Способ поиска углеводородов



Способ поиска углеводородов
Способ поиска углеводородов
Способ поиска углеводородов

 


Владельцы патента RU 2559046:

Общество с ограниченной ответственностью научно-производственная фирма "Мезон" (RU)

Изобретение относится к сейсмической разведке и может быть использовано при разведке нефтяных и газовых месторождений. Заявлен способ поиска залежей углеводородов, заключающийся в совместном воздействии на геологический разрез естественного электрического поля и сейсмического излучения и приеме флуктуаций обеих видов излучения, вызванных указанными выше воздействиями. Сигналы естественных электрических и сейсмических шумов принимают в диапазоне 1-20 Гц. Причем указанные сигналы принимают одновременно на электрический заземленный диполь и сейсмоприемник, которые устанавливают в одной точке наблюдения. Нормируют оба сигнала по амплитуде и вычисляют функцию их взаимной корреляции, по величине и форме которой судят о наличии продуктивной залежи углеводородов. Технический результат - повышение точности и достоверности разведочных данных. 2 ил.

 

Изобретение относится к геофизическим методам поиска и может быть использовано для разведки залежей нефти и газа.

Известен способ сейсмической разведки по технологии «Анчар», заключающий в наблюдении сейсмических шумов в диапазоне частоты 3-10 Гц после воздействия на георазрез искусственным сейсмическим источником патент РФ №2263932 С1 кл. G01V 1/100.

Однако этот способ требует использования специальных искусственных источников сейсмических возмущений - взрывов, либо невзрывных излучателей, к тому же не достаточно однозначен из-за влияния естественных микросейсм.

Известен способ поиска углеводородов, основанный на сейсмоэлектрическом эффекте.

Иванов А.Г. «Сейсмоэлектрический эффект второго рода» Изв. Ан. СССР сер. Географическая и геофизическая, 1940, №5, с. 18-21.

Этот способ заключается в регистрации изменений электрического поля на поверхности Земли при действии на георазрез искусственно сейсмического возмущения.

Экспериментально наблюдалось также изменение искусственно наложенного на георазрез электрического поля и сейсмического возмущения георазреза.

В любом варианте реализации сейсмоэлектрического эффекта требуются внесения искусственные источники сейсмических возмущений, что дополнительно усложняет и удорожания технологию поиска и не дает достаточно надежного признака распознавания продуктивных залежей.

Задачей изобретения является улучшение качества распознавания углеводородных залежей на основе сейсмоэлектрического эффекта без использования искусственных сейсмических и электрических источников излучения.

В основу изобретения положен принцип одновременной регистрации шумового электрического естественного поля Земли в диапазоне низких частот 1-20 Гц и микросейсм в том же диапазоне частот и измерения их функций взаимной корреляции.

Поставленная задача решается тем, что без использования искусственных источников одновременно принимают сейсмические и электрические шумовые сигналы в диапазоне частот 1-20 Гц на заземленный электрический диполь и сейсмоприемник, которые устанавливают в одной точке наблюдения на поверхности Земли и, после нормировки обоих сигналов по амплитуде, вычисляют функцию взаимной корреляции электрического и сейсмического сигналов, по величине и форме которой судят о наличии залежи углеводородов.

На фиг. 1 показана структурная схема устройства, реализующего предложенный способ, где изображен датчик электрического сигнала (поля) в виде заземленного диполя 1 и сейсмоприемник микросейсм 2, выход которых через усилители 3, 4 подсоединен к схемам измерения дисперсий наблюдаемых шумовых сигналов 5, 6 выход последних подсоединен к устройствам 7, 8 нормировки сигналов по дисперсии.

После нормировки сигналы по каждому из каналов подаются на схему вычисления функции взаимной корреляции 9, выход которой через интегратор 10 подается на цифровой индикатор 11, на экране которого наблюдается временная форма этой функции и коэффициент корреляции, по которым судят о наличии месторождения углеводородов.

