1 мм, заранее складированные в открытом бункере, порционно транспортируются сепаратором через узел загрузки в капсулу, причем нижняя часть узла загрузки капсулы, в процессе загрузки капсулы, опущена ниже верхней части капсулы, а количество порционно транспортируемых ИИИ и их масса определяется размерами пазов сепаратора и их количеством.

Устройство сборки источников ионизирующего излучения на основе радионуклида кобальта-60 включает в себя устройство передачи порции ИИИ в капсулу, которое выполнено в виде сепаратора, подключенного к шаговому двигателю, причем сепаратор оснащен пазами для транспортирования ИИИ от накопительного открытого бункера в узел загрузки капсулы. Сам сепаратор расположен в корпусе механизма дозатора, который в верхней своей части оснащен накопительным открытым бункером, а в нижней части - узлом загрузки капсулы. Корпус механизма дозатора в горизонтальной плоскости перемещается по направляющим, закрепленным во втулках, причем сами втулки передвигаются в вертикальной плоскости по вертикальным направляющим. Кроме того, втулки с закрепленным на них механизмом дозатора перемещаются в вертикальной плоскости за счет рычагов, качающихся на стойках и приводящихся в движение ползуном, перемещающимся по направляющим в вертикальной плоскости.

Перемещение корпуса механизма дозатора в горизонтальной плоскости и перемещение ползуна в вертикальной плоскости осуществляется дистанционно рукой манипулятора в радиационно-защитных «горячих» камерах.

Использование предлагаемого изобретения обеспечивает следующий технический результат:

- упрощение конструкции и снижение трудоемкости загрузки ИИИ в капсулы.

Указанный технический результат при осуществлении изобретения достигается тем, что предложенный способ включает в себя порционное заполнение капсулы источниками ионизирующего излучения.

Особенность заключается в том, что ИИИ в виде заготовок из кобальта диаметром 1 мм и длиной 1 мм, заранее складированные в открытом бункере, порционно транспортируются сепаратором через узел загрузки в капсулу, причем нижняя часть узла загрузки капсулы, в процессе загрузки капсулы, опущена ниже верхней части капсулы, а количество порционно транспортируемых ИИИ и их масса определяется размерами пазов сепаратора и их количеством.

Устройство сборки источников ионизирующего излучения на основе радионуклида кобальта-60 включает в себя накопительный открытый бункер с ИИИ, устройство передачи порции ИИИ в капсулу, узел загрузки капсулы.

Особенность заключается в том, что устройство передачи порции ИИИ в капсулу выполнено в виде сепаратора, подключенного к шаговому двигателю, причем сепаратор оснащен пазами для транспортирования ИИИ от накопительного открытого бункера в узел загрузки капсулы. Сам сепаратор расположен в корпусе механизма дозатора, который в верхней своей части оснащен накопительным открытым бункером, а в нижней части - узлом загрузки капсулы. Корпус механизма дозатора в горизонтальной плоскости перемещается по направляющим, закрепленным во втулках, причем сами втулки передвигаются в вертикальной плоскости по вертикальным направляющим. Кроме того, втулки с закрепленным на них механизмом дозатора перемещаются в вертикальной плоскости за счет рычагов, качающихся на стойках и приводящихся в движение ползуном, перемещающимся по направляющим в вертикальной плоскости.

Перемещение корпуса механизма дозатора в горизонтальной плоскости и перемещение ползуна в вертикальной плоскости осуществляется дистанционно рукой манипулятора в радиационно-защитных «горячих» камерах.

Проведенный заявителем анализ уровня техники, включающий поиск по патентам и научно-техническим источникам информации и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил аналог, характеризующийся признаками, тождественными всем существенным признакам заявленного изобретения.

Следовательно, заявленное изобретение соответствует условию «новизна».

Конструкция изобретения представлена на фигурах.

Фиг.1 - схема устройства в режиме смены капсулы.

Фиг.2 - схема устройства в режиме загрузки капсулы ИИИ.

Устройство состоит из платформы 1, вертикальных направляющих 2, механизма дозатора 3, который в свою очередь состоит из шагового двигателя 4, корпуса 5, сепаратора 6 с пазами 7, накопительного открытого бункера 8, узла загрузки капсулы 9, направляющих 10, механизма лифта 11, который в свою очередь состоит из направляющих 12, ползуна 13, рычагов 14, стоек 15, втулок 16, подставки 17, капсулы 18, источников ионизирующего излучения (ИИИ) 19.

