Лазерный ракетный двигатель (варианты)



Лазерный ракетный двигатель (варианты)
Лазерный ракетный двигатель (варианты)

 

F02K99/00 - Реактивные двигательные установки (размещение и крепление реактивных двигательных установок на наземных транспортных средствах или транспортных средствах вообще B60K; размещение и крепление реактивных двигательных установок на судах B63H; управление положением в пространстве, направлением и высотой полета летательного аппарата B64C; размещение и крепление реактивных двигательных установок на летательных аппаратах B64D; установки, в которых энергия рабочего тела распределяется между реактивными движителями и движителями иного типа, например воздушными винтами F02B,F02C; конструктивные элементы реактивных двигателей, общие с газотурбинными установками, воздухозаборники и управление топливоподачей в воздушно-реактивных двигателях F02C)

Владельцы патента RU 2559030:

Федеральное государственное бюджетное учреждение "Научно-исследовательский испытательный центр подготовки космонавтов имени Ю.А. Гагарина" (ФГБУ "НИИ ЦПК имени Ю.А. Гагарина) (RU)
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) (RU)

Изобретение относится к реактивным двигателям летательных аппаратов, преимущественно орбитальных и аэрокосмических аппаратов. Технический результат - повышение КПД, удельного импульса и ресурса работы лазерного ракетного двигателя. Лазерный ракетный двигатель (ЛРД) (вариант 1) содержит систему двух отражающих (3) и фокусирующих (4) зеркал, расположенных в герметичной предварительной камере (5), сообщенной с камерой поглощения (7) посредством газодинамического окна (6), систему подачи рабочего тела, сверхзвуковое сопло (8), тракт охлаждения (9). Вход для лазерного излучения в предварительную камеру (5) обеспечивается двумя твердыми охлаждаемыми окнами (2), прозрачными для применяемого вида лазерного излучения, при этом давление в предварительной камере (5) выше, чем в камере поглощения (7), а два зеркала (1), отражающие внешнее лазерное излучение, расположены снаружи лазерного ракетного двигателя. ЛРД (вариант 2) содержит систему конического отражающего (3) и фокусирующего (4) зеркал, расположенных в герметичной предварительной камере (5), сообщенной с камерой поглощения (7) посредством газодинамического окна (6), систему подачи рабочего тела - коллектор (10) тракт охлаждения (9), сверхзвуковое сопло (8). Вход лазерного излучения в предварительную камеру (5) обеспечивается кольцевым твердым охлаждаемым окном (2), прозрачным для лазерного излучения, причем давление в предварительной камере (5) выше, чем в камере поглощения (7), а коническое зеркало (1), отражающее внешнее лазерное излучение в двигатель, расположено снаружи лазерного ракетного двигателя. Оптические центры наружного (1), внутреннего (3) отражающих зеркал и твердого окна (2) находятся на одной оси. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к реактивным двигателям летательных аппаратов, преимущественно орбитальных и аэрокосмических аппаратов.

Известен лазерный ракетный двигатель (ЛРД) (патент РФ №2266420, MПK F02K 7/00, F24J 2/06, B64G 1/26, опубликованный 20.12.2005), который содержит источник импульсно-периодического лазерного излучения, оптический узел с концентратором излучения и отражателями, систему формирования плоского фронта излучения и соосный концентратору газодинамический узел. Формирующая система осуществляет прием и согласование апертуры лазерного пучка с габаритами оптического узла. Первый отражатель концентратора выполнен в форме конусообразной фигуры вращения с образующей поверхностью в виде части короткофокусной параболы. Газодинамический узел выполнен в виде приемника импульса давления, расположенного с тыльной стороны и на основании первого отражателя, а также реактивного сопла, установленного на расстоянии от основания и образующего щель для ввода лазерного излучения. Концентратор снабжен дополнительным отражателем, соосным первому отражателю и выполненным в форме фигуры вращения, образующая поверхности которой представляет собой дугу. Этот дополнительный отражатель размещен на пути фокусируемого первым отражателем пучка так, что фокальная область концентратора расположена в области щели.