Одновременное воздействие на продуктивную углеводородную залежь естественных сейсмических возмущений вызывает в насыщенной углеводородами горной породе электрические и механические процессы перемещения микромолекул продуктивного вещества, в результате чего на поверхности Земли будут наблюдаться вызванные этими процессами электрические поля, которые можно принимать соответствующими датчиками.

Нормированная по энергии сейсмического сигнала взамно-корреляционная функция электрического E(t) и сейсмического S(t) шумовых сигналов, ВКФ, наблюдаемая над залежью, определяется алгоритмом:

Она является функцией сдвигового по времени параметра τ, указывающей на запаздывание по фазе электрического поля разряда залежи относительно сейсмического возмущения.

При τ=0, функция RES(0), соответствует взаимной дисперсии, т.е. мощности взаимодействия процессов Ε и S, и будет иметь максимальную величину над залежей углеводородов. Зависимость ВКФ от времени сдвига τ дает дополнительную информационную об электрической инерции процессов разряда тела залежи на окружающую горную породу. Это обуславливается явлением вызванной поляризации, проявляющимся на месторождениях углеводородов, описанных в ряде научных работ.

Поскольку электрические и сейсмические (механические) процессы в залежи продуктивного вещества нефти или газа взаимно обусловлены, то можно ожидать над месторождениями повышенный уровень коэффициента взаимной корреляции обоих видов полей, а временная форма ВКФ будет указывать на изменение степени корреляции в течении времени.

В отличие от известной технологии АНЧАР привлечение второго вида физического поля (электрического) улучшает качество идентификации продуктивной залежи, в то же время не требует искусственных источников возмущений сейсмического и электрического возмущений, в отличие от прототипа - сейсмоэлектрического метода, не требует также искусственного источника электрического поля.

Опытные работы 29-31 августа 2014 г. На Ново-Михайловском газоконденсатном месторождении (респ. Хакасия) подтвердили работоспособность заявленного способа. Газовая залежь на глубине 2500 м была отмечена повышенным коэффициентом взаимной корреляции сейсмического и электрического сигналов в диапазоне частот 1-20 Гц с превышением в 5 раз уровня нормированного поля. На Фиг. 2 приводятся графики функций взаимной корреляции R/s (τ) в центре аномалии и на периферии:

Таким образом, заявленный способ реализуется наиболее простым пассивным методом наблюдения с использованием несложной аппаратуры.

Способ поиска залежей углеводородов, заключающийся в совместном воздействии на геологический разрез естественного электрического поля и сейсмического излучения, приеме флуктуаций обоих видов излучения, вызванных указанными выше воздействиями, отличающийся тем, что сигналы естественных электрических и сейсмических шумов принимают в диапазоне 1-20 Гц, причем указанные сигналы принимают одновременно на электрический заземленный диполь и сейсмоприемник, которые устанавливают в одной точке наблюдения, нормируют оба сигнала по амплитуде, вычисляют функцию их взаимной корреляции, по величине и форме которой судят о наличии продуктивной залежи углеводородов.



 

Похожие патенты:

Изобретение относится к области геофизики и может быть использовано для проведения морских сейсморазведочных работ. При сейсмической разведке в покрытой льдом воде буксируемые косы буксируют позади судна ниже поверхности воды, чтобы избежать столкновения со льдом.

Изобретение относится к области геофизики и может быть использовано при исследовании залежей сверхвязких нефтей. Сущность изобретения: излучают электромагнитные волны и принимают сигналы, отраженные от границ раздела слоев зондируемой среды, после чего проводят обработку результатов измерений.
Изобретение относится к области геофизики и может быть использовано при поисковых и разведочных работах на углеводороды в осадочных толщах древних платформ. Сущность: проводят региональные гравитационную и магнитную съемки, а также магнитотеллурическое зондирование территории.

