Способ утилизации баллиститных ракетных топлив

Изобретение относится к технологии конверсионных производств и может быть использовано для изготовления кумулятивных зарядов для дробления негабаритов горных пород, пробития металлических преград. В способе утилизации баллиститных ракетных топлив путем переработки их в кумулятивные разрывные заряды разрезают заряд баллиститного ракетного топлива на части, размещают отрезанную часть баллиститного ракетного топлива и формируют кумулятивную воронку конуса в матрицу пресс-формы, заполненную подогреваемой водой, нагревают их до размягчения топлива, после чего формируют кумулятивную воронку путем воздействия пуансона на формующий конус. Охлаждают пресс-форму, извлекают формующий конус и выталкивают изделие из гнезда пресс-формы. Достигается создание способа изготовления кумулятивного заряда из баллиститного ракетного топлива с истекшим сроком хранения. 2 ил.

 

Изобретение относится к технологии конверсионных производств и может быть использовано для изготовления кумулятивных зарядов для дробления негабаритов горных пород, пробития металлических преград и т.д.

Из литературы известны способы изготовления кумулятивных зарядов из взрывчатых веществ [1-3].

Известные способы изготовления кумулятивных зарядов предполагают применение штатных взрывчатых веществ, в то время как стоит проблема с накоплением большого количества баллиститных ракетных твердых топлив с истекшим сроком хранения. Уничтожение всех этих взрывчатых материалов путем сжигания привело бы к недопустимому загрязнению окружающей среды и большим материальным потерям.

Известный способ [3] получения удлиненных кумулятивных зарядов не позволяет формировать заряды из баллиститных ракетных топлив без полного разрушения их целостности (например, переработки их в стружку путем обработки на токарном станке для дальнейшей переработки их на экструдере для придания необходимой формы).

Промышленная утилизация баллиститных ракетных твердых топлив с истекшим сроком хранения существенно снижает взрывоопасность баз и арсеналов. Кроме того, резкий рост цен на традиционные взрывчатые вещества требует постоянного поиска новых видов сырья.

Наиболее близким по технической сущности к заявляемому изобретению является способ утилизации баллиститного ракетного твердого топлива путем переработки его в кумулятивные разрывные заряды с прикрепленными к ним электродетонаторами, включающий в себя закрепление заряда баллиститного ракетного топлива и фрезерование продольной канавки, после чего канавку покрывают металлической оболочкой и прикрепляют к заряду электродетонатор [4].

Данный способ позволяет получать лишь удлиненные кумулятивные заряды.

Техническим результатом данного изобретения является создание способа изготовления кумулятивного заряда из баллиститного ракетного топлива с истекшим сроком хранения.

Технический результат достигается тем, что в известном способе утилизации баллиститных ракетных топлив путем переработки их в кумулятивные разрывные заряды, включающем резку заряда баллиститного ракетного топлива на части, размещение отрезанной части баллиститного ракетного топлива и формирующего кумулятивную воронку конуса в матрицу пресс-формы, заполненную подогреваемой водой, их нагрев до размягчения топлива, после чего осуществляют формирование кумулятивной воронки путем воздействия пуансона на формующий конус, охлаждение пресс-формы, извлечение формующего конуса и выталкивание изделия из гнезда пресс-формы.

Пример выполнения способа.

Для изготовления кумулятивного заряда использовали заряд баллиститного ракетного топлива диаметром 45 мм. Заряд закрепили в патрон токарного станка и отрезали часть заряда длиной 45 мм. Параметры резания: подача 0,08 мм/об; частота вращения шпинделя 120 об/мин, подача воды в зону резани 0,005 л/мин. Затем отрезанный цилиндрический заряд баллиститного ракетного топлива высушили.

В матрицу 2 (фиг.1), наполненную водой, поместили заряд 3, установили оформляющий конус 1 над центром заряда.

Воду в матрице подогревали с помощью ультратермостата от комнатной температуры (22°C) до 70°C и выдерживали при данной температуре в течение 1 ч. При этом происходил нагрев матрицы, оформляющего конуса и заряда.

По истечении одного часа установили прогретую матрицу с зарядом и оформляющим конусом на гидравлический пресс под пуансон. Включили пресс и производили формирование кумулятивной воронки при скорости движения пуансона вниз 5 мм/мин до смыкания пуансона с матрицей. При этом срабатывал конечный выключатель и пресс выключался.