Известен лазерный ракетный двигатель и способ организации рабочего процесса в нем (патент US №4036012, МПК Н05Н 1/24, опубликованный 19.07.1977), наиболее близкий по технической сущности к заявленному и принятый за прототип. Лазерный ракетный двигатель включает непрерывный источник лазерного излучения, систему поворотных и фокусирующих зеркал, камеру поглощения с газодинамическим окном, сопло, систему подвода рабочего тела в зону поглощения со стороны газодинамического окна, баллоны с рабочим телом. Работает лазерный ракетный двигатель следующим образом. Лазерный луч, попадая на систему поворотных и фокусирующих зеркал, фокусируется через газодинамическое окно в зоне поглощения, куда подается рабочее тело - водород, одновременно в зону поглощения подается рабочее тело с добавкой дейтерия для инициирования оптического разряда и образования плазменного ядра, нагрев рабочего тела, которое обтекает плазменное ядро и истекает из сверхзвукового сопла, образуя реактивную струю.

Основными недостатками как прототипа, так и аналога является неэффективная работа газодинамических окон (ГДО) данных ЛРД в верхних разреженных слоях атмосферы Земли и тем более в условиях космического вакуума. Неэффективность проявляется в виде появления обратных токов рабочего тела из камеры поглощения (КП) через ГДО и их утечки в окружающую среду, что приводит к снижению удельного импульса ЛРД.

Кроме того, сравнительно высокий ожидаемый удельный импульс и обеспечение устойчивого «горения» непрерывного оптического разряда (НОР) предполагают небольшой расход рабочего тела с маленькой скоростью обдува НОРа. Данные требования налагают ограничения на эффективную работу ГДО, поэтому, чтобы ГДО справлялся со своей задачей, перепад давления между КП и окружающей средой должен быть небольшим, и как следствие трудно достичь давления критического перепада в минимальном сечении сопла ЛРД, также это ведет к уменьшению удельного импульса и тяги ЛРД в условиях атмосферы.

В условиях космоса (где давление практически равно нулю) камера поглощения с ГДО будет иметь сверхкритический перепад как со стороны сопла, так и со стороны ГДО, и в итоге возникнет две тяги, векторы которых направлены в разные стороны, что существенно уменьшит удельный импульс ЛРД.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в повышении КПД, удельного импульса и ресурса работы ЛРД.

Технический результат (вариант 1) достигается тем, что в лазерном ракетном двигателе (фиг.1), содержащем систему отражающих и фокусирующих зеркал, газодинамическое окно, камеру поглощения, систему подачи рабочего тела, сверхзвуковое сопло, тракт охлаждения, новым является то, что система двух отражающих и фокусирующих зеркал находится в герметичной предварительной камере, сообщенной с камерой поглощения посредством газодинамического окна, вход для лазерного излучения в предварительную камеру обеспечивается двумя твердыми охлаждаемыми окнами, прозрачными для применяемого вида лазерного излучения, при этом давление в предварительной камере выше, чем в камере поглощения, а два зеркала, отражающие внешнее лазерное излучение, расположены снаружи лазерного ракетного двигателя.

Технический результат (вариант 2) достигается тем, что в лазерном ракетном двигателе, содержащем систему отражающих и фокусирующих зеркал, газодинамическое окно, камеру поглощения, систему подачи рабочего тела, тракт охлаждения, сверхзвуковое сопло, новым является то, что система конического отражающего и фокусирующего зеркал находится в герметичной предварительной камере, сообщенной с камерой поглощения посредством газодинамического окна, вход лазерного излучения в предварительную камеру обеспечивается кольцевым твердым охлаждаемым окном, прозрачным для лазерного излучения, причем давление в предварительной камере выше, чем в камере поглощения, а коническое зеркало, отражающее внешнее лазерное излучение в двигатель, расположено снаружи лазерного ракетного двигателя.

Оптические центры наружного, внутреннего отражающих зеркал и твердого окна находятся на одной оси.

На фиг.1 представлена схема лазерного ракетного двигателя (вариант 1).

На фиг.2 представлена схема лазерного ракетного двигателя (вариант 2).

Лазерный ракетный двигатель (фиг.1) содержит два внешних поворотных зеркала 1, прозрачные для ввода лазерного луча, два твердых окна 2, два внутренних поворотных зеркала 3, фокусирующее зеркало (концентратор) 4, герметичную предварительную камеру 5, газодинамическое окно 6, камеру поглощения 7, сверхзвуковое сопло 8, тракт охлаждения двигателя 9, систему подачи рабочего тела - коллектор 10.

