Способ мультиэнергетической рентгенографии

Использование: для радиографического неразрушающего контроля. Сущность изобретения заключается в том, что производят ряд снимков при разных значениях анодного напряжения, разные значения анодного напряжения достигаются путем регистрации снимков в разные моменты времени действия переменного или пульсирующего анодного напряжения, питающего рентгеновскую трубку, при этом также производят ряд снимков при разных значениях анодного тока, разные значения анодного тока достигаются путем регистрации снимков в разные моменты времени действия переменного или пульсирующего анодного тока, протекающего через рентгеновскую трубку, обработкой снимков получают изображение, на котором для всех функциональных элементов (узлов) изделия микроэлектроники с неоднородной структурой обеспечен заданный контраст. Технический результат: обеспечение возможности создания способа мультиэнергетической рентгенографии, позволяющего расширить возможности цифровой рентгенографии на изделия микроэлектроники с неоднородной структурой, повысив достоверность и оперативность радиографического неразрушающего контроля. 4 ил.

 

Изобретение относится к средствам цифровой рентгенографии и может быть использовано для радиографического неразрушающего контроля, в частности для обнаружения скрытых дефектов изделий микроэлектроники с неоднородной структурой.

Изделия микроэлектроники с неоднородной структурой содержат неоднородные функциональные элементы (узлы) с различным числом слоев n = 1 N ¯ , их толщиной dn и линейным коэффициентом ослабления µn (фиг. 1). В дальнейшем под уровнем неоднородности i-го функционального элемента будем понимать

где Ni - число слоев в i-м функциональном элементе.

Тогда интенсивность излучения за i-м функциональным элементом изделия микроэлектроники

где I0 - интенсивность излучения на поверхности объекта контроля (изделия микроэлектроники).

Под интенсивностью излучения следует понимать энергию рентгеновских лучей, проходящих в единицу времени через единицу поверхности, перпендикулярной к направлению лучей [Хараджа Ф.Н. Общий курс рентгенотехники. М.-Л.: изд-во «Энергия», 1966. - 568 с.]. Зачастую излучение рентгеновского источника (трубки) характеризуют энергией, под которой понимают энергию рентгеновских лучей, проходящих через данную поверхность за данное время.

Известны способы двухэнергетической рентгенографии (см., например, Jens Ricke, et al., Clinical results of Csl-detector-based dual-exposure dual energy in chest radiography // Eur Radiol (2003) 13. P. 2577-2582; Мазуров А.И. Последние достижения в цифровой рентгенотехнике // Медицинская техника, 2010. №5 (263). - С. 10), согласно которым из двух изображений, сделанных при разных анодных напряжениях на рентгеновской трубке, путем субтракции получают изображения мягких и костных тканей. Использование способов с переключением анодного напряжения на рентгеновской трубке и последовательным получением двух изображений усиливает износ рентгеновской трубки за счет резкого переключения анодного напряжения и развивающихся при этом переходных процессов и увеличивает время исследования, что приводит к увеличению полученной пациентом дозы и большему относительному смещению изображений, ухудшающему результат дальнейшей обработки изображений методом субтракции.

Кроме того, известные способы оказываются неприемлемыми для рентгеновского неразрушающего контроля изделий микроэлектроники, имеющих, как правило, более двух уровней неоднородностей, характеризующихся различными толщинами и коэффициентами линейного ослабления.

Наиболее близким по технической сущности к заявляемому способу и выбранным в качестве прототипа является способ мультиэнергетической рентгенографии (патент РФ №2366990 от 10.09.2009), заключающийся в том, что производят ряд снимков при разных значениях анодного напряжения, разные значения анодного напряжения достигаются путем регистрации снимков в разные моменты времени действия переменного или пульсирующего анодного напряжения, питающего рентгеновскую трубку, и обработкой снимков получают отдельные изображения мягких и костных тканей.

Недостатком способа-прототипа является невозможность его использования для рентгеновского неразрушающего контроля изделий микроэлектроники с неоднородной структурой, обусловленная следующими причинами.

