Высокопрочный алюминиевый литейный сплав

Изобретение относится к области цветной металлургии, а именно к производству фасонных отливок из сплава на основе алюминия, применяемых в качестве нагруженных деталей, длительно работающих при температурах до 300°C в авиационной, автомобильной и других отраслях промышленности. Сплав содержит, мас. %: Cu 2,0-5,5, Mn 0,1-2,5, Cd 0,01-1,5, Si 0,01-1,0, Mg 0,01-0,9, Fe 0,01-1,0, по меньшей мере один элемент из группы: Ti 0,01-0,5, Zr 0,01-0,5, Y 0,001-0,5, In 0,001-0,5, Al - остальное. Техническим результатом изобретения является получение для сплавов данного типа высоких прочностных характеристик при комнатной и повышенной температурах, низкой горячеломкости, удовлетворительной жидкотекучести и линейной усадки. 2 пр., 2 табл.

 

Изобретение относится к области цветной металлургии, а именно к производству фасонных отливок из сплава на основе алюминия, применяемых в качестве нагруженных деталей, длительно работающих при температурах до 300°C в авиационной, автомобильной и других отраслях промышленности.

Известен литейный сплав на основе алюминия, содержащий, масс. %:

Cu 4,5-5,3;

Mn 0,6-1,0;

Ti 0,25-0,45;

Fe, Si, Mg, Zr, Zn, Ni - примеси с общим содержанием до 0,9;

Al - остальное.

(А.с. СССР №114063, опубл. 06.04.1957.)

Недостатками сплава являются невысокие механические свойства (предел прочности до 350 МПа) и низкие технологические свойства относительно настоящего изобретения.

Известен также сплав на основе алюминия, содержащий, масс. %:

Cu 4,7-9,0;

Mn 0,01-1,0;

Ti 0,1-0,5;

Si <1,0;

Fe <0,6;

Sb, Be, Bi, В, Cd, Ca, Ce, Cr, Co, Pb, Li, Mo, Nb, Ni, Ag, Та, Те, Tl, Th, W, V, Zn, Zr, Y - примеси с общим содержанием до 1,5;

Al - остальное.

(Патент Великобритании GB 578222, дата публикации 20.06.1946.)

Недостатками сплава являются невысокие механические свойства (предел прочности до 430 МПа) и большой процент общего содержания примесей, который ведет к нестабильности свойств.

В настоящее время предъявляются повышенные требования к сплавам по механическим свойствам, таким образом, существующие сплавы уже не могут полностью удовлетворять конструкторов.

Наиболее близким по технической сущности и достигаемому результату является сплав на основе алюминия, содержащий медь, марганец, магний, титан, серебро, цирконий и, опционно, ванадий при следующем соотношении компонентов, масс. %:

Si 0,1-1,0;

Cu 3,0-7,0;

Mn 0,05-1,5;

Mg 0,01-2,0;

Ti 0,01-0,10;

Ag 0,05-1,0;

Zr до 0,1;

V до 0,15;

Fe до 0,15;

Al - остальное.

(Европейский патент ЕР 2719784, публикация от 16.04.2014 г.)

Недостатком сплава-прототипа являются сложность последующей обработки, низкие литейные свойства, дороговизна некоторых добавок. Так, обработка сплава-прототипа включает в себя гомогенизацию, горячую ковку, закалку, холодное прессование, полное искусственное старение. Такой сплав нельзя применять для производства фасонных отливок.

Задачей предлагаемого изобретения является создание высокопрочного литейного сплава на основе алюминия с высокими механическими свойствами при комнатной и повышенной (до 300°C) температурах.

Технический результат: получение высоких прочностных характеристик при комнатной и повышенной температурах, при сохранении низкой горячеломкости, удовлетворительной жидкотекучести и линейной усадки, характерных для сплавов данного типа.

Технический результат достигается тем, что предложен литейный сплав на основе алюминия, содержащий медь, марганец, магний, железо, кремний, отличающийся тем, что он дополнительно содержит кадмий и по меньшей мере один элемент, выбранный из группы, состоящей из титана, циркония, иттрия, индия, что упомянутые элементы содержатся при следующем соотношении, масс. %:

Cu 2,0-5,5;

Mn 0,1-2,5;

Cd 0,01-1,5;

Si 0,01-1,0;

Mg 0,01-0,9;

Fe 0,01-1,0;

по меньшей мере один элемент из группы:

Ti 0,01-0,5;

Zr 0,01-0,5;

Y 0,001-0,5;

In 0,001-0,5;

Al - остальное.