После разборки всей установки кумулятивный заряд выталкивали из матрицы, высушивали и прикрепляли к нему электродетонатор. При этом кумулятивный заряд имел вид, изображенный на фиг.2: 4 - электродетонатор; 5 - пластит; 6 - кумулятивный заряд.

Для проверки работоспособности изготовленного кумулятивного заряда проводили испытания на пробитие стального листа, бетонных плит и дробление негабаритов горных пород.

В качестве объекта испытаний взяли бетонную плиту толщиной 0,35 м, силикатный кирпич - 0,51 м, гранит - 0,31 м и стальную плиту (Ст.3) толщиной 25 мм. В качестве детонатора использовали ЭД-8-Ж. В качестве передаточного заряда - 2 г пластита. Детонацию в заряде возбуждали при помощи взрывной машины СВМ-1.

Параметры заряда: общая масса - 124 г; высота - 45 мм; нижний диаметр - 48 мм; верхний диаметр - 53 мм.

Заряд прикрепили к объекту при помощи зажимов. В результате подрыва были полностью разрушены бетонная плита, силикатный кирпич и гранит, стальная плита пробита на 15 мм.

Как видно из приведенных данных, способ позволяет утилизировать баллиститные ракетные топлива, что исключает их уничтожение, а пробивная способность зарядов находится на уровне зарядов из штатных взрывчатых веществ.

Способ позволяет использовать промышленное оборудование.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Куйдин В.П., Быстров Е.С., Гильманов Р.А., Галкин В.В., Калацей В.И., Мардасов О.Ф. Опыт и перспективы применения утилизируемых взрывчатых материалов на объектах АООТ «Трансвзрывпром». Сб. докл. I Российской научно-технической конференции «Утилизация-95». - М.: ЦНИИНТИКПК, 1995, С.114-119.

2. Калацей В.И., Плеханов Н.И., Мацеевич Б.В., Глинский В.П., Шалыгин Н.К., Мардасов О.Ф. Разработка новых типов промышленных взрывчатых веществ и изделий на основе извлеченных при утилизации боеприпасов взрывчатых веществ и порохов. Сб. докл. I Российской научно-технической конференции «Утилизация-95». - М.: ЦНИИНТИКПК, 1995, С.76-84.

3. Жегров Е.Ф., Телепченков В.Е., Текунова Р.А. Утилизация артиллерийских порохов и ракетных топлив в промышленные ВВ. Сб. докл. I Российской научно-технической конференции «Утилизация-95». - М.: ЦНИИНТИКПК, 1995, С.84-93.

4. RU 2002118664 А, Кл. F42B 33/06, опубл. 20.08.2004.

Способ утилизации баллиститных ракетных топлив путем переработки их в кумулятивные разрывные заряды, включающий резку заряда баллиститного ракетного топлива на части, размещение отрезанной части баллиститного ракетного топлива и формирующего кумулятивную воронку конуса в матрицу пресс-формы, заполненную подогреваемой водой, их нагрев до размягчения топлива, после чего осуществляют формирование кумулятивной воронки путем воздействия пуансона на формующий конус, охлаждение пресс-формы, извлечение формующего конуса и выталкивание изделия из гнезда пресс-формы.



 

Похожие патенты:

Изобретение относится к технологии конверсионных производств и может быть использовано для изготовления кумулятивных зарядов для дробления негабаритов горных пород.

Изобретение относится к военной технике, в частности к утилизации артиллерийских снарядов, срок хранения которых истек. Система утилизации артиллерийских снарядов сформирована в технологическую линию, состоящую из площадок фиксирования снарядов, извлечения взрывателей, вскрытия снарядов и топки тепловой электростанции, соединенных транспортером и расположенных друг от друга на расстоянии, безопасном по детонации, причем работы со снарядами выполняются роботами.
Изобретение относится к боеприпасам, в частности к способу повышения мощности взрыва и к устройству для его осуществления. .

Изобретение относится к способам изготовления электрических инициирующих элементов, а более конкретно к способам изготовления электромеханических инициаторов. .
Изобретение относится к боеприпасам, в частности к их ремонту с разборкой и последующей сборкой. .

Изобретение относится к области расснаряжения детонаторных шашек взрывателей мощностью от 5 до 50 г в тротиловом эквиваленте. .

Изобретение относится к ликвидации заряда ракетного двигателя на твердом топливе на стенде, оборудованном камерой локализации, и охлаждению продуктов сгорания. .