1. Для обеспечения требуемого контраста рентгеновского изображения требуется генерация излучения с различной интенсивностью I0 (различной энергетикой) по числу уровней неоднородностей (1) объекта контроля. Способ-прототип обеспечивает регистрацию отдельных снимков в течение двух промежутков времени: один снимок окажется выполненным при эффективной энергии рентгеновского излучения, соответствующей среднему значению анодного напряжения для диапазона U1-U2, а второй снимок - при другой величине эффективной энергии рентгеновского излучения, соответствующей среднему значению анодного напряжения для диапазона U3-U4. Субтракция полученных изображений позволит получить отдельные изображения изделий микроэлектроники только с двумя уровнями неоднородности.

2. Динамический диапазон изменения интенсивности I0 (эффективной энергии) рентгеновского излучения должен обеспечивать требуемый контраст (или другой избранный показатель качества) рентгеновского изображения для всех N уровней неоднородностей. Как показано в книге [Хараджа Ф.Н. Общий курс рентгенотехники. М.-Л.: изд-во «Энергия», 1966. - 568 с.] на с. 43, при увеличении тока iA, протекающего через рентгеновскую трубку, увеличивается число электронов, тормозящихся на аноде, следовательно, увеличивается интенсивность I0 излучения. В способе-прототипе изменение эффективной энергии рентгеновского излучения достигается только регулированием анодного напряжения UA, что не позволяет достичь требуемого динамического диапазона и обеспечить с заданной точностью установку интенсивности излучения с требуемой длиной волны λ.

3. Важным требованием к неразрушающему контролю является повышение его оперативности (снижение времени осуществления) [Шмаков М. Выбор системы рентгеновского контроля. Взгляд технолога // Технологии в электронной промышленности, №4, 2006. - С. 60-68]. Получение в способе-прототипе отдельных изображений увеличивает время их анализа.

Задачей изобретения является создание способа мультиэнергетической рентгенографии, позволяющего расширить возможности цифровой рентгенографии на изделия микроэлектроники с неоднородной структурой, повысить достоверность и оперативность радиографического неразрушающего контроля.

В заявленном способе эта задача решается тем, что в способе мультиэнергетической рентгенографии, заключающемся в том, что производят ряд снимков при разных значениях анодного напряжения, разные значения анодного напряжения достигаются путем регистрации снимков в разные моменты времени действия переменного или пульсирующего анодного напряжения, питающего рентгеновскую трубку, дополнительно производят ряд снимков при разных значениях анодного тока, разные значения анодного тока достигаются путем регистрации снимков в разные моменты времени действия переменного анодного тока, протекающего через рентгеновскую трубку, обработкой снимков получают изображение, на котором для всех функциональных элементов (узлов) изделия микроэлектроники с неоднородной структурой обеспечен заданный контраст или другой избранный показатель качества.

Перечисленная новая совокупность существенных признаков позволяет достичь указанного технического результата за счет:

- точной установки интенсивности (эффективной энергии) рентгеновского излучения с заданной длиной волны, обеспечивающей достижение заданного контраста (или другого избранного показателя качества) всех функциональных элементов (узлов) изделия микроэлектроники с неоднородной структурой (повышение достоверности контроля);

- формирования одного изображения такого изделия, удовлетворяющего требованиям к достоверности и минимизирующего время его анализа (повышение оперативности).

Проведенный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного способа мультиэнергетической рентгенографии, отсутствуют. Следовательно, заявленное изобретение соответствует условию патентоспособности «новизна».

Результаты поиска известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного объекта, показали, что они не следуют явным образом из уровня техники. Из уровня техники также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на достижение указанного технического результата. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».

Заявленное изобретение поясняется следующими фигурами:

фиг. 1 - изделие микроэлектроники с неоднородной структурой;

фиг. 2 - зависимость интенсивности тормозного рентгеновского излучения от анодного напряжения;

фиг. 3 - зависимость интенсивности тормозного рентгеновского излучения от анодного тока;

фиг. 4 - зависимость интенсивности тормозного рентгеновского излучения от анодного напряжения и анодного тока.