Изобретение относится к области геофизики и может быть использовано для измерения геофизических и гидрофизических параметров в придонной зоне морей и океанов. Сущность: подводная обсерватория (1) содержит сейсмометр, состоящий из сейсмического и сейсмоакустического модулей, гидрофизический модуль, датчик магнитного поля, блок гидрохимических измерений, датчик обнаружения метана, датчик давления, датчик пространственной ориентации, датчик ядерно-магнитного резонанса, гидролокатор бокового обзора, соединенные с блоком регистрации и управления, а также средства связи с комплексом судовой аппаратуры, балласт, размыкатель балласта.

Заявленное решение относится к области геофизики и может быть использовано для проведения поисков и детальной разведки нефтегазовых залежей (НГЗ). Способ многочастотного фазового зондирования включает в себя воздействие электрическим полем и сейсмической волной на НГЗ, в результате чего инициируют электрическую поляризацию и перемещение частиц нефтегазового флюида в породе-коллекторе, формируя в НГЗ адекватное этим воздействиям электромагнитное поле (НГЗ-отклик).

Изобретение относится к устройствам для подводных геофизических исследований морей и океанов. Заякоренная профилирующая подводная обсерватория сочленена с диспетчерской станцией и состоит из: подповерхностного буя, заякоренного с помощью стального буйрепа, который служит ходовым тросом для профилирующего носителя, содержащего комплект измерительных датчиков, модуль центрального микроконтроллера, электропривод, и передвигающегося по ходовому тросу; системы цифровой связи посредством бесконтактной индуктивной врезки в ходовой трос, поверхностного буя-вехи с модемами передачи данных и телеметрической информации по радиоканалу, гидроакустического размыкателя якорного балласта.
Изобретение относится к области морских геофизических исследований и может быть использовано для поисков газогидратов на дне акваторий. Сущность: на берегу в зоне разлома устанавливают датчик акустической эмиссии.

Изобретение относится к области геофизики и может быть использовано для получения сейсмических разрезов изображений геологической среды. Способ включает последовательные действия, при которых получают и подготавливают данные методов общей глубинной точки, сейсмического каротажа, вертикального сейсмического профилирования, акустического каротажа, плотностного гамма-гамма каротажа и проверяют качество этих данных, а также получают эталонные значения интервальных скоростей.

Изобретение относится к области геофизики и может быть использовано для определения структурных особенностей, литологии и типа флюидонасыщения коллекторов. Согласно заявленному способу получают пространственно-временные и/или пространственно-частотные данные электромагнитных измерений с последующей реконструкцией объемного распределения проводимости геологической модели среды.

Изобретение относится к области геофизики и может быть использовано для прогнозирования скрытых рудных полезных ископаемых, связанных с гранитоидами. Сущность: для перспективных рудоносных участков на базе данных по физическим свойствам пород, слагающих модельный разрез, и материалов мелкомасштабных гравиразведочных и магниторазведочных съемок осуществляют построение «нулевой» глубинной модели.

Изобретение относится к устройствам для измерения геофизических и гидрофизических параметров в придонной зоне морей и океанов. Сущность: подводная станция включает всплывающий модуль (1) измерительной аппаратуры, якорное устройство (2) и положительную плавучесть (5) в виде поплавка. На положительной плавучести (5) установлен маяк (19). Всплывающий модуль (1) измерительной аппаратуры соединен с якорным устройством (2) посредством размыкающего устройства (3). Нижняя часть всплывающего модуля (1) измерительной аппаратуры размещена внутри фермы (6), сочлененной с размыкающим устройством (3). На внешней поверхности фермы (6) установлены две механические консоли (8), на которых закреплены трехкомпонентные цифровые сейсмографы (9) и гидрофон (12). Всплывающий модуль (1) измерительной аппаратуры и якорное устройство (2) изготовлены из форполимеров, ферма (6) - из высокопрочной пластмассы, а положительная плавучесть (5) - из пластика с полыми микросферами. Всплывающий модуль (1) измерительной аппаратуры включает гидроакустический приемопередатчик (13), приемник (14) GPS, аккумуляторы (16), акселерометр (38), датчики сейсмических приемников, акустический доплеровский измеритель течения, магнитометр постоянного магнитного поля, гамма-спектрометр, а также зонд для измерения электропроводности, температуры морской воды, давления и скорости звука. Технический результат: повышение надежности функционирования подводной станции. 2 ил.