Лазерный ракетный двигатель работает следующим образом. Лазерный луч, отражаясь от двух поворотных зеркал 1, проходя через твердые окна 2, попадает в герметичную предварительную камеру 5, где, отражаясь от двух поворотных зеркал 3 и с помощью фокусирующего зеркала 4, через газодинамическое окно 6 фокусируется в камере поглощения 7. Для инициирования непрерывного оптического разряда вместе с рабочим телом подается аэрозоль с солями щелочных металлов, снижающая порог пробоя оптического разряда. В образовавшемся непрерывном оптическом разряде поглощение лазерного луча в основном происходит в процессе, обратном тормозному излучению. Образовавшийся непрерывный оптический разряд газодинамически стабилизируется в приосевой области камеры поглощения, обдуваясь осесимметричным осевым потоком рабочего тела, истекающего из газодинамического окна. Поступающее по тракту охлаждения 9 в газодинамическое окно 6 рабочее тело, например водород, охлаждает стенки камеры поглощения 7 ЛРД и твердые окна 2. Рабочее тело, обтекая и частично проходя через плазму НОРа, нагревается и истекает, ускоряясь в сверхзвуковом сопле 8, образуя сверхзвуковую реактивную струю.

При высоких уровнях мощности лазерного излучения твердые окна из прозрачных диэлектриков смогут работать сравнительно недолго.

Увеличение ресурса работы твердых окон ЛРД достигается увеличением площади окон, что пропорционально уменьшает энергию и нагрев единицы площади окна.

Для равномерного охлаждения окон 2 предварительной камеры 5 через коллектор 10, имеющий отверстия по периметру окон 2, прокачивается холодное рабочее тело, например газообразный или жидкий водород. Поступающее через коллектор 10 в предварительную камеру 5 рабочее тело приводит к появлению по сравнению с окружающей средой избыточного давления. Создание избыточного давления в предварительной камере перед ГДО и как следствие уменьшение перепада давления между камерой поглощения 7 и предварительной камерой 5 (на входе в газодинамическое окно 6 (ГДО 6)) позволит создавать более высокие давления в камере поглощения 7. Повышение давления в камере поглощения 7 ЛРД приводит к увеличению КПД и удельного импульса ЛРД.

При работе такого двигателя со стороны предварительной камеры 5, то есть в канале ГДО 6, образуется газовая подушка, препятствующая перетеканию рабочего тела из камеры поглощения 7 через ГДО 6 в сторону предварительной камеры 5. Перетекание будет возможным только из предварительной камеры 5 в камеру поглощения 7, что будет соответствовать нормальной работе ЛРД.

Лазерный ракетный двигатель (фиг.2) содержит коническое отражающее зеркало 1, кольцевое твердое окно 2, коническое отражающее зеркало 3, фокусирующее зеркало 4, предварительную герметичную камеру 5, ГДО 6, камеру поглощения 7, сверхзвуковое сопло 8, тракт охлаждения 9, систему охлаждения окна - коллектор 10.

Лазерный ракетный двигатель (фиг.2) работает следующим образом.

Внешнее лазерное излучение, отражаясь от конического зеркала 1, проходит через твердое кольцевое окно 2 в предварительную герметичную камеру 5, где, отражаясь от конического зеркала 3, поступает на фокусирующее зеркало 4. Дальнейший процесс происходит, как в предыдущем двигателе. За счет кольцевого твердого окна 1 удельная тепловая нагрузка на окне существенно ниже.

1. Лазерный ракетный двигатель, содержащий систему отражающих и фокусирующих зеркал, газодинамическое окно, камеру поглощения, систему подачи рабочего тела, тракт охлаждения, сверхзвуковое сопло, отличающийся тем, что система двух отражающих и фокусирующих зеркал находится в герметичной предварительной камере, сообщенной с камерой поглощения посредством газодинамического окна, вход лазерного излучения в предварительную камеру обеспечивается двумя твердыми охлаждаемыми окнами, прозрачными для лазерного излучения, причем давление в предварительной камере выше, чем в камере поглощения, а два зеркала, отражающие внешнее лазерное излучение в двигатель, расположены снаружи лазерного ракетного двигателя.