Для повышения достоверности и оперативности радиографического неразрушающего контроля изделий микроэлектроники с неоднородной структурой (фиг. 1), согласно предлагаемому способу, выполняют следующие операции.

Производят ряд снимков при разных значениях анодного напряжения UA, для чего используют М монохроматических излучений с соответствующими интенсивностями I0m), ( m = 1 M ¯ ) , где λm - длина волны, отвечающая максимуму интенсивности.

При этом разные значения анодного напряжения достигаются путем регистрации снимков в разные моменты времени действия переменного или пульсирующего анодного напряжения, питающего рентгеновскую трубку. Если рентгеновская трубка работает при постоянной силе тока iA и постоянном, не меняющемся во времени напряжении UA, то кривая распределения плотности интенсивности в спектре излучения в каждый момент времени отвечает кривой UA1 (фиг. 2).

Под плотностью интенсивности в спектре следует понимать отношение интенсивности лучей, заключенных в узком интервале длин волн спектра, к этому интервалу [Хараджа Ф.Н. Общий курс рентгенотехники. М.-Л.: изд-во «Энергия», 1966. - 568 с.].

Если же рентгеновская трубка будет работать при постоянной силе тока iA той же величины, что и в первом случае, но при пульсирующем анодном напряжении, то распределение интенсивности в спектре излучения, отвечающее кривой UA1, будет только в один момент времени, когда меняющееся напряжение достигнет своего максимума (Umax=UA1). Во все другие моменты напряжение будет ниже и, следовательно, кривые распределения интенсивности излучения будут иные (кривые UA2 и UA3), имеющие большую минимальную длину волны и меньшую интенсивность полного излучения. Поэтому в случае пульсирующего напряжения кривая распределения интенсивности в спектре излучения будет меняться во времени. Минимальная длина волны будет такая же, как и в случае постоянного напряжения UA=Umax, но максимум интенсивности будет сдвинут в сторону больших длин волн, и интенсивность всего спектра излучения станет меньше.

Производят ряд снимков при разных значениях анодного тока iA, при этом разные значения анодного тока достигаются путем регистрации снимков в разные моменты времени действия переменного анодного тока, протекающего через рентгеновскую трубку.

При увеличении тока, протекающего через рентгеновскую трубку, увеличивается число электронов, тормозящихся на аноде, следовательно, увеличивается излучение источника. Из кривых распределения плотности интенсивности в спектре излучения при различных силах тока iA (фиг. 3) видно, что с увеличением тока увеличивается интенсивность каждой длины волны спектра во столько раз, во сколько раз возрос ток. Форма кривой распределения интенсивности остается неизменной, а длина волны, отвечающая максимуму интенсивности, сохраняет свое значение.

Далее обработкой снимков получают изображение, на котором для всех функциональных элементов (узлов) изделия микроэлектроники с неоднородной структурой обеспечен заданный контраст.

Для этого снимки изделия микроэлектроники с неоднородной структурой, полученные при разных значениях анодного напряжения UA и анодного тока iA, разделяют на изображения отдельных i-x функциональных элементов (узлов) путем решения системы уравнений

относительно ρim). В выражении (3) I(λm) - интенсивность рентгеновского излучения с заданной длиной волны λm, достигаемая путем регистрации снимков в разные моменты времени действия переменного или пульсирующего анодного напряжения и анодного тока.

Несмотря на уменьшение отношения сигнал/шум в разделенных изображениях обнаружение дефектов изделий микроэлектроники увеличивается из-за уменьшения «структурного шума», т.е. исключения из изображений мешающих структур.

Изображения отдельных функциональных элементов (узлов), для которых обеспечивается достижение заданного контраста, объединяются в изображение, на котором для всех функциональных элементов (узлов) изделия микроэлектроники с неоднородной структурой обеспечен заданный контраст.

