Корпус статора для погружного линейного генератора



Корпус статора для погружного линейного генератора
Корпус статора для погружного линейного генератора
Корпус статора для погружного линейного генератора
Корпус статора для погружного линейного генератора
Корпус статора для погружного линейного генератора
Корпус статора для погружного линейного генератора
Корпус статора для погружного линейного генератора
Корпус статора для погружного линейного генератора
Корпус статора для погружного линейного генератора

 


Владельцы патента RU 2559033:

СИБЭЙСД АБ (SE)

Изобретение относится к электротехнике и может быть использовано в линейных генераторах волноэнергетических станций. Технический результат состоит в повышении надежности и упрощении эксплуатации. Корпус (12) статора для погружного линейного генератора (2) включает в себя цилиндрическую металлическую трубу с монтажными средствами (13, 14, 15, 16) для монтажа пакетов (19) статора к внутренней стенке трубы, которая, когда линейный генератор (6) собран, образует также внешнюю окружную стенку линейного генератора (6). Монтажные средства (13, 14, 15, 16) включают в себя множество аксиально распределенных монтажных профилей (13, 14, 15) на внутренней стенке трубы. Каждый монтажный профиль (13, 14, 15) проходит в окружном направлении и содержит первую группу принимающих пазов (14) для пакетов статора. Упомянутые принимающие пазы (14) разнесены посредством направленных внутрь радиальных выступов. Все принимающие пазы (14) одного монтажного профиля (13, 14, 15) аксиально выровнены с принимающими пазами (14) другого монтажного профиля (13, 14, 15). 5 н. и 25 з.п. ф-лы, 9 ил.

 

Область техники

Настоящее изобретение в первом аспекте относится к корпусу статора для погружного линейного генератора.

Во втором аспекте настоящее изобретение относится к использованию такого корпуса статора и в третьем аспекте к способу изготовления линейного генератора с таким корпусом статора.

В данной заявке термины «радиальный», «аксиальный», «боковой» и тому подобные относятся к направлению оси, определяемой возвратно-поступательным движением центра преобразователя, т.е. центральной оси, если явно не указано другое. Термины «верхний» и «нижний» относятся к вертикальному направлению и относятся к положениям рассматриваемых элементов, когда волноэнергетическая установка находится в эксплуатации.

Предшествующий уровень техники

Перемещения волн в море и в больших внутриматериковых озерах являются потенциальным источником энергии, которая до настоящего времени почти не использовалась. Однако было сделано множество предложений использовать вертикальные перемещения моря для выработки электроэнергии в генераторе. Поскольку точка на поверхности моря совершает возвратно-поступательное вертикальное движение, предпочтительно использовать линейный генератор для выработки электроэнергии.

В WO 03/058055 описана такая волноэнергетическая установка, в которой подвижная часть генератора, т.е. часть, которая соответствует ротору во вращающемся генераторе и в данной заявке называемая преобразователем, осуществляет возвратно-поступательное движение относительно статора генератора. В настоящем изобретении статор закреплен на дне моря. Преобразователь посредством гибкого соединительного средства, такого как провод, трос или цепь, соединен с элементом, плавающим на поверхности моря.

Статор и преобразователь генератора заключены в водонепроницаемый кожух. Поскольку генератор расположен около или на дне моря, его техническое обслуживание и ремонт затруднены. Поэтому генератор должен быть очень надежным в эксплуатации. Кроме того, для того чтобы обеспечить конкурентоспособный источник энергии в промышленном масштабе, важно минимизировать стоимость изготовления и сборки генератора. Требования высокой надежности и низкой стоимости изготовления подразумевают оптимизированную схему и конструкцию генератора.

Краткое изложение существа изобретения

Задачей настоящего изобретения является удовлетворение вышеупомянутых требований. В частности, целью изобретения является удовлетворение данных требований относительно взаимосвязи между водонепроницаемым кожухом и внутренними элементами генератора.

Данная задача в первом аспекте настоящего изобретения достигается тем, что корпус статора типа, указанного в вводной части, содержит конкретные признаки, заключающиеся в том, что корпус статора включает в себя цилиндрическую металлическую трубу с монтажными средствами для монтирования монтажных пакетов статора к внутренней стенке упомянутой трубы, причем упомянутая труба образует также внешнюю окружную стенку линейного генератора.

Такой корпус статора выполняет двойную функцию: образования части герметизирующего кожуха и безопасного и рационального монтажа статора. Благодаря использованию части кожуха в качестве корпуса статора количество требуемых элементов генератора будет небольшим. Монтажные средства на внутренней стороне стенки корпуса обеспечивают рациональный монтаж пакетов статора прямо на данном корпусе. Таким образом, устраняется необходимость в отдельной конструкции корпуса статора. Это обеспечивает значительно более рациональную сборку генератора по сравнению с тем случаем, когда сначала нужно собрать весь статор и затем вставить его в кожух. Таким образом, корпус статора настоящего изобретения способствует достижению низкой стоимости изготовления генератора, а также надежной конструкции.