Устройство располагают в радиационно-защитной «горячей» камере и работает оно следующим образом. В накопительный открытый бункер 8 загружают партию ИИИ 19 для сборки нескольких комплектов источников. Для загрузки капсулы 18 производят следующие операции. Дистанционной рукой манипулятора ползун 13 опускают вниз и тем самым через систему рычагов 14 поднимают вверх втулки 16 и закрепленный на ней механизм дозатора 3. Затем дистанционной рукой манипулятора отводят вправо дозатор 3, по направляющим 10 выводя узел загрузки 9 из зоны установки капсулы 18. Заполненную ранее капсулу 18 дистанционной рукой манипулятора убирают с подставки 17, а на её место ставят новую капсулу для заполнения. Затем механизм дозатора 3 возвращают в режим загрузки. Причем нижняя часть узла загрузки 9 должна быть расположена ниже верхней части капсулы 18. Этим исключается попадание радиоактивной пыли на край горловины капсулы. После этого дистанционно включают шаговый двигатель 4, который приводит во вращение по часовой стрелке сепаратор 6. ИИИ, расположенные в пазах 7 сепаратора 6, дискретно транспортируются в узел загрузки капсулы, а затем в саму капсулу. Количество порционно транспортируемых ИИИ и их масса определяется размерами пазов 7 их количеством в сепараторе 6.

Таким образом, выше изложенное описание свидетельствует о выполнении при использовании заявленного изобретения следующей совокупности условий:

- средство, воплощающее заявленное изобретение, при его осуществлении предназначено для сборки источников ионизирующего излучения на основе радионуклида кобальта-60 и может быть использовано в атомной технике;

- для заявленного способа и устройства в том виде, как они охарактеризованы в изложенной формуле изобретения, подтверждена возможность его осуществления с помощью описанных в заявке средств и методов;

- средство, воплощающее заявленное изобретение при осуществлении, способно обеспечить достижение поставленных технических задач (упрощение конструкции и снижение трудоемкости загрузки ИИИ в капсулы).

1. Способ сборки источников ионизирующего излучения на основе радионуклида кобальта-60, включающий порционное заполнение капсулы источниками ионизирующего излучения (ИИИ), отличающийся тем, что ИИИ в виде заготовок из кобальта диаметром 1 мм и длиной 1 мм, заранее складированные в открытом бункере, порционно транспортируются сепаратором через узел загрузки в капсулу, причем нижняя часть узла загрузки капсулы, в процессе загрузки капсулы, опущена ниже верхней части капсулы, а количество порционно транспортируемых ИИИ и их масса определяется размерами пазов сепаратора и их количеством.

2. Устройство сборки источников ионизирующего излучения на основе радионуклида кобальта-60, включающее в себя накопительный открытый бункер с ИИИ, устройство передачи порции ИИИ в капсулу, узел загрузки капсулы, отличающееся тем, что устройство передачи порции ИИИ в капсулу выполнено в виде сепаратора, подключенного к шаговому двигателю, причем сепаратор оснащен пазами для транспортирования ИИИ от накопительного открытого бункера в узел загрузки капсулы.

3. Устройство по п. 2, отличающееся тем, что сепаратор расположен в корпусе механизма дозатора, который в верхней своей части оснащен накопительным открытым бункером, а в нижней части - узлом загрузки капсулы.

4. Устройство по п. 2, отличающееся тем, что корпус механизма дозатора в горизонтальной плоскости перемещается по направляющим, закрепленным во втулках, причем сами втулки передвигаются в вертикальной плоскости по вертикальным направляющим.

5. Устройство по п. 2, отличающееся тем, что втулки с закрепленным на них механизмом дозатора перемещаются в вертикальной плоскости за счет рычагов, качающихся на стойках и приводящихся в движение ползуном, перемещающимся по направляющим в вертикальной плоскости.

6. Устройство по п. 2, отличающееся тем, что перемещение корпуса механизма дозатора в горизонтальной плоскости и перемещение ползуна в вертикальной плоскости осуществляется дистанционно рукой манипулятора в радиационно-защитных "горячих" камерах.



