Защитное технологическое покрытие

Изобретение относится к защитным покрытиям от окисления и в качестве высокотемпературной смазки при технологических нагревах в процессе изготовления деталей. Технический результат изобретения заключается в понижении значений окисляемости и в повышении термостойкости и сцепления покрытия с поверхностью защищаемых жаропрочных никелевых сплавов при температурах нагрева до 1250°C. Защитное технологическое покрытие включает, мас.%: Al2O3 2-21, BaO 16-18, CaO 7,5-9, MgO 6-8,5, B2O3 3-15, MgO·Cr2O3 1,5-2, TiB2 3-5, Ni3Al 1,5-3,5, BaO·B2O3 5-7,5, SiO2 - остальное. 2 табл., 3 пр.

 

Изобретение относится к области производства силикатных материалов, которые могут быть использованы как защитные покрытия от окисления и в качестве высокотемпературной смазки при технологических нагревах в процессе изготовления деталей и полуфабрикатов в машиностроении и в других отраслях народного хозяйства.

Известно защитное технологическое покрытие следующего химического состава, мас.%:

Al2O3 3-21
CaO 1,5-13
MgO 0,5-5,5
B2O3 3-18
BaO 3-13
K2O 0,1-5
2BaO 3SiO2 1-3
2Al2O3·B2O3 1-3
SiO2 остальное

(RU 2379238 C1, 20.01.2010).

Недостатком известного покрытия является низкая температуроустойчивость при рабочих температурах до 1250°C.

Известно защитное покрытие следующего химического состава, мас.%:

SiO2 10-30
Al2O3 3-20
CaO 8-12
MgO 0,5-5
B2O3 3-12
Na2O 0,1-0,4
K2O 0,1-0,2
BaO 3-11
SiB4 0,5-5
MoSi2 32-70

(RU 2190584 C2, 28.11.2000).

Известно защитное технологическое покрытие для сталей и сплавов следующего химического состава, мас. %:

Al2O3 17-33
CaO 0,5-7,8
MgO 0,5-5
2CaO·SiO2 0,5-1
3CaO·Al2O3 0,5-1
2MgO·Al2O3·5SiO2 5-10
CaO·6Al2O3 5-10
SiO2 остальное

(RU 2345963 C1, 10.02.2009).

Недостатком известных покрытий является низкая температуроустойчивость и термостойкость при температурах нагрева до 1250°C.

Известно защитное технологическое покрытие для сталей и сплавов следующего химического состава, мас. %:

Al2O3 19-35
CaO 1-8
MgO 1-7,5
3CaO·Al2O3 0,8-1,2
CaO·6Al2O3 3-11
BaO·6Al2O3 3-5
MgO·Al2O3 0,3-1
SiO2 остальное

(RU 2404933 C1, 27.11.2010).

Недостатком известного покрытия является низкое сцепление покрытия с поверхностью защищаемого металла после технологических нагревов до 1250°C.

Известно также защитное технологическое покрытие следующего химического состава, мас.%:

SiO2 12-20
MgO 1,5-5
3CaO·Al2O3 10-15
Al2O3·MgO 3-10
BaO·2SiO2 1,5-5
ZnO2·Al2O3 3-8
Al2O3 остальное

(RU 2379239 C1, 20.01.2010).

Недостатком известного покрытия является низкие температуроустойчивость и сцепление с поверхностью защищаемого металла при температурах нагрева до 1250°C.

Наиболее близким аналогом является защитное технологическое покрытие следующего химического состава, мас. %:

Al2O3 3-17
BaO 1-15
CaO 0,5-5
MgO 0,5-5,5
B2O3 5-10
Ka2O 0,5-10
K2O 0,5-5
MgO·Cr2O3 0,5-1
SiB4 1-5
SiO2 остальное

(RU 2317954 C1, 27.02.2008).

Недостатком известного покрытия является низкая температуроустойчивость, термостойкость и низкое сцепление с поверхностью защищаемого металла при температурах нагрева до 1250°C.

Техническим результатом является понижение значений окисляемости, а также повышение термостойкости и сцепления покрытия с поверхностью защищаемых жаропрочных никелевых сплавов при температурах нагрева до 1250°C.