В соответствии с предпочтительным вариантом осуществления монтажное средство включает в себя множество аксиально распределенных монтажных профилей на внутренней стенке трубы, причем каждый монтажный профиль проходит в окружном направлении и содержит первую группу принимающих пазов для пакетов статора, причем упомянутые принимающие пазы разнесены посредством направленных внутрь радиальных выступов, причем все принимающие пазы одного монтажного профиля аксиально выровнены с принимающими пазами других монтажных профилей.

Каждый пакет статора в линейном генераторе рассматриваемого типа образует удлиненный узел, который должен быть смонтирован в аксиальном направлении. Монтажный профиль с принимающими пазами, преимущественно, выполнен с возможностью монтажа такого узла. Формирование выровненных принимающих пазов обеспечивает строго определенную локализацию каждого пакета статора, так что монтаж будет простым и с минимальным риском ошибок.

В соответствии с дополнительным предпочтительным вариантом осуществления каждый монтажный профиль сформирован посредством кольцевого зубчатого венца.

Это простой способ образования монтажного профиля. Зубчатый венец будет также способствовать упрочнению стенки трубы, которая подвергается воздействию высокого внешнего давления окружающей воды, когда генератор находится в процессе эксплуатации на дне моря.

В соответствии с другим предпочтительным вариантом осуществления каждый зубчатый венец содержит множество выемок, формирующих принимающие пазы.

Благодаря этому принимающие пазы получаются простым способом.

В соответствии с другим предпочтительным вариантом осуществления каждый монтажный профиль содержит вторую группу принимающих пазов для приема направляющих средств для аксиального возвратно-поступательного движения преобразователя в корпусе статора.

Преобразователь должен быть точно и надежно направляемым, чтобы поддерживать свое положение в радиальном направлении для сохранения постоянных зазоров относительно статора. Каждое направляющее средство, преимущественно, может состоять из ряда колес, удерживаемых в корпусе колеса. Благодаря наличию принимающих пазов также и для данных элементов, сборка генератора дополнительно упрощается. При этом достигается также заданная отдельная локализация направляющих средств относительно пакета статора в окружном и, что более важно, в радиальном направлении. Это облегчает обеспечение точных зазоров.

В соответствии с другим предпочтительным вариантом осуществления окружное продолжение каждого принимающего паза в первой группе в 2-8 раз больше окружного продолжения каждого принимающего паза во второй группе.

Поскольку каждый пакет статора обычно имеет большее окружное продолжение по сравнению с окружным продолжением, требуемым для направляющих средств, точно установленное соотношение ширины пазов является усовершенствованием в соответствии с этим. В большинстве случаев пазы в первой группе в 3-4 раза больше пазов во второй группе.

В соответствии с другим предпочтительным вариантом осуществления в каждом монтажном профиле количество принимающих пазов во второй группе равно трем или четырем.

Для того чтобы обеспечить надлежащее положение, преобразователь должен радиально поддерживаться в, по меньшей мере, трех разных направлениях. Во многих случаях, может быть преимущественным, чтобы он поддерживался в четырех направлениях. Данный вариант осуществления является усовершенствованием в соответствии с данным требованием.

В соответствии с дополнительным предпочтительным вариантом осуществления каждый принимающий паз содержит нижнюю часть, которая представляет собой плоскую поверхность.

Это упрощает изготовление корпуса, и плоская нижняя часть обеспечивает надежную опору для плоских задних сторон пакетов статора и направляющих средств.

В соответствии с другим предпочтительным вариантом осуществления количество принимающих пазов в первой группе находится в пределах от 4 до 12. Количество пакетов статора в большинстве случаев будет находиться в пределах данного диапазона, и, поэтому монтажные средства будут вполне пригодны для их конкретного назначения.

В соответствии с другим предпочтительным вариантом осуществления аксиальное расстояние между двумя соседними монтажными профилями является одинаковым для любых двух соседних монтажных профилей.

Одинаковые расстояния между монтажными профилями обеспечивают благоприятное аксиальное распределение монтажных усилий на пакетах статора и направляющих средствах.

В соответствии со следующим предпочтительным вариантом осуществления каждый принимающий паз содержит нижнюю часть, которая содержит сквозные отверстия, которые достигают внешней стороны трубы.

Это упрощает крепление пакетов статора и направляющих средств в соответствующих принимающих пазах посредством использования болтов и подобных средств.

В соответствии с другим предпочтительным вариантом осуществления труба содержит множество внешних кольцевых фланцев.

При этом жесткость трубы и ее способность выдерживать внешнее давление воды увеличивается и допускает более тонкую стенку, чем при отсутствии данных фланцев.

В соответствии с другим предпочтительным вариантом осуществления количество фланцев равно количеству монтажных профилей.

Это является преимущественным с точки зрения изготовления.