 

Похожие патенты:

Изобретение относится к средствам извлечения полученных в результате облучения целевых компонентов из мишени. В заявленном способе предусмотрено выполнение мишени (19) в виде цилиндра с центральным стержнем, позиционированным по центру цилиндра двумя пробками, герметизация мишени с двух сторон и заполненение кольцеобразного пространства целевыми компонентами.

Изобретение относится к средствам извлечения компонентов из облученной мишени. В заявленном способе мишень, выполненную в виде загерметизированного в оболочку плоского сепаратора, сначала подвергают поперечной разрезке путем отсечения конечных частей мишени, а затем производят двухстороннее вскрытие мишени по обеим её длинным сторонам.

Изобретение относится к способам и устройствам для производства изотопов внутри водных стержней ядерных топливных узлов. Способы включают выбор требуемой облучаемой мишени, основываясь на свойствах мишени, загрузку мишени в стержень-мишень, основываясь на свойствах облучаемых мишеней и топливного узла, экспонирование стержня-мишени потоку нейтронов и/или сбор произведенных изотопов из облучаемых мишеней из стержня-мишени.

Изобретение относится к источнику ионизирующего излучения. Заявленный источник излучения содержит вставку с радиоактивным веществом, расположенную в свинцовом корпусе (3).

Заявленное изобретение относится к приборам для генерации нейтронов при ядерном взаимодействии ускоренных дейтронов с мишенями, содержащими тяжелые изотопы водорода.

Изобретение относится к медицинской технике и может быть использовано при выполнении лучевой терапии злокачественных опухолей поджелудочной железы пучками адронов.

Изобретение относится к области получения радиоактивных изотопов медицинского и научного назначения без носителя в радиохимически чистом виде. .

Изобретение относится к радиохимии и производству изделий медицинской техники и может быть использовано для нанесения рутения-106 на вогнутую металлическую поверхность подложки офтальмоаппликатора.
Изобретение относится к технологии производства стабильных изотопов, в частности к технологии изменения изотопного состава свинца или индия при зонной перекристаллизации, и может быть использовано для получения ультрачистых стабильных изотопов металлов.

Изобретение относится к медицинской технике и может быть использовано при выполнении лучевой терапии злокачественных опухолей пучками адронов. .

Изобретение относится к ядерной технике и может быть использовано при изготовлении источников ионизирующего излучения (ИИИ) медицинского назначения. Способ включает в себя заполнение капсулы источниками ионизирующего излучения. Кроме того, ИИИ в виде заготовок из кобальта диаметром 1 мм и длиной 1 мм, заранее складированные в первом открытом бункере, по одной единице транспортируются с помощью магнитных сил через узел загрузки в капсулу, куда дополнительно из второго открытого бункера транспортируются компенсаторы по одной единице с помощью магнитных сил через узел загрузки в капсулу. При этом количество ИИИ и компенсаторов фиксируется счетчиком. Загрузка капсулы осуществляется на посту загрузки, а смена капсулы - на посту смены, путем перемещения капсулы дистанционной рукой манипулятора. Также предложено устройство для работы в радиационно-защитной «горячей» камере. Технический результат: снижение трудоемкости загрузки ИИИ в капсулы с использованием компенсаторов. 2 н. и 5 з.п. ф-лы, 1 ил.