Ниже приводятся данные по влиянию химических элементов на характеристики сплава при заявленных соотношениях компонентов.

Медь образует с алюминием фазу CuAl2, которая растворяется в твердом растворе после закалки и старения и обеспечивает упрочнение сплава. При введении марганца образуется фаза Т (Al12Mn2Cu), которая имеет повышенную твердость и пониженную склонность к коагуляции при длительном воздействии температуры. Мельчайшие частицы этой фазы образуются в процессе распада α-твердого раствора как при охлаждении в процессе кристаллизации, так и при нагреве под закалку и располагается достаточно равномерно внутри зерен α-твердого раствора, способствуя повышению прочности при комнатной и повышенных температурах. Кадмий, атомный радиус которого больше, чем у алюминия (rCd=1.49 Å, rA1=1.43 Å), захватывает избыточные вакансии. Такие группы, тормозя передвижение атомов меди при старении, создают предпосылки для ограничения роста размеров зон Гинье-Престона (ЗГП), увеличивают их общее объемное содержание. Происходящее при этом значительное искажение кристаллической решетки обеспечивает упрочнение сплава.

Комплексное модифицирование титаном, цирконием, иттрием и индием способствует более эффективному измельчению зерна и значительному повышению прочности и пластичности сплава. Введение иттрия способствует повышению технологических свойств - снижается горячеломкость и повышается жидкотекучесть.

Установлено, что при данном соотношении и содержании введенных компонентов сплав имеет высокие механические и технологические показатели, позволяющие получать фасонные отливки, длительно работающие при температурах до 300°C.

При этом литейные свойства сплава следующие:

- горячеломкость (ширина кольца) 25 мм;

- жидкотекучесть 250 мм;

- линейная усадка 1,25%.

Механические свойства при 20°C, режим термообработки Т5:

σв=430-480 МПа, σ0,2=290-320 МПа, δ=10-14%.

Примеры осуществления

Пример 1

Сплав разного состава (см. Таблицу 1) готовили в электрических печах сопротивления в графитово-шамотных тиглях. Литьем в металлические формы отливали стандартные образцы ⌀12 мм для определения механических свойств при комнатной температуре. Образцы испытывали после закалки и искусственного старения.

Отливали в песчаные формы прутковую пробу на жидкотекучесть (диаметр прутков 5 мм). Средняя длина прутков получилась равной 250 мм при максимально возможной длине 600 мм.

Отливали в песчаные формы кольца для определения горячеломкости (СМИ 222-55). Толщина кольца - 5 мм, наружный диаметр - 107 мм. Кольцо шириной 25 мм имело трещины, кольца шириной от 27,5 мм трещин не имели.

Пример 2.

Изделие (фасонная отливка), выполненное из предлагаемого сплава. Фасонные отливки, изготовленные из сплава по настоящему изобретению, прошли контроль качества. Брака по литью не обнаружено.

В Таблице 1 приведен химический состав предлагаемого сплава и сплава-прототипа.

В Таблице 2 приведены механические и технологические (литейные) свойства. Из Таблицы 2 следует, что по сравнению со сплавом-прототипом, предлагаемый сплав имеет лучшие механические свойства при комнатной температуре и лучшие механические свойства при повышенных температурах.

Таким образом, предлагаемый сплав на основе алюминия рекомендуется применять в изделиях самолетостроения и автомобилестроения в качестве нагруженных деталей при комнатной и повышенной температурах.