В соответствии с другим предпочтительным вариантом осуществления каждый фланец аксиально расположен рядом с монтажным профилем.

Таким образом, фланцы упрочняют трубу в тех участках, где труба подвергается воздействию опорных усилий, прикладываемых на пакеты статора и направляющие средства. Таким образом упрочняющий эффект фланцев оптимизирован, в частности если труба перфорирована отверстиями под болты вдоль монтажных профилей.

В соответствии с дополнительным предпочтительным вариантом осуществления упомянутый корпус включает в себя множество аксиально распределенных секций, которые соединены вместе.

В большинстве случаев, вследствие обычно больших размеров кожуха, при изготовлении трубы удобно соединять секции вместе. Изготовление трубы из секций также обеспечивает возможность модульного исполнения, так что кожухи разной длины могут быть изготовлены из секций одного и того же размера.

В соответствии с другим предпочтительным вариантом осуществления каждая секция включает в себя один монтажный профиль и один фланец, причем, по меньшей мере, некоторые секции являются одинаковыми.

Такая конструкция из секций дополнительно способствует получению модулей, которые могут быть использованы для разных длин кожуха.

В соответствии с другим предпочтительным вариантом осуществления на своей внешней стороне труба содержит крепежные средства, выполненные с возможностью прикрепления поддерживающих элементов.

Кожух генератора имеет значительную высоту, несколько десятков метров или более, и в своей верхней части подвергается воздействию боковых опрокидывающих сил, обусловленных соединительным средством, таким как провод, который соединяет преобразователь с плавучим элементом на поверхности моря. Поэтому является преимущественным предусматривать поддерживающие элементы, например, провода или стержни, соединяющие верхний конец кожуха с дном моря. Благодаря наличию крепежных средств на внешней стороне трубы для таких поддерживающих элементов, кожух может быть удобно закреплен.

Настоящее изобретение относится также к волноэнергетической установке, включающей в себя, по меньшей мере, один плавучий элемент и погружной линейный генератор со статором и преобразователем и дополнительно включает в себя гибкое соединительное средство, соединяющее, по меньшей мере, один плавучий элемент с преобразователем, при этом статор включает в себя корпус статора в соответствии с настоящим изобретением, в частности с любым из предпочтительных вариантов его осуществления, причем к упомянутому корпусу статора прикреплены пакеты статора.

Понятие «гибкий» подразумевает, что соединительное средство выполнено с возможностью сгибания, и является таким как цепь, провод, трос или др. Оно необязательно подразумевает, что оно является упругим в продольном направлении.

В соответствии с другим предпочтительным вариантом осуществления волноэнергетической установки настоящего изобретения, преобразователь направляется посредством множества направляющих средств, причем каждое направляющее средство смонтировано в принимающем пазу второй группы в каждом профиле.

В соответствии с другим предпочтительным вариантом осуществления каждое направляющее средство включает в себя множество аксиально распределенных колес и корпус колеса, на котором смонтированы упомянутые колеса.

В соответствии с другим предпочтительным вариантом осуществления корпус статора содержит множество поддерживающих элементов, соединяющих корпус статора с дном моря.

В соответствии с другим предпочтительным вариантом осуществления поддерживающие элементы включают в себя провода и/или стержни.

Настоящее изобретение относится также к волноэнергетической станции, которая включает в себя множество волноэнергетических установок в соответствии с настоящим изобретением.

В соответствии с другим предпочтительным вариантом осуществления волноэнергетическая станция включает в себя по меньшей мере одно распределительное устройство, расположенное на дне моря и с которым соединены волноэнергетические установки.

Настоящее изобретение относится также к электрической сети, которая включает в себя соединительную линию для волноэнергетической установки в соответствии с настоящим изобретением.

В соответствии с предпочтительным вариантом осуществления упомянутая соединительная линия включает в себя блок управления, выполненный с возможностью управления подачей электроэнергии через соединительную линию и выдачи информации о списании средств со счетов, связанной с энергией, передаваемой через соединительную линию.

В соответствии со вторым аспектом настоящего изобретения, волноэнергетическая установка, содержащая корпус статора в соответствии с настоящим изобретением, используется для выработки электроэнергии и передачи электроэнергии в электрическую сеть.

В соответствии с третьим аспектом настоящего изобретения, способ, указанный в вводной части, отличается тем, что корпус статора выполнен в виде металлической трубы, и пакеты статора монтируют на внутренней стенке упомянутой трубы.

В соответствии с предпочтительным вариантом осуществления способа настоящего изобретения, на внутренней стенке трубы монтируют направляющие средства для преобразователя.

В соответствии с другим предпочтительным вариантом осуществления трубу изготавливают посредством крепления друг к другу множества аксиально распределенных секций.

В соответствии с другим предпочтительным вариантом осуществления этап формирования статора в виде цилиндрической трубы включает в себя формирование трубы таким образом, что труба обладает признаками трубы в корпусе статора настоящего изобретения, в частности в соответствии с любым из предпочтительных вариантов его осуществления.