2. Лазерный ракетный двигатель, содержащий систему отражающих и фокусирующих зеркал, газодинамическое окно, камеру поглощения, систему подачи рабочего тела, тракт охлаждения, сверхзвуковое сопло, отличающийся тем, что система конического отражающего и фокусирующего зеркал находится в герметичной предварительной камере, сообщенной с камерой поглощения посредством газодинамического окна, вход лазерного излучения в предварительную камеру обеспечивается кольцевым твердым охлаждаемым окном, прозрачным для лазерного излучения, причем давление в предварительной камере выше, чем в камере поглощения, а коническое зеркало, отражающее внешнее лазерное излучение в двигатель, расположено снаружи лазерного ракетного двигателя.



 

Похожие патенты:

Предлагаемое изобретение относится к области электроракетных двигателей, в частности к системам хранения и подачи в них рабочего тела (иода). В системе хранения и подачи иода, содержащей снабженную нагревателем цилиндрическую емкость с иодом, которая сообщена с электроракетным двигателем трубопроводом с клапаном, на днище внутри цилиндрической емкости со стороны трубопровода установлена пористая шайба, контактирующая с кристаллическим иодом, причем цилиндрическая емкость со стороны, противоположной трубопроводу, содержит фланец и подпружиненный относительно него поршень, контактирующий с другой стороны с кристаллическим иодом, при этом нагреватель снабжен электрической изоляцией, контактирующей снаружи с днищем емкости со стороны трубопровода.

Изобретение относится к энергетике. Электровзрывной реактивный пульсирующий двигатель включает полую диэлектрическую камеру, в отверстиях стенки которой и в изоляторах, изготовленных из упругого диэлектрика, расположены два разнополярных электрода Торцы электродов не выступают во внутреннюю полость камеры и расположены напротив друг друга или со смещением относительно друг друга.
Ракетный двигатель содержит камеру сгорания, в которую подают боран, или силан, или фосфин, или герман, или другие гидриды, имеющие положительную энтальпию образования из простых веществ, или их смесь.

Изобретение относится к области ракетно-космической техники. Плазменный двигатель на наночастицах металлов или металлоидов содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для ввода окислителя топлива в виде водяного пара или кислорода, при смешении которых в камере возникает горение, хемоионизационные реакции окисления, дающие тепловой эффект, высокие температуры и образование нагретой плазмы, содержащей жидкие оксиды металлов или металлоидов, устройство охлаждения плазмы до температуры ниже температуры плавления полученных оксидов и образования в нагретой плазме твердых пылевых отрицательно заряженных оксидов металлов или металлоидов, электростатическое или электромагнитное разгонное устройство, которое разгоняет электростатическим или электромагнитным полем истекающую из устройства охлаждения нагретую плазму и создает высокоскоростной поток нагретой пылевой плазмы с высокоскростными отрицательно заряженными оксидами металлов или металлоидов, который истекает в окружающую среду и создает реактивную тягу двигателя.

Конический ракетный двигатель бессоплового бескорпусного типа содержит шашку твердого топлива с одним или несколькими каналами на всю длину шашки, заполненными более быстро горящим топливом, чем основное топливо, или же шашка имеет несколько параллельных каналов, причем часть из них обрываются от поверхности шашки на расстоянии, равном или большем половине расстояния между соседними каналами.

Ракетный двигатель включает жидкое или твердое ракетное топливо, в котором окислитель и/или горючее содержит связанный азот, а также мелкодисперсный или связанный бор, причем количество атомов бора и азота 1:1 с отклонением ±20%.

Изобретение относится к ракетно-космической технике и может быть использовано в качестве корректирующей двигательной установки космического аппарата. Жидкостно-газовый реактивный двигатель (ЖГРД) содержит бак, заполненный жидким рабочим телом - водой, с выходным отверстием в крышке, камеру и реактивное сопло.

Устройство для подачи пылеобразного рабочего тела в электроракетный двигатель относится к области электрических ракетных двигателей (ЭРД), в которых используют пыль в качестве рабочего тела для создания тяги.