Возможность решения сформулированной задачи изобретения была проверена натурным экспериментом описанных действий при следующих исходных данных.

1. Источником излучения являлся аппарат рентгеновский переносной для промышленного применения РАП-220.

2. В качестве объекта контроля использовалась однослойная печатная импульсного блока питания ПЭВМ.

3. При изменении анодного напряжения в пределах от 80 до 180 кВ и анодного тока в пределах от 3 до 5 мА производилась регистрация пяти снимков при следующих значениях анодных напряжения и тока:

1) UA1=80 кВ, iA1=3 мА;

2) UA2=100 кВ, iA2=3,5 мА;

3) UA3=140 кВ, iA3=3,5 мА;

4) UA4=40 кВ, iA3=4 мА;

5) UA5=180 кВ, iA3=4 мА.

4. Измерение энергии рентгеновского излучения осуществлялось фотографическим методом, описанным в книге [Хараджа Ф.Н. Общий курс рентгенотехники. М.-Л.: изд-во «Энергия», 1966. - 568 с. ] на с. 422-424.

Результаты оценки интенсивности излучения (фиг. 4) свидетельствует о возможности точной установки интенсивности I0(UA,iA) рентгеновского излучения с заданной длиной волны и, как следствие, возможности цифровой рентгенографии изделий микроэлектроники с неоднородной структурой.

Анализ полученных снимков показал, что на них с требуемой (для задачи обнаружения скрытых дефектов) контрастностью хорошо различимы:

1) на первом снимке - дорожки печатной платы;

2) на втором - резисторы, конденсаторы малой емкости и полупроводниковые элементы (диоды и транзисторы);

3) на третьем - микросхемы, разъемы и электролитические конденсаторы большой емкости;

4) на четвертом - выходные трансформаторы;

5) на пятом - входной трансформатор.

Изображения указанных функциональных элементов с помощью специализированного программного средства объединялись в изображение, на котором для всех функциональных элементов импульсного блока питания был обеспечен заданный контраст. Сформированное изображение предъявлялось специалисту для визуального анализа скрытых дефектов.

Таким образом, результаты эксперимента подтверждают возможность решения задачи изобретения.

Способ мультиэнергетической рентгенографии, заключающийся в том, что производят ряд снимков при разных значениях анодного напряжения, разные значения анодного напряжения достигаются путем регистрации снимков в разные моменты времени действия переменного или пульсирующего анодного напряжения, питающего рентгеновскую трубку, отличающийся тем, что производят ряд снимков при разных значениях анодного тока, разные значения анодного тока достигаются путем регистрации снимков в разные моменты времени действия переменного или пульсирующего анодного тока, протекающего через рентгеновскую трубку, обработкой снимков получают изображение, на котором для всех функциональных элементов (узлов) изделия микроэлектроники с неоднородной структурой обеспечен заданный контраст.



 

Похожие патенты:

Использование: для осмотра тела человека на основе обратного рассеяния излучения. Сущность изобретения заключается в том, что используют блок формирования бегущих пятен, имеющий распределенные по спирали бегущие пятна, с чередованием пиков и спадов рентгеновского излучения на облучаемой поверхности.

Изобретение относится к устройствам для компьютерной томографии без гентри. Установка КТ содержит туннель сканирования, стационарный источник рентгеновских лучей, расположенный вокруг туннеля сканирования и содержащий множество фокусных пятен, испускающих излучение, и множество стационарных модулей детектора, расположенных вокруг туннеля сканирования напротив источника рентгеновского излучения.

Использование: для определения геометрических смещений сенсоров в плоскопанельном детекторе рентгеновского изображения. Сущность изобретения заключается в том, что на рабочей поверхности детектора размещают тест-объект, включающий по меньшей мере два объекта «острый край», соответствующих положению технологического зазора между указанными сенсорами, поток рентгеновского излучения направляют на тест-объект, получают его рентгеновское изображение, на полученном изображении идентифицируют пиксели, соответствующие изображению острого края каждого объекта «острый край», по которым определяют геометрические смещения сенсоров из условия минимума целевого функционала с ограничениями на указанные смещения, причем ограничения включают линейные ограничения, соответствующие геометрическим смещениям сенсоров, расположенных рядом друг с другом по горизонтали или вертикали, и нелинейные ограничения, соответствующие геометрическим смещениям сенсоров, расположенных рядом друг с другом по диагонали.