Волноэнергетическая установка настоящего изобретения, волноэнергическая станция настоящего изобретения, электрическая сеть настоящего изобретения, применение и способ настоящего изобретения обладают преимуществами корпуса статора настоящего изобретения и предпочтительных вариантов его осуществления, которые были описаны выше.

Волноэнергетическая установка настоящего изобретения получает выгоду от преимуществ корпуса статора настоящего изобретения и предпочтительных вариантов его осуществления, которые были описаны выше.

Вышеописанные предпочтительные варианты осуществления изобретения определены в зависимых пунктах формулы изобретения. Необходимо понимать, что могут быть, конечно, созданы другие предпочтительные варианты осуществления посредством любого возможного сочетания вышеупомянутых предпочтительных вариантов осуществления и посредством любого возможного сочетания данных вариантов осуществления с признаками, упомянутыми в приведенном ниже описании примеров.

Настоящее изобретение будет дополнительно объяснено посредством приведенного ниже подробного описания его примеров со ссылками на прилагаемые чертежи.

Краткое описание чертежей

Фиг. 1 представляет собой схематичный вид сбоку волноэнергетической установки с линейным генератором, для которого предназначен корпус статора в соответствии с настоящим изобретением.

Фиг. 2 представляет собой общий вид корпуса статора в соответствии с изобретением со смонтированными на нем пакетами статора.

Фиг. 3 представляет собой вид, аналогичный виду, показанному на фиг. 2, показывающий корпус статора без закрепленных в нем элементов.

Фиг. 4 схематично изображает этап изготовления в соответствии с альтернативным примером.

Фиг. 5 представляет собой вид с торца корпуса статора в соответствии с фиг. 3.

Фиг. 6 представляет собой вид, аналогичный виду, показанному на фиг. 5, показывающий корпус статора со смонтированными на нем пакетами статора и с преобразователем в нем.

Фиг. 7 представляет собой общий вид, аналогичный виду, показанному на фиг.2 и показывающий также преобразователь внутри корпуса статора.

Фиг. 8 представляет собой схематичный вид сбоку части волноэнергетической установки с корпусом статора в соответствии с другим примером настоящего изобретения.

Фиг. 9 схематично изображает волноэнергетическую станцию в соответствии с настоящим изобретением.

Описание предпочтительных вариантов осуществления

Фиг. 1 представляет собой схематичный вид сбоку волноэнергетической установки в соответствии с изобретением при эксплуатации в море. Плавучий элемент 1 плавает на поверхности моря и соединен посредством соединительного средства 3, такого как кабель, провод, трос, цепь или др., с линейным генератором 2, прикрепленным на дне моря. На данном чертеже генератор закреплен на дне моря. Однако необходимо понимать, что генератор может быть расположен выше дна моря и закреплен каким-либо другим способом.

Линейный генератор 2 содержит статор 5 с обмотками и преобразователь 6 с магнитами. Преобразователь 6 способен осуществлять возвратно-поступательное движение вверх и вниз внутри статора 5, тем самым генерируя в обмотках статора ток, который посредством электрического кабеля 11 передается в электрическую сеть.

Преобразователь 6 включает в себя стержень 7, к которому прикреплен провод 3. Когда плавучий элемент 1 вследствие волнового движения поверхности моря вынужден перемещаться вверх, плавучий элемент будет тянуть преобразователь 6 вверх. Затем, когда плавучий элемент перемещается вниз, преобразователь 6 будет опускаться вниз под действием гравитации. Необязательно, но предпочтительно, пружина (не показанная) или подобный элемент, воздействующий на преобразователь 6, обеспечивает дополнительное усилие сверху вниз.

Поскольку генератор 2 закреплен на дне моря, а плавучий элемент 1 свободно плавает на водной поверхности, плавучий элемент может перемещаться в сторону относительно генератора 2. При этом соединительное средство 3 будет расположено под углом.

На входе соединительного средства 3 в кожух 4 генератора 2 предусмотрено направляющее устройство 9, которое направляет соединительное средство 2 так, чтобы перемещаться вертикально под направляющим средством 9, при этом позволяя соединительному средству 3, которое находится над направляющим устройством, перемещаться в наклонном положении. Направляющее устройство 9 прикреплено к конической конструкции 8, расположенной над кожухом 4 генератора и прикрепленной к нему.

Направляющее устройство 9 обеспечивает возможность соединительному средству 3 постепенно изменять свое направление при прохождении через направляющее устройство 9, так что износ соединительного средства становится ограниченным.

На фиг. 2 показан корпус 12 статора с пакетами 19 статора и направляющими средствами 20, 21 для преобразователя. Корпус 12 статора образует часть водонепроницаемого кожуха 4, в котором заключен линейный генератор. Необходимо понимать, что для завершения кожуха 4 верхняя торцевая стенка и нижняя торцевая стенка должны быть прикреплены к концам корпуса 12 статора. Корпус 12 статора выполнен из металла, например, нержавеющей стали или железа с противокоррозионным внешним покрытием.