Изобретение относится к области гидрохимических исследований акваторий. Сущность: донная станция включает размещаемый на дне (2) акватории приборный корпус (1) эллипсовидной формы и соединенный с ним ретрансляционный буй (3). В приборном корпусе (1) размещены микро-ЭВМ (9), модемы (10, 11) для приема и передачи информации по кабельным линиям (4) связи или радиоканалу, блок (12) питания, коммутатор (13) каналов, блок (14) аккумуляторов, спектрофотометр (17), блок (24) электроники, гидроакустический модуль (28) для связи с обеспечивающим судном и позиционирования на дне, а также датчики проводимости (18), температуры (19), давления (20), скорости течения (21), водородного показателя pH (22), скорости звука (23), магнитометр (26) постоянного магнитного поля, гамма-спектрометр (27), датчики углекислого газа (29), кислорода (30), азота (31), метана (32), измеритель (33) мутности, микробный датчик (34). Блок электроники (24) включает широкополосные регистраторы сейсмических сигналов и трехкомпонентный цифровой сейсмограф (25). Приборный корпус (1) в нижней части снабжен резиновым чехлом (5) и размещен в железобетонном балласте (6). Железобетонный балласт (6) сочленен с приборным корпусом (1) посредством строп (7) и электрохимического размыкателя (8). Технический результат: расширение функциональных возможностей и повышение достоверности получаемых данных. 2 з.п. ф-лы, 1 ил.

Использование: техническое решение относится к способам и средствам исследования водной среды путем определения ее параметров и может быть использовано при автоматическом мониторинге акваторий. Сущность: в качестве носителей устройств измерения и регистрации параметров водной среды РПВ использованы автономные донные станции (АДС), в качестве локального контрольного пункта (ЛКП) использован мобильный автономный необитаемый подводный аппарат (АНПА), АДС и мобильный АНПА оснащены приемопередатчиками и радиомодемами для беспроводного радиообмена командами и данными между АДС и мобильным АНПА, а АДС снабжены гидроакустическими маяками-ответчиками, которые формируют гидроакустическую систему навигации мобильного АНПА. Мобильный АНПА и АДС снабжены устройствами и радиомодемами стыковки АНПА и АДС для подзарядки аккумуляторов АНПА от блоков питания АДС, которые выполнены в виде устройств бесконтактной связи посредством сопряженных катушек индуктивности. Технический результат: расширение функциональных возможностей мониторинга акваторий при повышении информативности, надежности и достоверности данных измерений, увеличение технического ресурса. 2 н.п. ф-лы, 3 ил.
Изобретение относится к донным станциям для проведения сейсмических исследований. Сущность: донная станция выполнена в виде установленного на дне акватории глубоководного самовсплывающего носителя геофизической аппаратуры, соединенного с бортовым вычислительным модулем, установленным на борту судна. Носитель геофизической аппаратуры включает размещенные в герметическом сферическом контейнере, состоящем из двух полусфер, блок регистрации, блок определения ориентации, блок синхронизации, блок гидроакустического приемопередатчика, устройство управления размыкателем, блок питания, геофоны, блок фильтров геофонов, устройство хронирования информации. Блок регистрации включает трехкомпонентный сейсмоприемный модуль и накопитель измерительной информации. Блок определения ориентации выполнен в виде датчиков наклона и азимута и установлен в карданном подвесе. Снаружи герметического контейнера установлены гидрофон, гидроакустическая антенна, якорь-балласт, проблесковый маяк. Бортовой вычислительный модуль содержит блок съема цифровой информации с накопителя измерительной информации, блок управления, блок гидроакустической связи с носителем геофизической аппаратуры, устройство синхронизации времени, устройство отображения. Карданный подвес выполнен на подшипниках с нелинейным коэффициентом трения. Датчики наклона и азимута дополнительно содержат два градиентометра, установленные на косвенно стабилизированной в горизонте платформе. На данной платформе также установлены датчики углов крена, дифферента, датчики углов атаки и скольжения, датчики линейных ускорений и угловых скоростей, вычислитель, выполненный с возможностью совместной обработки всех датчиков. Косвенно стабилизированная в горизонте платформа снабжена тремя кардановыми рамками, на которых установлены три моментных электродвигателя с сервоприводом, два трехкомпонентных акселерометра с механизмом их перемещения относительно друг друга, измеритель линейной скорости перемещения трехкомпонентных акселерометров. Дополнительно в устройство введена вторая косвенно стабилизированная в горизонте платформа, на которой установлены три моментных электродвигателя с сервоприводом, четыре акселерометра с вертикальной осью чувствительности и с механизмом их перемещения, измеритель линейной скорости перемещения акселерометров относительно донной станции, регистратор моментов встречи двух акселерометров на траверзе первой и второй пар. При этом все устройства функционально связаны через блок управления с вычислителем, в котором вычисляют искомые значения составляющих уклонения отвесной линии в меридиане и в первом вертикале, скорость перемещения, направление перемещения, широту, угол сноса, радиус кривизны траектории перемещения и расстояния по вертикали от гравиметров до поверхности геоида. Технический результат: повышение надежности получаемой информации за счет повышения помехоустойчивости донной станции.