Высокопрочный алюминиевый литейный сплав, содержащий медь, марганец, кремний, магний, железо, отличающийся тем, что он дополнительно содержит кадмий и по меньшей мере один элемент из группы, состоящей из титана, циркония, иттрия, индия, при следующем соотношении компонентов, масс. %:

Cu 2,0-5,5
Mn 0,1-2,5
Cd 0,01-1,5
Si 0,01-1,0
Mg 0,01-0,9
Fe 0,01-1,0
по меньшей мере один элемент из группы:
Ti 0,01-0,5
Zr 0,01-0,5
Y 0,001-0,5
In 0,001-0,5
Al - остальное



 

Похожие патенты:

Алюминий-медный сплав для литья, содержащий по существу нерастворимые частицы, которые занимают междендритные области сплава, и свободный титан в количестве, достаточном для измельчения зернистой структуры в литейном сплаве.

Изобретение относится к области металлургии, в частности к деформируемым наноструктурным сплавам на основе алюминия и способам их получения для изделий, работающих при повышенных температурах.

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, и может быть использовано при получении изделий, работающих в диапазоне температур до 350°С.
Изобретение относится к металлургии литейных сплавов, в частности к антифрикционным сплавам на основе алюминия, работающим в условиях трения скольжения. Антифрикционный сплав на основе алюминия содержит основные компоненты в следующем соотношении, мас.%: кремний - 12-15, медь - 3-5, алюминий - остальное, и имеет структуру, содержащую кристаллы эвтектического кремния глобулярной формы размером от 2 до 8 мкм.

Изобретение относится к продуктам из алюминиевых сплавов и способам их изготовления. .
Изобретение относится к металлургии и может быть применено для получения алюминиево-медных лигатур. .
Изобретение относится к изделию из алюминиевого сплава для конструктивных элементов, имеющего химический состав, включающий в себя, в мас.%: Cu 3,4-5,0, Li 0,9-1,7, Mg 0,2-0,8, Ag 0,1-0,8, Mn 0,1-0,9, Zn 0,1-1,5 и один или более элементов, выбранных из группы, состоящей из: (Zr 0,05-0,3, Cr 0,05-0,3, Ti 0,03-0,3, Sc 0,05-0,4, Hf 0,05-0,4,), Fe<0,15, Si<0,5, обычные и неизбежные примеси и остальное - алюминий, и к способу изготовления изделия из этого сплава, изделия имеют баланс высокой прочности и высокой вязкости и используются в авиации и космонавтике.
Изобретение относится к получению высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu, предназначенных для изготовления прессованных, кованых и катаных полуфабрикатов.

Изобретение относится к цветной металлургии, в частности к литейным сплавам на основе алюминия, применяемым в авиационной технике и других отраслях машиностроения для нагруженных деталей внутреннего набора фюзеляжа, деталей управления, силовых кронштейнов и др.

Изобретение относится к области металлургии, а именно к высокоресурсным деформируемым термически упрочняемым свариваемым алюминиевым сплавам пониженной плотности с высокими характеристиками вязкости разрушения и прочности, в частности системы Al - Cu - Li, используемым в качестве конструкционных материалов в изделиях авиакосмической техники. Сплав содержит, мас.%: медь 2,5-3,3; литий 0,6-1,6; магний 0,25-1,2; серебро 0,2-0,6; цирконий 0,05-0,13; цинк 0,01-0,8; церий 0,005-0,1; бериллий 0,00001-0,001; по крайней мере один элемент из группы, содержащей: кальций 0,001-0,05; титан 0,005-0,15; марганец 0,005-0,5; хром 0,01-0,2; ванадий 0,01-0,2; железо 0,01-0,05; кремний 0,01-0,12 и по крайней мере один элемент из группы, содержащей: скандий 0,01-0,11; никель 0,005-0,1; олово 0,0001-0,05; остальное алюминий. Техническим результатом изобретения является повышение вязкости разрушения, КСУ, предела прочности, σв, предела текучести, σ0,2, сплава, улучшение пластичности при холодной прокатке для получения тонких листов толщиной до 0,5 мм и свариваемости. 2 н.п. ф-лы, 1 пр., 2 табл.
Изобретение относится к области металлургии, в частности к высокопрочным сплавам пониженной плотности с повышенной вязкостью разрушения на основе системы алюминий-медь-литий, и может быть использовано для изготовления элементов конструкций в авиакосмической промышленности, таких как лонжероны, балки, шпангоуты и т.д. Сплав содержит, мас.%: медь 3,5-4,5, литий 0,9-1,5, магний 0,01-0,6, серебро 0,05-0,7, цинк 0,05-0,8, цирконий 0,01-0,2, железо 0,01-0,1, кремний 0,01-0,1, марганец 0,01-0,5, кальций 0,001-0,25, по крайней мере, один элемент, выбранный из группы, включающей скандий 0,01-0,2, титан 0,01-0,2, церий 0,05-0,2, алюминий - остальное. Предпочтительно, соотношение содержания меди к литию составляет 2,5-4,0. Техническим результатом изобретения является создание сплава пониженной плотности на основе алюминия и изделия из него, обладающего высокими прочностными свойствами и вязкостью разрушения. 2 н. и 1 з.п. ф-лы, 1 пр., 2 табл.
Изобретение относится к области металлургии сплавов, в частности деформируемых термически упрочняемых алюминиевых сплавов системы Al-Cu-Mg-Ag, предназначенных для использования в качестве высокопрочных конструкционных материалов в авиационно-космической промышленности. Сплав содержит, мас. %: медь 4,0-5,5, магний 0,2-0,8, марганец 0,2-0,6, серебро 0,4-0,8, титан 0,05-0,2, хром 0,02-0,1, цирконий 0,05-0,2, ванадий <0,1, цинк <0,25, железо <0,1, кремний <0,1, алюминий - остальное. Техническим результатом изобретения является повышение уровня прочностных свойств алюминиевого сплава. 2 пр., 3 табл.