На внутренней стороне корпуса 12 статора смонтировано множество аксиально проходящих пакетов 19 статора, в показанном примере восемь. На внутренней стороне корпуса 12 статора смонтировано также четыре аксиально проходящих направляющих средства 20, 21 для направления перемещения преобразователя 6 (не изображенного на фиг. 2), когда он осуществляет возвратно-поступательное движение. Каждое направляющее средство состоит из большого количества колес 21, размещенных в аксиально проходящем ряду. Каждое колесо 21 удерживается в корпусе 20 колеса. Во время работы колеса 21 катятся по соответствующему опорному рельсу на преобразователе 6 так, что поперечное положение преобразователя 6 будет надлежащим образом поддерживаться, чтобы поддерживать точные зазоры между магнитами 19 преобразователя и пакетами 19 статора.

Со ссылкой на фиг. 3 описан монтаж пакетов 19 статора и корпусов 20 колес на внутренней стороне стенки корпуса 12 статора. Для этой цели внутренняя часть корпуса 12 статора содержит монтажное средство. Монтажное средство состоит из множества монтажных профилей 13, 14, 15, которые аксиально распределены вдоль корпуса статора. На чертеже можно видеть только два таких монтажных профиля. Каждый монтажный профиль состоит из зубчатого венца 13, который может быть выполнен как одно целое со стенкой корпуса 12 статора или может быть приварен или прикреплен к ней каким-либо другим способом. Каждый зубчатый венец 13 содержит множество выемок. Первая группа выемок выполнена с возможностью образования принимающих пазов 14, в которых должны быть смонтированы пакеты 19 статора. Вторая группа выемок выполнена с возможностью формирования принимающих пазов 15, в которых должны быть смонтированы направляющие средства. Количество принимающих пазов 14 в первой группе равно восьми, а количество принимающих пазов 15 во второй группе равно четырем, в соответствии с количеством соответствующих элементов, как показано на фиг. 2. Однако необходимо понимать, что количество пазов в каждой группе может отличаться от пояснительного примера.

Количество зубчатых венцов 13 в показанных примерах равно четырем, однако данное количество может также изменяться в зависимости от длины корпуса статора. Предпочтительно, но необязательно, расстояние между каждыми двумя соседними зубчатого венцами 13 одинаковое. Для специалиста в данной области техники понятно, что монтажное средство может быть выполнено и изготовлено множеством других способов, помимо тех, которые показаны в данном примере.

Окружное продолжение принимающих пазов 14 для пакетов 19 статора больше окружного продолжения принимающих пазов 15 для направляющих средств 20, 21, чтобы соответствовать ширине соответствующего элемента. В показанном примере ширина каждого пакета статора примерно в три раза больше ширины каждого направляющего средства 20, 21. Однако данное соотношение может изменяться в широких пределах. Например, если предусмотрено только четыре пакета статора, то их относительная ширина значительно больше, чем упомянутая.

В нижней части каждого принимающего паза 14, 15 предусмотрены отверстия 16 под болты, проходящие через стенку корпуса 12 статора, и поэтому данные отверстия 16 видны также на данном чертеже на внешней стороне корпуса 12 статора. Посредством пропускания болтов через данные отверстия осуществляется прикрепление пакетов 19 статора и корпусов 20 колес.

На внешней стороне корпус 12 статора содержит ряд фланцев 17 для увеличения жесткости и прочности корпуса статора. В показанном примере каждый фланец 17 расположен рядом с одним из зубчатых венцов 13, но возможно, конечно, и другое распределение. Кроме того, на внешней стороне предусмотрены ушки, образующие крепежные средства 18 для поддерживающих элементов, например, проводов или стержней. Ушки расположены в конце корпуса 12 статора, который при размещении для эксплуатации на дне моря будет верхним концом.

Корпус 12 статора в принципе может быть выполнен цельным. По практическим соображениям преимущественно изготавливать его в виде секций, как показано на фиг. 4, где схематично изображено пять секций 12а-12е, которые должны быть соединены вместе для образования законченного корпуса 12 статора. В данном примере три средние секции 12b-12d одинаковые и каждая содержит зубчатый венец и фланец. Благодаря такому модульному изготовлению, могут быть получены корпуса статора, имеющие разную длину.

Форма зубчатых венцов 13 более подробно изображена на фиг. 5.

На фиг. 6 изображена взаимосвязь между преобразователем 6 и элементами, соединенными с корпусом 12 статора. На преобразователе предусмотрены ряды магнитов 22, причем каждый ряд взаимодействует с соответствующим пакетом 19 статора, чтобы образовать между ними небольшой зазор так, что когда магниты 22 осуществляют возвратно-поступательные движения аксиально с преобразователем 6, в обмотках статора индуцируется ток. Зазоры определяются и поддерживаются постоянными посредством направляющего устройства 20, 21, колеса которого катятся по рельсам 23, прикрепленным к преобразователю 6.