Настоящее изобретение относится к формированию фазово-контрастного изображения, которым визуализируют фазовую информацию когерентного излучения, проходящего через сканируемый объект.

Использование: для неразрушающего контроля материалов и изделий методом рентгеновской компьютерной томографии. Сущность изобретения заключается в том, что промышленный томограф содержит источник жесткого тормозного излучения, расположенный от объекта на расстоянии, обеспечивающем перекрытие веерным пучком излучения части сечения объекта, сканер, обеспечивающий только вращательное движение, неподвижный детекторный блок, управляющий компьютер, программное обеспечение, при этом источник излучения выполнен с возможностью поворота вокруг оси, перпендикулярной плоскости томограммы и проходящей через фокус пучка излучения, и расположен от объекта на расстоянии, обеспечивающем перекрытие веерным пучком излучения менее половины сечения объекта и перекрытие веерными пучками половины сечения объекта за цикл поворотов.

Изобретение относится к обработке медицинских изображений. Техническим результатом является повышение точности оценки движения интересующей ткани.

Использование: для рентгеноскопического контроля кольцевого сварного шва трубопровода. Сущность изобретения заключается в том, что устройство для рентгеноскопического контроля кольцевого сварного шва трубопровода включает направленный источник рентгеновского излучения, который вводят в секцию трубопровода и который может вращаться в трубопроводе, средство для выравнивания направленного источника рентгеновского излучения с внешним детектором рентгеновского излучения таким образом, чтобы они оба могли вращаться на 360°, в сущности, соосно секции трубопровода, а также средство для выборки данных, детектируемых детектором рентгеновского излучения, для последующего анализа.

Использование: для контроля сварных швов трубопровода посредством проникающего излучения с внешней стороны трубопровода. Сущность изобретения заключается в том, что устройство для внешнего осмотра кольцевого сварного шва трубопровода включает источник излучения (5) и детектор излучения (3).

Использование: для проверки объектов посредством проникающего излучения. Сущность: заключается в том, что установка для проверки объектов посредством электромагнитных лучей содержит по меньшей мере два расположенных рядом друг с другом проверочных блока, содержащих по меньшей мере один источник излучения для формирования электромагнитного излучения и по меньшей мере одно соотнесенное с источником излучения детекторное устройство, расположенные в переносном корпусе контейнерного типа, при этом проверочные блоки расположены так, что объект облучается с различных направлений.

Использование: для формирования рентгеновских изображений. Сущность изобретения заключается в том, что устройство формирования рентгеновских изображений согласно настоящему изобретению включает фазовую решетку 130, поглощательную решетку 150, детектор 170 и арифметический блок 180.

Изобретение относится к медицинской технике, а именно к рентгеновским комплексам для проведения широкого спектра различных рентгеновских исследований пациентов. Комплекс содержит стол пациента, установленный на неподвижном основании, и колонну, установленную с возможностью перемещения вдоль стола пациента, стол пациента включает в себя раму, соединенную с одной стороны с неподвижным основанием, а с противоположной стороны имеет две параллельные опоры, на которых установлена рентгенопрозрачная дека. На колонне с возможностью вертикального перемещения по ней и вращения вокруг нее смонтирована каретка, на которой установлен кронштейн с возможностью вращения вокруг оси, перпендикулярной оси колонны. Кронштейн содержит на одном конце рентгеновский излучатель, а на другом - рентгеновский детектор, установленные напротив друг друга. В столе пациента имеется проем между рамой стола и рентгенопрозрачной декой, выполненный с возможностью захода и выхода рентгеновского детектора при повороте каретки вокруг колонны, границами проема служат параллельные опоры. Колонна установлена на независимой от основания стола пациента направляющей, кронштейн выполнен в виде U-дуги, рентгенопрозрачная дека выполнена с возможностью перемещения перпендикулярно направлению перемещения колонны, вдоль параллельных опор, а рама стола соединена с неподвижным основанием посредством подъемно-поворотного механизма и выполнена с возможностью поворота на заданный угол относительно плоскости основания стола. Использование изобретения обеспечивает свободный доступ к пациенту и выполнение всех основных видов рентгеновских исследований. 7 з.п. ф-лы, 13 ил.