Изобретение относится к способам ликвидации зарядов крупногабаритных ракетных двигателей без сопловых блоков на открытых и закрытых стендах с системами газоочистки.

Изобретение относится к области утилизации ракетных двигателей на твердом топливе. .
Изобретение относится к области ликвидации и утилизации вооружения и военной техники (ВВТ), преимущественно ракетного вооружения (РВО) и, в частности, твердотопливных ракет различных классов.

Изобретение относится к механике и может быть использовано для придания ускорения телу. Газодинамически ускоряют тело, ускоряют тело взрывной волной, перемещаемой в пространстве со скоростью в зависимости от скорости детонации, радиуса и шага намотки спирали, обеспечивают устойчивость процесса ускорения тела условием автофазировки, синхронизируют газодинамическое ускорение и ускорение взрывной волной в зависимости от удаления тела от области взрыва.

Изобретение относится к технологии конверсионных производств и может быть использовано для изготовления кумулятивных зарядов для дробления негабаритов горных пород.

Изобретение относится к технике взрыва площадных зарядов из листовых взрывчатых веществ (ВВ) и может быть использовано в практике динамических испытаний преград (материалов и конструкций), а также в ряде импульсных технологических операций (штамповка и сварка взрывом).

Изобретение относится к вооружению и может быть использовано в кумулятивных боеприпасах. Устройство управления формой фронта детонационной волны содержит осесимметричные промежуточный заряд взрывчатого вещества с детонатором и основной заряд взрывчатого вещества с кумулятивной выемкой, инертную линзу в форме полого цилиндра с дном.

Изобретение относится к области экспериментальной физики, в частности к способу формирования металлического компактного элемента. Способ формирования металлического компактного элемента заключается в инициировании осесимметричного основного заряда взрывчатого вещества, разгоне металлической облицовки кумулятивной выемки под действием продуктов взрыва основного заряда, выполнении каждого металлического вкладыша в форме, аналогичной форме металлической облицовки, покрытии вкладыша со стороны облицовки слоем дополнительного заряда взрывчатого вещества, производстве ударного инициирования разогнанной металлической облицовкой примыкающего к ней дополнительного заряда взрывчатого вещества, размещенного на первом по направлению метания металлическом вкладыше.

Изобретение относится к боеприпасам, в частности к комбинированной кумулятивной облицовке для формирования высокоскоростных компактных элементов. Комбинированная кумулятивная облицовка для формирования высокоскоростных компактных элементов содержит струеобразующую часть в форме полусферы и сопряженную с ней отсекающую часть в форме цилиндра.

Изобретение относится к области военной техники, более конкретно к устройствам для разрезки стальных стержней, трубопроводов, электрических жгутов и т.п. с помощью удлиненных кумулятивных зарядов (УКЗ), и может быть использовано в ракетно-космической технике.

Изобретение раскрывает устройство кумулятивного заряда скважинного перфоратора, создающего при вскрытии продуктивного пласта расширяющийся кумулятивный канал.

Изобретение относится к области высокоскоростного соударения твердых тел и может быть применено в промышленности и военной технике, использующей заряды взрывчатых веществ для высокоскоростного метания компактных элементов.

Изобретение относится к боеприпасам, в частности к конструкциям облицовок снарядоформирующих зарядов, и может использоваться в устройствах формирования поражающих элементов (ПЭ) для пробития бронированных целей.

Изобретение относится к области ракетно-космической и оборонной техники и может быть использовано в различных кумулятивных устройствах (КУ), предназначенных для формирования высокоскоростных компактных элементов (ВКЭ) при моделировании воздействия метеоритных частиц или космического мусора искусственного происхождения на корпус космических объектов и при экспериментальном исследовании материалов в условиях высокоскоростного ударного нагружения. Комбинированная кумулятивная облицовка (КО) для формирования высокоскоростных компактных элементов содержит струеобразующую часть в форме сферического сегмента и сопряженную с ней отсекающую часть в форме цилиндра с внешним радиусом, равным внешнему радиусу поперечного сечения струеобразующей части в плоскости сопряжения. Высота сферического сегмента выбирается в диапазоне (1,2…1,8) RC, где RC - внешний радиус сферического сегмента. Изобретение позволяет усовершенствовать конструкцию комбинированной КО, как одного из элементов простейшего КУ для формирования ВКЭ, обеспечивающей формирование ВКЭ с необходимыми массово-скоростными характеристиками. 4 ил.
Наверх