Изобретение относится к области геофизики и может найти применение при разработке нефтяных залежей. Способ включает проведение геолого-геофизических и промысловых исследований скважин, комплексный анализ их результатов, выделение литотипов по данным ГИС, оценку разделения литотипов в полях скоростей продольных, поперечных волн и плотности, проведение синхронной инверсии частичных угловых сумм сейсморазведочных работ 3Д, в результате чего получают трехмерные кубы скоростей продольной, поперечной волн и плотности. Пересчитывают их в дискретный куб литологии на основе литотипов, выделенных по скважинным данным, и проводят калибровку и верификацию по данным ГИС. На основе результатов обработки и интерпретации сейсморазведочных работ 3Д строят карты когерентности волнового поля по кровле баженовской свиты и подошве ближайшего вышележащего проницаемого пласта. Определяют критическое значение индекса когерентности, ниже которого продуктивность скважин близка к нулю. Проводят совместный анализ карт когерентности и выделяют потенциально продуктивные зоны баженовской свиты. Проводят анализ зависимости мощности литотипов от запускных дебитов скважин. Затем на основе разработанных петрофизических алгоритмов и выявленных связей по данным ГИС и исследований керна рассчитывают коэффициенты пористости и нефтенасыщенности, по результатам чего строят карты эффективных нефтенасыщенных мощностей, пористости, нефтенасыщенности и распределения плотности запасов нефти. Технический результат - повышение точности прогнозирования распространения запасов нефти. 8 ил.

Изобретение относится к области геофизики и может быть использовано для изучения гравитационного поля в Мировом океане в целях навигационно-гидрографического обеспечения сил флота и народного хозяйства. Изобретение включает вождение судна по запланированным галсам, начало и конец каждого из галсов замкнут на опорный гидрографический пункт или на два опорных гидрографических пункта: начало каждого галса - на один данный пункт, а конец каждого галса - на другой данный пункт, дополнительно измеряют на движущемся судне в пунктах, расположенных вдоль съемочного галса, совместно с измерением ускорения силы тяжести gизмi глубину акватории Zизмi и определяют геодезические прямоугольные координаты хi и уi и истинные значения ускорения силы тяжести gиcтi. Кроме того, устройство для осуществления данного способа гравиметрической съемки акватории содержит чувствительную систему, блок управления и регистратор, снабжено измерителем глубины, навигационным комплексом и вычислителем, при этом вход вычислителя через блок управления соединен с выходами чувствительной системы, измеряемой глубины акватории, навигационным комплексом, а выход подключен к входу регистратора. Технический результат - повышение точности гравиметрической съемки акватории. 2 н.п. ф-лы, 2 ил., 3 табл.