Общий вид на фиг. 7 дополнительно изображает преобразователь 6, частично выступающий из корпуса 12 статора, а также изображает стержень 7, посредством которого преобразователь 6 соединен с проводом 3, и дальше до плавучего элемента 1, сравнительно с фиг. 1. В верхнем конце преобразователя 6 предусмотрена пружина для торможения перемещения, когда преобразователь достигает своего максимального верхнего концевого положения.

Как показано на фиг. 8, кожух 4 линейного генератора, предпочтительно, прикреплен посредством проводов или стержней 24 к дну моря. Провода/стержни 24 прикреплены к ушкам 18 в верхнем конце корпуса статора.

На фиг. 9 схематично изображена волноэнергетическая станция, если смотреть сверху. Станция содержит множество линейных генераторов 2, причем каждый генератор является частью волноэнергетической установки обычного типа, которая показана на фиг. 1, и содержит корпус 12 статора в соответствии с настоящим изобретением. Генераторы 2 соединены с распределительным устройством 30, которое посредством соединительной линии 40 соединено с электрической сетью 40.

Соединительная линия содержит блок 42 управления, управляющий передачей электроэнергии из генераторов 2 через распределительное устройство 30 в электрическую сеть 40. Блок 42 управления также регистрирует количество электроэнергии, передаваемой в электрическую сеть, в целях выписки счетов.

1. Корпус (12) статора для погружного линейного генератора (2), отличающийся тем, что корпус (12) статора включает в себя цилиндрическую металлическую трубу с монтажными средствами (13, 14, 15, 16) для монтажа пакетов (19) статора к внутренней стенке трубы, причем упомянутая труба, когда линейный генератор (6) собран, образует также внешнюю окружную стенку линейного генератора (6),
при этом монтажные средства (13, 14, 15, 16) включают в себя множество аксиально распределенных монтажных профилей (13, 14, 15) на внутренней стенке трубы, причем каждый монтажный профиль (13, 14, 15) проходит в окружном направлении и содержит первую группу принимающих пазов (14) для пакетов статора, причем упомянутые принимающие пазы (14) разнесены посредством направленных внутрь радиальных выступов, причем все принимающие пазы (14) одного монтажного профиля (13, 14, 15) аксиально выровнены с принимающими пазами (14) другого монтажного профиля (13, 14, 15).

2. Корпус статора по п. 1, отличающийся тем, что каждый монтажный профиль (13, 14, 15) образован посредством кольцевого зубчатого венца (13).

3. Корпус статора по п. 1, отличающийся тем, что каждый зубчатый венец (13) содержит множество выемок, образующих упомянутые принимающие пазы (14).

4. Корпус статора по любому из пп. 1-3, отличающийся тем, что каждый монтажный профиль (13, 14, 15) содержит вторую группу принимающих пазов (15) для размещения направляющих средств (20, 21) для преобразователя (6), который совершает аксиальное возвратно-поступательное движение в корпусе (12) статора.

5. Корпус статора по п. 4, отличающийся тем, что окружное продолжение каждого принимающего паза (14) в первой группе в 2-8 раз больше окружного продолжения каждого принимающего паза (15) во второй группе.

6. Корпус статора по п. 5, отличающийся тем, что в каждом монтажном профиле (13, 14, 15) количество принимающих пазов (15) во второй группе равно трем или четырем.

7. Корпус статора по п. 1, отличающийся тем, что каждый принимающий паз (14, 15) содержит нижнюю часть, которая представляет собой плоскую поверхность.

8. Корпус статора по п. 1, отличающийся тем, что количество принимающих пазов (14) в первой группе находится в пределах от 4 до 12.

9. Корпус статора по п. 1, отличающийся тем, что аксиальное расстояние между двумя соседними монтажными профилями (13, 14, 15) одинаковое для любых двух соседних монтажных профилей (13, 14, 15).

10. Корпус статора по п. 1, отличающийся тем, что каждый принимающий паз (14, 15) содержит нижнюю часть, которая содержит сквозные отверстия (16), которые доходят до внешней стороны упомянутой трубы.

11. Корпус статора по п. 1, отличающийся тем, что упомянутая труба содержит множество внешних кольцевых фланцев (17).

12. Корпус статора по п. 11, отличающийся тем, что количество фланцев (17) равно количеству монтажных профилей (13, 14, 15).

13. Корпус статора по п. 12, отличающийся тем, что каждый фланец (17) аксиально расположен рядом с монтажным профилем (13, 14, 15).

14. Корпус статора по п. 1, отличающийся тем, что корпус (12) статора включает в себя множество аксиально распределенных секций (12а-12е), которые соединены вместе.