Поставленный технический результат достигается за счет того, что предложено защитное технологическое покрытие, содержащее, мас. %: Al2O3, BaO, CaO, MgO, B2O3, MgO·Cr2O3, SiO2, при этом оно дополнительно содержит TiB2, Ni3Al и BaO·B2O3 при следующем соотношении компонентов, мас. %:

Al2O3 2-21
BaO 16-18
CaO 7,5-9
MgO 6-8,5
B2O3 3-15
MgO·Cr2O3 1,5-2
TiB2 3-5
Ni3Al 1,5-3,5
BaO·B2O3 5-7,5
SiO2 остальное

Как показал рентгеноструктурный анализ предлагаемого защитного технологического покрытия, введение TiB2, Ni3Al и BaO·B2O3 в покрытие при заявленном содержании компонентов приводит к образованию температуроустойчивых фаз 3BaO·Al2O3 (боралюминат), MgO·2Al2O3 (шпинель), CaO 2Al2O3 (алюминат кальция) и ВаО 6А12 O3 (алюминат бария), обеспечивающих снижение окисляемости, повышение термостойкости, а также сцепление защитного технологического покрытия с поверхностью защищаемого жаропрочного никелевого сплава при температурах нагрева до 1250°C.

Экспериментальные исследования также показали, что изменение концентраций дополнительно введенных компонентов TiB2, Ni3Al и BaO·B2O3 приводит к изменению массового соотношения компонентов защитного технологического покрытия и его технологических и термических свойств. Установлено, что в процессе нагревов образцов с покрытием, в котором не соблюдена указанная концентрация компонентов, при температуре до 1250°C с выдержкой 15 часов покрытие расслаивается, спекается в виде керамического слоя, без образования стекловидной пленки. Керамическая пленка является пористой и не обеспечивает защиту жаропрочных никелевых сплавов от окисления, кроме того, является абразивной и не может служить в качестве высокотемпературной смазки.

Примеры осуществления.

Технологический процесс изготовления шликера для защитного технологического покрытия проводился следующим образом. Для получения фритты защитного технологического покрытия брали следующие компоненты: Al2O3, BaO, CaO, MgO, B2O3, MgO·Cr2O3, TiB2, Ni3Al и BaO·B2O3, SiO2, в пропорциях, указанных в таблице 1, их поместили в фарфоровый барабан с алундовыми шарами и проводили размол и перемешивание компонентов на валковой мельнице. Варку фритты проводили в алундовых тиглях в камерной печи. Далее приготовили шликер покрытия путем размола фритты и перемешивания компонентов с добавлением водопроводной воды в фарфоровом барабане валковой мельницы. Готовый шликер покрытия выгрузили в полиэтиленовую емкость, где в течение 5 суток проходило старение шликера.

Шликер с вязкостью 21 Па·с, определенной вискозиметром ВЗ 246, наносили краскораспылителем КРУ4 на образцы жаропрочных никелевых сплавов ЭП975, ЭИ698 и ЭП742. Толщина предлагаемого защитного покрытия составляла 0,25 мм. Образцы с защитным покрытием подвергали сушке при комнатной температуре в течение нескольких часов, затем проводили нагрев при 1100 и 1250°C с выдержкой 15 часов. Температура и время испытания образцов с предлагаемым защитным технологическим покрытием и покрытием-прототипом определялась технологическим процессом нагрева заготовок из сплавов ЭП975, ЭИ698 и ЭП742.

Свойства предлагаемого защитного технологического покрытия и его прототипа приведены в таблице 2.

Образцы жаропрочных никелевых сплавов ЭП975, ЭИ698 и ЭП742 с предлагаемым защитным технологическим покрытием и покрытием-прототипом подвергались испытаниям для определения окисляемости, термостойкости при температурах 1000 и 1250°C, прочности сцепления покрытия с защищаемым сплавом.

Окисляемость образцов с предлагаемым защитным технологическим покрытием и покрытием-прототипом определялась путем непрерывного их взвешивания через 5, 10, 15 часов, без извлечения образцов из высокотемпературной камерной печи ТК1600 при заданных температурах нагрева 1100 и 1250°C.

Термостойкость предлагаемого защитного технологического покрытия и покрытия-прототипа определялась при циклировании образцов по режимам 1100↔20°C и 1250↔20°C. Образцы с предлагаемым защитным технологическим покрытием и покрытием-прототипом загружали в камерную печь ТК1400 при температурах 1100 и 1250°C, выдерживали в течение 30 минут и выгружали на воздух. Термоциклирование проводили до появления первой трещины. При отсутствии трещин термоциклирование образцов прекращали после 50 циклов.

Сцепление предлагаемого защитного технологического покрытия и покрытия-прототипа определялось площадью скола покрытия с защищаемой поверхностью образца.