Изобретение относится к области геофизики и может быть использовано в процессе добычи углеводородов. В изобретении раскрывается способ анализа подземной породы. Первый сигнал передается от передатчика к породе, а второй сигнал, который является отражением первого сигнала, принимается. Третий сигнал, который является вторым сигналом, обращенным во времени, затем передается к породе. Четвертый сигнал, который является отражением третьего сигнала от породы, затем принимается и отслеживается. Предполагают расстояние до границы пласта. Предполагают скачок удельного сопротивления или скачок акустического импеданса между предстоящим пластом и текущим пластом. Определяют вычисленный сигнал с использованием предположенного расстояния до границы пласта и предположенного скачка удельного сопротивления или предположенного скачка акустического импеданса, соответственно. Также предложена система для осуществления данного способа анализа подземной породы. Технический результат - повышение точности получаемых данных. 2 н. и 15 з.п. ф-лы, 21 ил.

Изобретение относится к области геофизики и может быть использовано для моделирования петрографических фаций. Предложено распространение петрографических фаций с использованием аналитического моделирования. По меньшей мере некоторые из описанных вариантов реализации представляют собой способы, включающие этапы, согласно которым создают посредством компьютерной системы ячеистую геологическую модель подземной формации. Считывают первое значение первого свойства породы, связанного с первой каротажной диаграммой. Связывают первое значение первого свойства породы с первой ячейкой из множества ячеек ячеистой геологической модели. Назначают значение первого свойства породы каждой ячейке из множества ячеек на основании первого значения и исходного уровня информации. Причем исходной уровень информации отличается от первого значения. Технический результат - повышение точности и достоверности результатов моделирования. 3 н. и 20 з.п. ф-лы, 8 ил.

Изобретение относится к области сейсмологии и может быть использовано для измерения предвестников землетрясений. Сущность: система содержит множество первичных датчиков-фотометров (1) контроля оптической плотности атмосферы, функционирующих в режиме отслеживания превышения сигнала установленного порогового уровня. Датчики-фотометры (1) разнесены по пространству сейсмоопасных регионов и являются абонентами глобальной телекоммуникационной сети (2) с центральным диспетчерским пунктом (3). Центральный диспетчерский пункт (3) осуществляет передачу в центр (4) управления орбитальной группировки космических носителей (5) адреса и координат сработавшего датчика-фотометра (1). Для доразведки обнаруженной зоны применяют бортовые средства, установленные на двухосной платформе (11) космического носителя (5), состоящие из соосно закрепленных цифровой видеокамеры (8) и мультиспектрометра (9), щель которого совмещена с центром видеокамеры (8), а также камеры (10) регистрации ультрафиолетового свечения атмосферы над зоной готовящегося землетрясения, буферного запоминающего устройства (12) записи сигналов упомянутых средств и высокоскоростной радиолинии (13) передачи зарегистрированных сигналов в наземный комплекс (15) управления и обработки данных. Технический результат: повышение достоверности обнаружения зон подготавливаемого землетрясения. 7 ил.

Изобретение относится к области обработки и интерпретации данных геоструктур. Предложен способ оценивания возможности коллекторной системы, содержащий этапы, на которых измеряют критический риск и критическую возможность целевой переменной для коллекторной системы с использованием компьютерной системы. Для этого строят график "торнадо" с использованием всех внутренних параметров, используемых для вычисления целевой переменной, значения для риска и значения для возможности. Далее вычисляют критический риск и критическую возможность с использованием одного из внутренних параметров из графика "торнадо", который оказывает наибольшее влияние на целевую переменную, и оценивают возможность коллекторной системы для целевой переменной на протяжении различных временных горизонтов с использованием критического риска и критической возможности. Технический результат - повышение точности получаемых данных. 2 н. и 16 з.п. ф-лы, 10 ил., 1 табл.
Наверх