Изобретение относится к технологии получения рентгеновского изображения. Устройство для фазоконтрастного формирования изображений содержит источник рентгеновского излучения, элемент детектора рентгеновского излучения, первый и второй элементы решетки, причем объект может быть расположен между источником рентгеновского излучения и элементом детектора рентгеновского излучения, причем первый элемент решетки и второй элемент решетки могут быть расположены между источником рентгеновского излучения и элементом детектора рентгеновского излучения, а источник рентгеновского излучения, первый и второй элементы решетки и элемент детектора рентгеновского излучения соединены с возможностью получения фазоконтрастного изображения объекта, имеющего поле обзора, большее чем размер детектора. Элемент детектора рентгеновского излучения может перемещаться и выполнен с возможностью получения подобласти поля обзора. При этом когда элемент детектора рентгеновского излучения перемещается из первого положения для получения первой подобласти поля обзора ко второму положению для получения второй подобласти поля обзора, первый элемент решетки и второй элемент решетки перемещаются относительно друг друга на дополнительное значение Δ для обеспечения первого состояния пошагового изменения фазы в первом положении и второго состояния пошагового изменения фазы во втором положении. Рентгеновская система содержит устройство для фазоконтрастного формирования изображений. Способ получения информации фазоконтрастного изображения состоит в том, что получают первую информацию фазоконтрастного изображения в первом состоянии пошагового изменения фазы, перемещают, наклоняют и/или вращают элемент детектора рентгеновского излучения относительно по меньшей мере одного из объекта и источника рентгеновского излучения, перемещают первый элемент решетки и второй элемент решетки относительно друг друга на дополнительное значение Δ и получают вторую информацию фазоконтрастного изображения во втором состоянии пошагового изменения фазы. Устройство для фазоконтрастного формирования изображений применяют в одном из рентгеновской системы, системы CT и системы томографической реконструкции. Использование изобретения позволяет улучшить качественное и информационное содержание получаемых изображений. 4 н. и 11 з.п. ф-лы, 8 ил.

Изобретение относится к области электрооптического (радиооптического) приборостроения и, в частности, к визуализации электромагнитного излучения. Устройство визуализации электромагнитных излучений содержит набор антенн, включающий в себя по меньшей мере одну антенну, выполненную с возможностью приема сигнала визуализируемого излучения, устройство опроса, выполненное с возможностью формирования и выдачи по меньшей мере одного опорного импульса заданной длительности, причем заданная длительность опорного импульса по меньшей мере в два раза больше одного периода принимаемого сигнала визуализируемого излучения, по меньшей мере одно устройство амплитудно-импульсной модуляции, выполненное с возможностью формирования промодулированного сигнала посредством модуляции принятого опорного импульса Uоп. имп заданной длительности сигналом визуализируемого излучения UЭМИ сигн, принятым по меньшей мере одной антенной набора, причем амплитуда Uоп. имп больше максимальной амплитуды UЭМИ сигн, фильтр низкой частоты, выполненный с возможностью отсечки шума, создаваемого остальными антеннами набора, временно не участвующими в процессе опроса устройства амплитудно-импульсной модуляции устройством опроса, и пропускания отфильтрованного промодулированного сигнала, восстанавливающий фильтр, выполненный с возможностью формирования сигнала огибающей промодулированного сигнала, блок формирования видеосигнала, выполненный с возможностью формирования видеосигнала с наведенными служебными синхроимпульсами из по меньшей мере одного сигнала огибающей промодулированного сигнала, устройство отображения, принимающее видеосигнал и преобразующее его в изображение. 2 н. и 17 з.п. ф-лы, 5 ил.