Изобретение относится к реакторной технологии получения радионуклидов и может быть использовано для производства радионуклида 63Ni, являющегося основой для создания миниатюрных автономных источников электрической энергии с длительным сроком службы, работающих на бета-вольтаическом эффекте. Способ получения радионуклида 63Ni включает изготовление никелевой мишени, обогащенной по изотопу 62Ni, из композиционного материала, состоящего из наночастиц никеля или его соединений, окруженных буфером в виде твердого вещества, растворимого в воде или других растворителях, облучение мишени в нейтронном потоке ядерного реактора, разделение наночастиц мишени и буфера, направление буфера на радиохимическую переработку для выделения радионуклида 63Ni и возвращение наночастиц никеля в ядерный реактор в состав новой мишени. Изобретение обеспечивает повышение удельной активности радионуклида 63Ni, упрощение технологического процесса его получения и снижение количества радиоактивных отходов. 4 з.п. ф-лы, 2 табл., 1 пр.
Изобретение относится к области получения радиоактивных изотопов, а более конкретно к технологии получения радиоактивного изотопа никель-63, используемого в производстве бета-вольтаических источников тока. Способ получения радионуклида никель-63 включает в себя получение из исходного никеля обогащенной по никелю-62 никелевой мишени с содержанием никеля-64 более 2%, облучение мишени в реакторе и последующее обогащение облученного продукта по никелю-63 до достижения им содержания 75% и более в обогащенном продукте. Изобретение обеспечивает крупномасштабное рентабельное производство никеля-63 для бета-вольтаических источников тока.
Изобретение относится к области получения радиоактивных материалов, в частности к обработке облученного сырья, которое может быть использовано для производства закрытых источников ионизирующих излучений для радиационно-химических гамма-установок. Способ получения изотопов включает помещение герметичных капсул с облучаемым материалом в герметичные пеналы, заполненные инертным газом, облучение капсул с материалом в ядерном реакторе и извлечение их из пеналов, при этом на извлеченные капсулы наносят покрытие из эпоксидно-акриловой композиции, которая затем отверждается под действием ионизирующего излучения радиационно активированного материала, находящегося внутри капсул. Изобретение обеспечивает снижение уровня радиоактивного загрязнения капсул и технологического оборудования горячей камеры, а также снижение трудоемкости операций.

Изобретение относится к области радиохимии и может быть использовано в технологии получения радиоактивных изотопов и аналитической химии. Способ разделения радионуклидов кадмия и серебра включает растворение облученного серебра в азотной кислоте, упаривание раствора, растворение образовавшихся нитратов в аммиачном растворе, восстановление серебра до металла в аммиачной среде сернокислым гидроксиламином при рН более 6 и при мольном отношении сернокислого гидроксиламина к серебру более 1, отделение осадка металлического серебра от маточного раствора, содержащего кадмий-109 и осаждение из маточного раствора любого малорастворимого соединения кадмия. Изобретение обеспечивает эффективное разделение радионуклидов кадмия и серебра. 2 ил., 1 табл.

Изобретение относится к области получения короткоживущих радиоактивных фармацевтических препаратов в количествах порядка единичной дозы. Генератор биомаркеров включает в себя ускоритель частиц и систему микросинтеза радиоактивных фармацевтических препаратов. Микроускоритель генератора биомаркеров оптимизирован для производства радиоизотопов, полезных при синтезе радиоактивных фармацевтических препаратов в количествах порядка одной единичной дозы, обеспечивая значительно снижение размера, требований по мощности и веса по сравнению с традиционными радиационно-фармацевтическими циклотронами. Система микросинтеза радиоактивных фармацевтических препаратов в генераторе биомаркеров представляет собой систему химического синтеза малого объема, содержащую микрореактор и (или) микроструйный чип, и оптимизирована для синтеза радиоактивных фармацевтических препаратов в количествах порядка одной единичной дозы. Технический результат - снижение количества необходимого радиоизотопа и времени его переработки по сравнению с традиционными системами синтеза радиоактивных фармацевтических препаратов. 4 н. и 18 з.п. ф-лы, 10 ил.

Изобретение относится к технологии получения радиоизотопов для ядерной медицины на ускорителях заряженных частиц. Способ получения радиоизотопа стронций-82 (82Sr) по реакции Rb(p,xn)82Sr включает облучение мишени протонами, в качестве которой используют раствор или расплав одного или нескольких химических соединений рубидия или их взвесь в жидком носителе, и осуществление их циркуляции в замкнутом контуре через зону облучения протонами, нарабатывая в мишени по реакции 85Rb(p,4n)82Sr и(или) реакции 87Rb(p,6n)82Sr радиоизотоп 82Sr, и выделение 82Sr из облученной мишени после облучения или непосредственно во время облучения радиохимическим методом. Изобретение обеспечивает снижение взрывоопасности способа, расширение функциональности, возможность использования многоразового мишенного устройства, позволяющего исключить затраты на его изготовление и возможность автоматизации способа. 5 з.п. ф-лы, 3 ил., 9 табл.
Наверх