Изобретение относится к области металлургии, в частности к деформируемым наноструктурным сплавам на основе алюминия, содержащим медь и марганец, и может быть использовано для получения изделий, работающих при повышенных температурах. Сплав на основе алюминия содержит, мас. %: медь 0,5-2,0; марганец 0,3-1,6; цирконий 0, 1-0,5; бор 0,02-0,15; серебро 0,01-0,5; скандий 0,02-0,15; железо 0,01-0,3; кремний 0,01-0,35, неизбежные примеси до 0,1, из них каждой до 0,03, алюминий - остальное. Сплав имеет структуру, состоящую из алюминиевого твердого раствора и наночастиц вторичных алюминидов циркония и скандия, а бор присутствуют в структуре сплава в виде наночастиц AlB2, AlB12 со средним размером не более 50 нм. Сплав обладает повышенной термостойкостью, предел прочности (σв) после выдержки 250°C 400 часов составляет не менее 170 МПа, и электропроводностью не менее 55% IACS. 1 з.п. ф-лы, 2 табл.

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой содержит компоненты в следующем соотношении, мас.%: кремний 8-13, медь 0,1-10, германий 1,5-8, железо 0,5-3, хром 0,1-2,1, марганец 0,5-3, кобальт 0,001-0,8, молибден 0,001-0,8, стронций 0,001-0,2, бериллий 0,001-0,1, титан 0,001-0,1, натрий 0,001-0,2 и ванадий 0,001-0,2, алюминий остальное. Суммарное содержание меди и германия не превышает 14 мас.%. Отношение содержания железа к марганцу составляет 1:1. Отношение содержания хрома к железу составляет от 1:1 до 1:1,2. При вакуумной пайке припой дополнительно содержит магний в количестве 0,1-1 мас.%. Изобретение обеспечивает понижение температуры плавления припоя, повышение прочности паяных конструкций, что позволяет увеличить срок их службы. 1 з.п. ф-лы, 2 табл., 3 пр.