Изобретение относится к медицинской технике, а именно к устройству компьютерной томографии. Устройство содержит канал сканирования, стационарный источник рентгеновского излучения, размещенный вокруг канала сканирования и содержащий множество фокальных пятен излучения и множество стационарных детекторных модулей, размещенных вокруг канала сканирования и расположенных напротив источника рентгеновского излучения. При этом линии удлинения внешних сторон секториальных пучков излучения, излучаемых из двух фокальных пятен излучения, соответственно размещенных на одном конце и другом конце множества фокальных пятен излучения, пересекаются в точке пересечения, и линия, образованная соединением точки пересечения с центральной точкой поверхности приема излучения каждого из детекторных модулей, перпендикулярна поверхности приема излучения каждого из детекторных модулей, при наблюдении в плоскости, пересекающей канал сканирования. Использование изобретения позволяет увеличить скорость анализа данных. 17 з.п. ф-лы, 6 ил.

Использование: для неразрушающего контроля механической детали. Сущность изобретения заключается в том, что устройство неразрушающего контроля механической детали, в частности, такой как турбинная лопатка, содержит источник испускания высокоэнергетического электромагнитного излучения по оси (92) и экран, выполненный из материала, способного поглощать электромагнитное излучение и содержащий проем, форма и размеры которого определены таким образом, чтобы подвергать действию электромагнитного излучения только заданную контролируемую зону детали (12), при этом устройство содержит средства опоры и позиционирования поглощающего экрана и механической детали и средства выравнивания проема экрана и контролируемой зоны механической детали с источником излучения, при этом средства опоры и позиционирования содержат раму (72), содержащую первый (76) и второй (78) ярусы, расположенные друг над другом вдоль оси (92) электромагнитного пучка, при этом второй ярус (78) расположен между первым ярусом (76) и источником (70) и содержит, по меньшей мере, одно место (80, 82, 84) для размещения поглощающего экрана (96), выровненного вдоль оси (92) пучка излучения, по меньшей мере, с одним местом (86, 88, 90) опоры (104) детали первого яруса (76). Технический результат: обеспечение возможности повышения контраста на получаемых изображениях. 7 з.п. ф-лы, 11 ил.

Использование: для лучевой сканирующей визуализации. Сущность изобретения заключается в том, что устройство для лучевой сканирующей визуализации содержит: множество генераторов излучения, распределенных равномерно по дуге окружности, причем упомянутое множество генераторов излучения испускает последовательно пучки излучения к объекту, подлежащему контролю, в течение одного периода сканирования, чтобы выполнить сканирование одного слоя; устройство детектирования излучения, предназначенное для сбора значений проекций пучков излучения, испускаемых упомянутым множеством генераторов излучения, при этом упомянутое устройство детектирования излучения содержит множество линейных решеток детекторов излучения, при этом каждая из упомянутого множества линейных решеток детекторов излучения состоит из множества блоков детектирования излучения, расположенных по прямой линии, причем упомянутое множество линейных решеток детекторов излучения соединяется впритык в одной и той же плоскости последовательно, за исключением того, что две из множества линейных решеток детекторов излучения на обоих концах множества не соединяются между собой, чтобы сформировать полузамкнутый каркас. Технический результат: обеспечение возможности получения значений полных проекций пучков без поворота устройства. 3 н. и 20 з.п. ф-лы, 7 ил.