Микроэлектромеханический ракетный двигатель предназначен для использования в составе космических разгонных блоков, наноспутников. Микроэлетромеханический ракетный двигатель выполнен в виде структуры из полупроводниковых кристаллов кремния, расположенных один над другим, в одном из которых выполнена камера сгорания с топливным элементом, и содержит блок поджига топлива с металлическими проводниками.

Изобретение относится к ракетно-космической технике и может быть использовано в двигательных и энергетических установках перспективных средств межорбитальной транспортировки, предназначенных для доставки космических аппаратов на различные высокоэнергетические орбиты и отлетные от Земли траектории.

Изобретение относится к авиации и предназначено для эвакуации людей, терпящих бедствие на оторвавшихся льдинах, в горах, безлюдной местности, на крышах высотных домов и т.п.

Изобретение относится к авиационной технике, в частности к конструкциям роботизированных беспилотных летательных аппаратов (РБЛА) для мониторинга чрезвычайных ситуаций.

Изобретение относится к авиации и предназначено для эвакуации людей, терпящих бедствие на оторвавшихся льдинах, в горах, безлюдной местности, на крышах высотных домов и пр.

Изобретение относится к авиации и предназначено для эвакуации людей, терпящих бедствие на оторвавшихся льдинах, в горах, безлюдной местности, на крышах высотных домов и т.п.

Изобретение относится к области авиационной техники, в частности к конструкциям беспилотных и скоростных вертолетов. Многовинтовой преобразуемый беспилотный вертолет снабжен системой распределенной тяги разновеликих винтов по схеме Х2+4, имеющей два больших, два меньших несущих и два поворотных толкающих винта, расположенных на консолях Х-образного крыла и на конце удлиненных крыльевых гондол соответственно.

Изобретение относится к области авиации, в частности к конструкциям беспилотных летательных аппаратов. Многовинтовой беспилотный электроконвертоплан содержит планер из композитных материалов с высокорасположенным крылом, в середине поворотных консолей которого смонтированы в мотогондолах двигатели с редукторами и винтами, создающими горизонтальную и соответствующим их отклонением вертикальную тягу, синхронизирующую Т-образную в плане систему валов трансмиссии, связывающую между собой два двигателя и их с рулевыми винтами, смонтированными за Т-образным оперением на конце удлиненной балки, трехстоечное колесное шасси с носовой вспомогательной и главными опорами, убираемыми в носовой и бортовые отсеки.
Изобретение относится к способу поиска приземлившегося беспилотного летательного аппарата (БЛА). При контакте БЛА с земной поверхностью автоматически активируется установленный на его борту маячковый передатчик, путем радиопеленгации которого определяют местоположение приземлившегося БЛА и осуществляют его розыск для последующей эвакуации.

Изобретение относится к морским летательным аппаратам и касается экранопланов, использующихся при поисково-спасательных работах. Спасательный экраноплан является тримаранным судном и содержит три фюзеляжа-корпуса, соединенные между собой прямоугольными крыльями.

Изобретение относится к области авиации, в частности к авиационным транспортным системам. Элемент безопасной транспортной системы для летающих роботов представляет собой ферму, содержащую защитные элементы, ограничивающую воздушное пространство и расположенную на расстоянии от поверхности земли.

Изобретение относится к радиолокации и касается имитационно-испытательных комплексов, предназначенных для оценки характеристик радиолокационных объектов. Имитационно-испытательный комплекс для радиолокационной станции (РЛС) содержит цель для создания натурной обстановки в зоне обзора по заданной программе облета.

Изобретение относится к авиационной технике и может быть использовано в беспилотных летательных аппаратах (БПЛА). БПЛА содержит корпус с автономным источником плазмообразующей смеси газов, герметичный радиопрозрачный передний обтекатель с линиями с многоразовыми и электроуправляемыми устройствами перекрытия подачи плазмообразующей смеси газов в полость и сброса, систему управления с головкой самонаведения с радиолокационной антенной, источник электрической энергии высокого напряжения с пусковым устройством, электроды, устройство ограничения расхода газа в виде редуктора давления, электрические связи. Изобретение позволяет уменьшить радиолокационную заметность и необходимую степень герметичности переднего обтекателя БПЛА. 2 з.п. ф-лы, 1 ил.
Наверх