15. Корпус статора по п. 14, отличающийся тем, что каждая секция (12а-12е) включает в себя один монтажный профиль (13, 14, 15) и один фланец (17), и тем, что по меньшей мере некоторые секции (12b-12d) являются одинаковыми.

16. Корпус статора по п. 1, отличающийся тем, что упомянутая труба на внешней стороне содержит крепежные средства (18), выполненные с возможностью крепления к поддерживающим элементам (24).

17. Волноэнергетическая установка, включающая в себя по меньшей мере один плавучий элемент (1) и погружной линейный генератор (2) со статором (5) и преобразователем (6), и дополнительно включающая в себя гибкое соединительное средство (3), соединяющее упомянутый по меньшей мере один плавучий элемент (1) с преобразователем (6), отличающаяся тем, что статор (6) содержит корпус (12) статора по любому из пп. 1-16, причем к упомянутому корпусу (12) статора прикреплены пакеты (19) статора.

18. Волноэнергетическая установка по п. 17, отличающаяся тем, что преобразователь (6) направляется посредством множества направляющих средств (20, 21), причем каждое направляющее средство (20, 21) смонтировано в соответствующем принимающем пазу (15) второй группы в каждом монтажном профиле (13, 14, 15).

19. Волноэнергетическая установка по п. 18, отличающаяся тем, что каждое направляющее средство (20, 21) включает в себя множество аксиально распределенных колес (21) и корпус (20) колес, на котором смонтированы колеса (21).

20. Волноэнергетическая установка по любому из пп. 17 -19, отличающаяся тем, что корпус (12) статора содержит множество поддерживающих элементов (24), соединяющих корпус (12) статора с дном моря.

21. Волноэнергетическая установка по п. 20, отличающаяся тем, что поддерживающие элементы (24) включают в себя провода и/или стержни.

22. Волноэнергетическая станция, отличающаяся тем, что упомянутая волноэнергетическая станция включает в себя множество волноэнергетических установок по любому из пп. 17-21.

23. Волноэнергетическая станция по п. 22, отличающаяся тем, что упомянутая станция включает в себя по меньшей мере одно распределительное устройство (30), расположенное на дне моря и с которым соединены волноэнергетические установки.

24. Электрическая сеть, включающая в себя волноэнергетическую установку по любому из пп. 17-21.

25. Электрическая сеть по п. 24, отличающаяся тем, что сеть (40) включает в себя соединительную линию (41), включающую в себя блок (42) управления, выполненный с возможностью управления передачей электроэнергии через соединительную линию (41) и для выдачи информации о списании средств со счетов, связанных с энергией, передаваемой через соединительную линию (41).

26. Применение волноэнергетической установки по любому из пп. 17-21 для выработки электроэнергии и передачи электроэнергии в электрическую сеть.

27. Способ изготовления линейного генератора (2), предназначенного для погружного использования, причем линейный генератор (2) содержит статор (6) с корпусом (12) статора и пакетами (19) статора и содержит преобразователь (6), причем упомянутый способ включает этапы, на которых выполняют преобразователь (6) с возможностью возвратно-поступательного движения внутри статора (6), отличающийся тем, что содержит этапы, на которых
формируют корпус (12) статора в виде цилиндрической металлической трубы,
размещают монтажные средства (13, 14, 15, 16), включающие в себя множество аксиально распределенных монтажных профилей (13, 14, 15) на внутренней стенке трубы, причем каждый монтажный профиль (13, 14, 15) проходит в окружном направлении и содержит первую группу принимающих пазов (14) для пакетов статора, причем упомянутые принимающие пазы (14) разнесены посредством направленных внутрь радиальных выступов, причем все принимающие пазы (14) одного монтажного профиля (13, 14, 15) аксиально выровнены с принимающими пазами (14) другого монтажного профиля (13, 14, 15), и
монтируют пакеты (19) статора на внутренней стенке упомянутой трубы.

28. Способ по п. 27, отличающийся тем, что монтируют направляющие средства (20, 21) для преобразователя (6) на внутренней стенке трубы.

29. Способ по п. 27 или 28, отличающийся тем, что упомянутую трубу изготавливают посредством прикрепления множества аксиально распределенных секций (12а-12е) друг к другу.

30. Способ по п. 27 или 29, отличающийся тем, что этап формирования корпуса (12) статора в виде цилиндрической трубы включает в себя формирование трубы таким образом, что упомянутая труба содержит признаки корпуса (12) статора по любому из пп. 1-16.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано в двигателях, например, для нефтегазовой промышленности. Техническим результатом является уменьшение общих потерь в электрической машине.

Изобретение относится к области электротехники и может быть использовано в электронасосах с приводом на постоянных магнитах. Технический результат - предотвращение коррозии, вызываемой химической жидкостью, на компонентах герметичного электронасоса.