Использование: для формирования дифференциальных фазово-контрастных изображений. Сущность изобретения заключается в том, что дифракционная решетка для формирования рентгеновских дифференциальных фазово-контрастных изображений снабжена первой подобластью, содержащей по меньшей мере один участок первой решеточной структуры и по меньшей мере один участок второй решеточной структуры. Первая решеточная структура содержит множество полос и промежутков с первой решеточной ориентацией GO1, которые расположены периодически, при этом полосы расположены так, что они изменяют фазу и/или амплитуду рентгеновского излучения, и при этом промежутки являются прозрачными для рентгеновских лучей. Вторая решеточная структура содержит множество полос и промежутков со второй решеточной ориентацией GO2, которые расположены периодически, при этом полосы расположены так, что они изменяют фазу и/или амплитуду рентгеновского излучения, и при этом промежутки являются прозрачными для рентгеновских лучей. Первая решеточная ориентация GO1 является отличающейся от второй решеточной ориентации GO2. Технический результат: повышение качества изображения. 6 н. и 7 з.п. ф-лы, 39 ил.

Использование: для формирования изображений методом дифференциального фазового контраста. Сущность изобретения заключается в том, что дифракционная решетка для формирования изображений методом дифференциального фазового контраста снабжена, по меньшей мере, одним участком первой подобласти и, по меньшей мере, одним участком второй подобласти. Первая подобласть содержит решетчатую структуру с множеством полос и щелей, периодически расположенных с первым шагом PG1 решетки, при этом полосы расположены так, что упомянутые полосы изменяют фазу и/или амплитуду рентгеновского излучения, и причем щели являются рентгенопрозрачными. Вторая подобласть является рентгенопрозрачной, и при этом, по меньшей мере, один участок второй подобласти обеспечивает рентгенопрозрачную апертуру в решетке. Участки первой и второй подобластей расположены с чередованием в, по меньшей мере, одном направлении. Технический результат: повышение качества изображения. 6 н. и 8 з.п. ф-лы, 52 ил.

Использование: для реконструкции рентгеновской двухэнергетической компьютерной томографии. Сущность изобретения заключается в том, что способ реконструкции рентгеновской двухэнергетической CT согласно настоящему изобретению содержит: (a) оценку энергетического спектра и создание двухэнергетической таблицы поиска; (b) сбор данных высокой энергии и данных низкой энергии системы формирования изображений двухэнергетической CT с использованием детектора системы формирования изображений двухэнергетической CT; (c) получение изображений проекции и масштабированных изображений и согласно полученным данным высокой энергии и данным низкой энергии ; (d) реконструкцию масштабированного изображения с использованием первого условия ограничения кусочной гладкости и, тем самым, получение изображения электронной плотности; и (e) реконструкцию масштабированного изображения с использованием второго условия ограничения кусочной гладкости и, тем самым, получение изображения эквивалентного атомного номера. В настоящем изобретении шум в двухэнергетическом реконструированном изображении может эффективно подавляться при сохранении разрешения посредством эффективного использования информации, присутствующей в данных. Технический результат: обеспечение возможности получения реконструированного изображения с высоким качеством. 10 з.п. ф-лы, 2 ил.

Использование: для анализа области, представляющей интерес, в объекте с использованием рентгеновских лучей. Сущность изобретения заключается в том, что выполняют (a) предоставление данных измерений посредством системы дифференциальной фазово-контрастной рентгеновской визуализации, и (b) анализ характеристик объекта в области, представляющей интерес. Здесь данные измерений содержат двухмерный или трехмерный набор пикселей, где для каждого пикселя данные измерений содержат три типа данных изображения, пространственно совмещенных друг с другом, включая (i) данные А изображения, представляющие абсорбцию, (ii) данные D изображения, представляющие дифференциальный фазовый контраст, и (iii) данные C изображения, представляющие когерентность. Этап анализа основан, для каждого пикселя, на комбинации по меньшей мере двух из информации, содержащейся в данных А изображения, представляющих абсорбцию, и информации, содержащейся в данных D изображения, представляющих дифференциальный фазовый контраст, и информации, содержащейся в данных С изображения, представляющих когерентность. Технический результат: повышение достоверности сегментации или классификации внутренних структур в объекте, представляющем интерес. 3 н. и 9 з.п. ф-лы.
Наверх