Образцы с предлагаемым защитным технологическим покрытием и покрытием-прототипом нагревали в печи ТК1400 при температуре 1100 и 1250°C, выдержке 30 минут, после чего образцы выгружали из печи и подвергали удару металлическим шариком диаметром 3 мм с высоты 50 см. При этом покрытие, исследуемое данным методом, может скалываться с защищаемой поверхности в виде окружностей и прямоугольников. После удара замерялись площадь скола по формулам: Sокр=2πr2, где Sокр - площадь окружности, r - радиус круга, Sпр=ℓ·b, где Sпр - площадь прямоугольника, ℓ - длина, b - ширина. Общая площадь сколовшегося покрытия 8 скола с защищаемой поверхности образца определялась суммарной площадью скола покрытия.

Результаты сравнительных испытаний приведены в таблице 2. Нижеприведенные экспериментальные данные соответствуют средним значениям, полученным из трех измерений окисляемости, термостойкости и сцепления покрытия с защищаемым металлом.

Термостойкость:

- образцов жаропрочного никелевого сплава ЭП975 с предлагаемым защитным технологическим покрытием при температуре 1100°C выше в 10 раз, а при температуре 1250°C выше в 50 раз по сравнению с предлагаемым защитным покрытием-прототипом;

- образцов жаропрочного никелевого сплава ЭИ698 с предлагаемым защитным технологическим покрытием при температуре 1100°C выше в 10 раз, а при температуре 1250°C выше в 50 раз по сравнению с предлагаемым защитным покрытием-прототипом;

- образцов жаропрочного никелевого сплава ЭП742 с предлагаемым защитным технологическим покрытием при температуре 1100°C выше в 10 раз, а при температуре 1250°C выше в 50 раз по сравнению с предлагаемым защитным покрытием-прототипом.

Образцы жаропрочных никелевых сплавов ЭП975, ЭИ698, ЭП742 с предлагаемым защитным технологическим покрытием при температуре 1250°C выдерживают 50 циклов по режиму термоциклирования 1250°C↔20°C (1 цикл - 30 минут) без изменения качества покрытия (внешнего вида), притом как защитное покрытие-прототип при заданном режиме термоциклирования полностью разрушается.

Окисляемость:

- образцов жаропрочного никелевого сплава ЭП975 с предлагаемым защитным технологическим покрытием при температуре 1100°C (с выдержкой 15 часов) меньше в 10 раз, при температуре 1250°C (с выдержкой 15 часов) меньше в 7,5 раз по сравнению с предлагаемым защитным покрытием-прототипом;

- образцов жаропрочного никелевого сплава ЭИ698 с предлагаемым защитным технологическим покрытием при температуре 1100°C (с выдержкой 15 ч) меньше в 10 раз, при температуре 1250°C (с выдержкой 15 ч) меньше в 10 раз по сравнению с предлагаемым защитным покрытием-прототипом;

- образцов жаропрочного никелевого сплава ЭП742 с предлагаемым защитным технологическим покрытием при температуре 1100°C (с выдержкой 15 ч) меньше в 25 раз, при температуре 1250°C (с выдержкой 15 ч) меньше в 10 раз по сравнению с предлагаемым защитным покрытием-прототипом.

Сцепление предлагаемого защитного технологического покрытия:

- с жаропрочным никелевым сплавом ЭП975 при температурах 1100 и 1250°C (с выдержкой 15 ч) составляет 100%, т.е. покрытие не скалывается (площадь скола - 0%) и сохраняется на всей поверхности образца;

- с жаропрочным никелевым сплавом ЭИ698 при температурах 1100 и 1250°C (с выдержкой 15 ч) составляет 100%, т.е. покрытие сохраняется на всей поверхности образца;

- с жаропрочным никелевым сплавом ЭП742 при температурах 1100 и 1250°C (с выдержкой 15 ч) составляет 100%, т.е. и сохраняется на всей поверхности образца.

Сцепление защитного покрытия-прототипа:

- с жаропрочным никелевым сплавом ЭП975 при температуре 1100°C (с выдержкой 15 ч) составляет 6%. Покрытие-прототип скалывается с 94% поверхности образца, а при температуре 1250°C (с выдержкой 15 ч) составляет 2%, скалывается с 98% поверхности образца;

- с жаропрочным никелевым сплавом ЭИ698 при температуре 1100°C (с выдержкой 15 ч) составляет 3%. Покрытие-прототип скалывается с 97% поверхности образца, а при температуре 1250° (с выдержкой 15 ч) составляет 1%, скалывается с 99% поверхности образца;

- с жаропрочным никелевым сплавом ЭП742 при температурах 1100 и 1250°C (с выдержкой 15 ч) составляет 2%. Покрытие-прототип скалывается с 98% поверхности образца.

Предложенное защитное технологическое покрытие приводит к снижению окисления, повышению термостойкости, а также сцепления покрытия к поверхности защищаемого жаропрочного никелевого сплава при температурах нагрева до 1250°C.