Изобретение относится к щелевой трубе (39) и способу изготовления такой трубы. Гидравлическая машина и приводной мотор могут быть помещены в корпус, если в электромоторе между ротором и статором осуществляется разделение посредством трубчатой конструктивной части - так называемой щелевой трубы (39).

Изобретение относится к области электротехники и может быть использовано, например, в шпиндельных узлах металлорежущих станков с высокой частотой вращения. Технический результат заключается в повышении несущей способности и жёсткости подшипниковых узлов, повышении эффективности охлаждения обмотки и сердечника статора, а также улучшении массогабаритных показателей и повышении надёжности.

Изобретение относится к усовершенствованию скважинных генераторов и в частности, к поддержке и ограничению перемещения катушек статора, размещённых в корпусе двигателя.

Группа изобретений относится к погружным скважинным насосам и к узлам уплотнения, используемым вместе с приводными двигателями насосов. Узел уплотнения между электродвигателем и насосом скважинной электрической погружной насосной установки включает корпус с полостью, нижний конец которой соединен с двигателем, а верхний конец - с насосом.

Изобретение относится к нефтедобыче, а именно к протекторам для гидравлической защиты погружного маслозаполненного электродвигателя. Протектор содержит корпус 1, вал 4 с нижним и верхним торцовыми уплотнениями 6, опору 5 вала 4, ниппели, узел пяты, верхнюю и нижнюю головки 2 с фланцами 3 для соединения соответственно с насосом и электродвигателем.

Изобретение относится к области электротехники и может быть использовано в погружном электродвигателе с защищенным статором. Техническим результатом является повышение прочности и коэффициента полезного действия.

Изобретение относится к электротехнике и может быть использовано для привода погружного электронасоса для подъема жидкости из нефтяных скважин. .

Изобретение относится к области электротехники и электромашиностроения, а именно к конструкции погружных водонаполненных синхронных генераторов вертикального исполнения.

Изобретение относится к области электротехники, в частности к низкооборотным высокомоментным синхронным двигателям и генераторам с неподвижным якорем и вращающимися магнитами, и может быть использовано в качестве ветрогенераторов, высокочастотных электрических генераторов и в автономных энергоустановках. Тихоходный электрический генератор на постоянных магнитах содержит ротор в виде двух плоских дисков, статор размещен между дисками ротора и выполнен в виде кольца, соединенного с неподвижным валом спицами, якорную обмотку, намотанную на кольцо - тороид, магниты с чередующимися полюсами, установленными на боковых частях ротора в пазах в количестве от 80 до 250 на каждом диске.

Изобретение относится к электротехнике, к электрическим машинам с возбуждением от постоянных магнитов. Технический результат состоит в повышении мощности за счет увеличения поверхности полюсов магнитов и исходящего из них магнитного потока.

Настоящее изобретение относится к электрическим машинам, в частности к вращающимся или линейно-подвижным трехфазным машинам с поперечным магнитным потоком с конструкцией ротора или движителя в виде постоянного магнита.

Изобретение относится к устройству магнитного осевого подшипника с повышенным усилием на единицу поверхности и простой конструкцией. Устройство магнитного осевого подшипника включает в себя кольцевую систему листов электротехнической стали, у которой отдельные листы (80, 90, 170) стали выдаются радиально наружу, а соседние листы (80, 90, 170) стали в окружном направлении образуют зазор (20).

Изобретение относится к электротехнике, точнее к шаговым электродвигателям, предназначенным для дискретных электроприводов. Технический результат состоит в обеспечении шагового и продольного перемещения гладкого ротора.

Изобретение относится к области электротехники и может быть использовано в синхронных генераторах. Технический результат - улучшение массогабаритных показателей.

Изобретение относится к области электротехники. Технический результат: уменьшение массогабаритных характеристик, повышение надежности работы, повышение ресурса электромашины.

Изобретение относится к конструкции ротора электрической машины, такой как генератор. Техническим результатом является устранение электрического контакта между пластинами из-за заедания, когда совмещенная с клином поверхность (550) собранного ротора должна быть дополнительно механически обработана.

Изобретение относится к энергомашиностроению и может быть использовано в автономных энергоустановках с высокоскоростными генераторами в летательных и космических аппаратах.

Настоящее изобретение относится к роторам вращающихся электрических машин, самим вращающимся электрическим машинам и способам изготовления роторов вращающихся электрических машин.

Изобретение относится к гидроэнергетике, а именно к гидроэлектростанциям. Русловая гидроэлектростанция 2 установлена на фундаменте 26 и содержит несколько жестких, непроницаемых для воды, имеющих эллиптическое поперечное сечение корпусов 6 с турбинными модулями 8, расположенными с возможностью передачи вращения с валов 13, заключенных в кольцо 27, турбин 12 через обгонные муфты 14 общему валу 15, проходящему через береговой колодец 21 с циркулирующей в нем донной речной водой, через редуктор 16 к валу ротора электрогенератора 17, установленного на берегу 3.
Наверх