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой содержит компоненты в следующем соотношении, мас. %: кремний 5-13, медь 4-7, цинк 4-7, никель 0,5-3, марганец 0,3-3, железо 0,3-3, по меньшей мере один элемент из группы, включающей стронций 0,001-0,2, бериллий 0,001-0,1, титан 0,001-0,1, натрий 0,001-0,2 и ванадий 0,001-0,2, остальное - алюминий. Отношение содержания железа к марганцу составляет от 1:1 до 1:1,1. Отношение содержания никеля к железу составляет не более 1:2. При вакуумной пайке припой дополнительно содержит магний в количестве 0,1-1 мас. %. При пайке с длительным термическим циклом припой дополнительно содержит, мас.%: кобальт 0,001-0,8 и молибден 0,001-0,8. Технический результат заключается в понижении температуры плавления припоя, повышении прочности и коррозионной стойкости получаемых паяных конструкций из алюминиевых сплавов, что обеспечивает повышение их срока службы. 2 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к массивным изделиям из деформируемого алюминиевого сплава серии 2ххх. Изделие из алюминиевого сплава, полученное обработкой давлением и имеющее конечную толщину по меньшей мере 25,4 мм, выполнено из алюминиевого сплава, содержащего, в вес.%: от 3,00 до 3,80 Cu, от 0,05 до 0,35 Mg, от 0,975 до 1,385 Li, причем -0,3×Mg-0,15Cu+1,65≤Li≤-0,3×Mg-0,15Cu+1,85, от 0,05 до 0,20 Zr, от 0,20 до 0,50 Zn, от 0,10 до 0,50 Mn, вплоть до 0,12 Si, вплоть до 0,15 Fe, вплоть до 0,15 Ti, вплоть до 0,05 любой примеси, при сумме примесей, не превышающей 0,15, остальное - алюминий. Изобретение направлено на достижение улучшенного сочетания прочности и вязкости. 24. з.п. ф-лы, 3 пр., 14 табл., 22 ил.

Изобретение относится к порошковой металлургии. Способ получения порошка квазикристаллического материала системы Al-Cu-Fe включает перемешивание порошков алюминия, меди и железа при соотношении компонентов, соответствующем области существования квазикристаллической фазы сплава системы Al-Cu-Fe, нагрев полученной смеси в камере в бескислородной атмосфере с последующим измельчением спека до получения порошка заданной дисперсности. Нагрев смеси производят до температуры 600-700°С, обеспечивающей инициализацию экзотермического процесса самопроизвольного формирования квазикристаллической фазы сплава, при этом измеряют текущую температуру нагрева в камере и температуру нагрева смеси порошков. При превышении температуры смеси порошков над текущей температурой нагрева в камере проводят отжиг при температуре 800-1300°С с обеспечением стабилизации квазикристаллической фазы сплава по всему объему смеси порошков. Обеспечивается получение качественного порошка квазикристаллического материала. 5 з.п. ф-лы, 1 ил., 1 табл, 4 пр.

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой содержит компоненты в следующем соотношении, мас.%: кремний 5-13, медь 1-13,5, цинк 2-10, никель 0,5-4,5, олово 0,1-0,3, по меньшей мере один элемент из группы, включающей стронций 0,001-0,2, натрий 0,001-0,2, титан 0,001-0,1, ванадий 0,001-0,2, по меньшей мере один элемент, выбранный из группы кобальт 0,001-0,8, молибден 0,001-0,8, бериллий 0,001-0,1, алюминий остальное. Суммарное содержание цинка и меди не превышает 15 мас.%, отношение содержания никеля к меди составляет от 1:2 до 1:4. При вакуумной пайке припой дополнительно содержит магний в количестве 0,1-1 мас.%. Припой позволяет обеспечить высокий уровень прочности паяного соединения при возможности проведения процесса пайки при температурах ниже 590°С, что позволит использовать в паяных конструкциях большинство современных конструкционных алюминиевых сплавов. 1 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к области металлургии, в частности к изделиям из алюминиево-литиевых сплавов 2ххх, которые не чувствительны к наклепу. Изделие из алюминиевого сплава, полученное обработкой давлением, содержит, вес.%: от 2,75 до 5,0 Cu, от 0,2 до 0,8 Mg, причем значение отношения меди к магнию (Cu/Mg) составляет от 8,0 до 16, от 0,1 до 1,10 Li, от 0,30 до 2,0 Ag, от 0,40 до 1,5 Zn, ≤1,0 Mn и остальное - Al и примеси. Разность между первой величиной наклепа и второй величиной наклепа в первой части и во второй части изделия соответственно составляет по меньшей мере 0,5%, а разность прочностей между этими первой частью и второй частью составляет менее чем 8 ksi, при измерении в продольном направлении. Обработанные давлением изделия из алюминиевых сплавов характеризуются сочетанием высоких характеристик прочности и вязкости и низкой разности прочностей в пределах изделия. 2 н. и 33 з.п. ф-лы, 65 ил., 7 табл., 5 пр.
Наверх