Применение предлагаемого защитного технологического покрытия позволит проводить термическую обработку жаропрочных никелевых сплавов ЭП975, ЭИ698, ЭП742 в обычных печах вместо печей с контролируемой атмосферой, использовать повторно защитное технологическое покрытие перед следующим технологическим циклом (закалка, нормализация, штамповка), повысить качество, надежность готовых деталей и производительность труда, получить точные штамповки, экономию металла 5-10%, инертного газа (аргона) и электрокорунда.

Защитное технологическое покрытие, включающие Al2O3, BaO, CaO, MgO, B2O3, MgO·Cr2O3, SiO2, отличающееся тем, что оно дополнительно содержит TiB2, Ni3Al и BaO·B2O3 при следующем соотношении компонентов, мас.%:

Al2O3 2-21
BaO 16-18
CaO 7,5-9
MgO 6-8,5
B2O3 3-15
MgO·Cr2O3 1,5-2
TiB2 3-5
Ni3Al 1,5-3,5
BaO·B2O3 5-7,5
SiO2 остальное



 

Похожие патенты:

Изобретение относится к области производства силикатных материалов, которые могут быть использованы как защитные технологические покрытия от окисления и в качестве высокотемпературной смазки при технологических нагревах в процессе изготовления деталей и полуфабрикатов в машиностроении и в других отраслях народного хозяйства.
Изобретение относится к защитным покрытиям для сталей и сплавов от окисления при технологических нагревах. Технический результат изобретения заключается в создании защитного покрытия, обладающего повышенной до 1250°C рабочей температурой, и увеличении времени работоспособности его при нагревах до 1250°C.
Изобретение относится к защитным покрытиям для сталей и сплавов от окисления при технологических нагревах. Технический результат изобретения заключается в уменьшении сцепления покрытия к сталям и увеличении вязкости покрытия при сохранении температуроустойчивости до 1150°C.
Изобретение относится к электроизоляционным стеклоэмалям для деталей из нержавеющей стали. Технический результат изобретения заключается в повышении прочности сцепления стекла с металлом, расширении температурной зоны устойчивости стекломатрицы от 700 до 900оС.
Глазурь // 2486141
Изобретение относится к технологии силикатов и касается составов глазурей для нанесения на керамические изделия декоративно-художественного назначения. .
Изобретение относится к области технологии силикатов, а именно к составам фритты эмали для высокотемпературной отделки бетонных изделий (стеновых панелей, плит). .
Глазурь // 2480426
Изобретение относится к технологии силикатов и касается составов глазурей для нанесения на керамику. .
Изобретение относится к промышленности строительных материалов и касается составов силикатных покрытий для нанесения на керамический кирпич. .
Ангоб // 2472723
Изобретение относится к составам ангобов, которые могут быть использованы в производстве изделий бытовой керамики (блюда, бочонки, банки, подставки и др.). .
Изобретение относится к технологии силикатов, в частности к составам эмалевого шликера для покрытия изделий из керамики. .

Изобретение относится к батарее твердооксидных электролитических элементов (SOEC), изготовляемой способом, который включает следующие стадии: (a) формирование первого блока батареи элементов путем чередования по меньшей мере одной соединительной пластины и по меньшей мере одного узла элемента, причем каждый узел элемента содержит первый электрод, второй электрод и электролит, расположенный между этими электродами, а также обеспечение стеклянного уплотнителя между соединительной пластиной и каждым узлом элемента, причем стеклянный уплотнитель имеет следующий состав: от 50 до 70 мас.% SiO2, от 0 до 20 мас.% Аl2О3, от 10 до 50 мас.% СаО, от 0 до 10 мас.% МgО, от 0 до 2 мас.% (Na2O+K2O), от 0 до 10 мас.% В2O3 и от 0 до 5 мас.% функциональных элементов, выбранных из TiO2, ZrO2, F2, P2O5, МоО3, Fе2O3, MnO2, La-Sr-Mn-O перовскита (LSM) и их комбинаций; (b) превращение указанного первого блока батареи элементов во второй блок со стеклянным уплотнителем толщиной от 5 до 100 мкм путем нагревания указанного первого блока до температуры 500°C или выше и воздействия на батарею элементов давлением нагрузки от 2 до 20 кг/см2; (c) превращение указанного второго блока в конечный блок батареи твердооксидных электролитических элементов путем охлаждения второго блока батареи, полученного на стадии (b), до температуры ниже, чем на стадии (b), при этом стеклянный уплотнитель на стадии (a) представляет собой лист стекловолокон. Также изобретение относится к применению Е-стекла в качестве стеклянного уплотнителя в батареях твердооксидных электролитических элементов. Предлагаемые батареи демонстрируют малую степень ухудшения свойств в процессе эксплуатации. 2 н. и 7 з.п. ф-лы, 1 ил.

Изобретение относится к защитным покрытиям от окисления. Техническим результатом изобретения является повышение жаростойкости, вязкости, понижение значений удельного давления и коэффициента трения покрытия при температурах нагрева штамповок до 1400°C. Защитное технологическое покрытие содержит, мас.%: SiO2 15-21; MgO 5-10; Na2O 7-8,5; 3CaO·Al2O3 1-9; Al2O3·MgO 2-5; B2O3 8-12,5; Bаморфный 2,5-3,5; NiAl2O4 3-5; NiSiO4 3,5-10; Al2O3 - остальное. 2 табл., 12 пр.

Глазурь // 2586648
Изобретение относится к составам глазурей для нанесения на обожженную керамическую плитку. Технический результат изобретения заключается в упрощении приготовления глазури. Глазурь содержит, мас.%: бой оконного и/или тарного стекла 93-97; глинистые отходы обогащения циркон-ильменитовой руды 3-7. 1 табл.

Эмаль // 2610741
Изобретение относится к производству эмалей, которые могут быть использованы, преимущественно, для покрытия стальных и чугунных изделий, эксплуатируемых в пищевой, химической отраслях промышленности, сельском хозяйстве. Технический результат заключается в повышении термостойкости эмали. Эмаль содержит, мас. %: SiO2 66,0-67,0; B2O3 5,9-6,4; ZrO2 11,0-12,0; СаО 1,0-1,8; Na2O 2,5-3,2; K2O 1,0-1,8; Cr2O3 0,5-0,8; Co2O3 0,3-0,8; 3Al2O3⋅2SiO2 2,0-3,0; MoO3 6,2-6,7. 1 табл.

Эмаль // 2612376
Изобретение относится к производству эмалей, которые могут быть использованы для покрытия изделий из чугуна и стали, в частности деталей оборудования пищевой, химической, нефтяной промышленности. Эмаль содержит, мас. %: SiO2 58,0-61,0; Na2O 4,0-5,0; В2О3 9,8-10,6; Al2O3 13,0-15,0; СаО 3,2-4,0; MgO 1,0-2,0; СоО 0,1-0,2; NiO 0,1-0,3; ZrO2 5,5-6,2; Nd2O3 0,2-0,4. Технический результат – повышение кислотостойкости. 1 табл.

Изобретение относится к составам эмали. Технический результат – снижение температурного коэффициента линейного расширения. Эмаль содержит, мас.%: SiO2 50,0-55,0; Na2O 3,0-5,0; Fe2O3 5,0-8,0; Mn2O3 4,8-7,8; CaO 22,2-25,2; K2O 3,0-5,0; Al2O3 2,0-4,0. 1 табл.

Изобретение относится к составам эмали. Технический результат – снижение температуры обжига. Эмалевое покрытие содержит, мас.%: SiO2 30,0-40,0; B2O3 38,0-48,0; Al2O3 6,0-10,0; Nb2O5 10,0-12,0; Na2O 2,0-4,0. 1 табл.

Эмаль // 2614771
Изобретение относится к составам эмали. Технический результат – повышение термостойкости эмали. Эмаль содержит, мас.%: TiO2 18,0-19,1; Al2O3 8,0-10,0; MoO3 0,8-1,2; ZrO2 2,3-3,2; B2O3 6,0-10,0; K2O 5,0-9,0; MgO 15,0-17,0; SnO2 2,0-3,0; SiO2 - остальное. 1 табл.

Глазурь // 2614820
Изобретение относится к технологии силикатов, в частности к составам глазурей, которые могут быть использованы для нанесения на изделия из фаянса. Глазурь содержит, мас.%: SiO2 40,0-45,0; Al2O3 14,0-18,0; B2O3 15,0-20,0; SrO 1,0-2,0; СаО 3,0-5,0; MgO 6,0-8,5; K2O 5,0-7,0; CeO2 1,0-3,0; ВеО 2,0-4,5. Технический результат - повышение термостойкости.

Глазурь // 2616007
Изобретение относится к составам глазурей. Технический результат – повышение морозостойкости глазури. Глазурь содержит, мас.%: SiO2 40,0-46,0; Al2O3 1,0-2,0; B2O3 7,0-9,0; СаО 18,0-20,0; MgO 1,5-2,5; Na2O 3,0-5,0; CdO 17,0-21,0; CuO 2,5-4,5. 1 табл.
Наверх