Сепаратор механических примесей для жидкости



Сепаратор механических примесей для жидкости
Сепаратор механических примесей для жидкости

 


Владельцы патента RU 2559277:

Терпунов Вячеслав Абельевич (RU)
Терпунов Арсен Вячеславович (RU)
Терпунов Армен Вячеславович (RU)

Изобретение относится к устройствам для применения в нефтяной промышленности и водном хозяйстве, в частности в электропогружных насосных агрегатах для добычи жидкости из скважин. Технический результат заключается в повышении надежности и эффективности очистки перекачиваемой жидкости от механических примесей. Сепаратор механических примесей для жидкости включает цилиндрический корпус с приемными отверстиями и соединительными элементами в верхней и нижней части, установленный в нем сепарирующий узел со сливным патрубком для отвода жидкости и заглушенный снизу отстойник для сбора механических примесей. В цилиндрическом корпусе, состоящем из головки с приемными тангенциальными отверстиями, обоймы и переходника, нижняя часть головки со вставкой, размещенной внутри обоймы, составляют гидроциклон, а внутренние цилиндрические расточки в нижней части головки и конусообразные отверстия внутри вставки образуют, по меньшей мере, две гидроциклонные камеры. Верхние выходные концы сливных патрубков гидроциклонных камер расположены выше приемных тангенциальных отверстий, гидравлически изолированы относительно них втулками и через общую полость связаны с приемом насоса, а каждая гидроциклонная камера выполнена с единственным тангенциальным отверстием. 2 ил.

 

Техническое решение относится к устройствам для сепарации мелкодисперсных механических примесей из продукции нефтяных и артезианских скважин и может быть использовано для защиты погружного насосного оборудования, работающего в пескопроявляющих скважинах.

Известно устройство для сепарации механических примесей при откачке жидкости из скважины погружным насосом, описанное в патенте RU 66417 U1, 10.09.2007, содержащее корпус с приемным отверстием, а также патрубок расположенный внутри корпуса и ориентированный в осевом направлении. Верхний конец патрубка гидравлически изолирован от приемного отверстия устройства, при этом устройство выполнено с возможностью гидравлического соединения с приемом насоса со стороны верхнего конца патрубка. На наружной поверхности патрубка выполнены две винтовые лопасти, образующие винтовые каналы, вход которых гидравлически связан с приемным отверстием сепаратора, а выход с нижним открытым концом патрубка. При этом сепаратор включает в себя гидроциклонную камеру, верхняя часть которой расположена под нижним концом патрубка.

Наличие винтового канала и расположенного под ним гидроциклона обеспечивает эффективную центробежную сепарацию твердых частиц, находящихся в перекачиваемом флюиде

Известен сепаратор погружного скважинного насоса для жидкости, описанный в авторском свидетельстве SU 1308754 А1, 07.05.1987, содержащий корпус с приемным отверстием, а также соосные внешний и внутренний патрубки, расположенные внутри корпуса и ориентированные в осевом направлении. Верхние концы патрубков гидравлически изолированы от приемного отверстия. На наружной поверхности внешнего патрубка выполнена винтовая лопасть, образующая винтовой канал, вход которого гидравлически связан с приемным отверстием, а выход через полость внутреннего патрубка связан с приемом насоса. Ниже патрубков расположен делитель потока, предназначенный для отделения мехпримесей, сосредотачивающихся в периферийной части выходящего из винтового канала потока, от преимущественно жидкостной фазы, находящейся в центральной части потока, а также для отвода мехпримесей к шламосборнику.

Наиболее близким аналогом (прототипом) является конструкция сепаратора механических примесей для жидкости, описанная в патенте РФ №2148708 С1, 10.05.2000 и включающая цилиндрический корпус с приемными отверстиями и соединительными элементами в верхней и нижней части, установленный в нем сепарирующий узел, выполненный в виде полого шнека с профилированной спиралью и усеченным конусом, установленным концентрично корпусу, внутри которого закреплен сливной патрубок для отвода жидкости и заглушенный снизу отстойник для сбора механических примесей

Общим недостатком описанных выше аналогов и существующих устройств для сепарации мехпримесей является ухудшение их эффективности при снижении размера механических примесей менее 100-50 мкм. Этот факт имеет особое значение, т.к. по данным нефтяников 80% фракционного состава механических примесей составляют зерна размером менее 50 мкм.

В связи с изложенным, основным конструктивным недостатком указанных выше аналогов можно считать исполнение сепарирующего узла в виде полого шнека и усеченного конуса, установленных концентрично корпусу. Концентричное расположение усеченного конуса препятствует размещения в гидроциклоне нескольких гидроциклонных камер, а габариты полого шнека не позволяют его установки в гидроциклонной камере диаметром менее 35 мм.

Таким образом, задача, на решение которой направлено заявленное изобретение, состоит в повышении надежности и долговечности погружного скважинного насоса за счет повышения эффективности сепарации механических примесей из перекачиваемой жидкости.

Технический результат, достигаемый при реализации заявленного изобретения, заключается в повышении надежности и эффективности очистки перекачиваемой жидкости от механических примесей.

Сепаратор механических примесей для жидкости, обеспечивающий достижение указанного выше технического результата, содержит цилиндрический корпус с приемными отверстиями и соединительными элементами в верхней и нижней части, установленный в нем сепарирующий узел со сливным патрубком для отвода жидкости и заглушенный снизу отстойник для сбора механических примесей, причем в цилиндрическом корпусе, состоящем из головки с приемными тангенциальными отверстиями, обоймы и переходника, нижняя часть головки со вставкой, размещенной внутри обоймы, составляют гидроциклон, а внутренние цилиндрические расточки в нижней части головки и конусообразные отверстия внутри вставки образуют, по меньшей мере, две гидроциклонные камеры, причем верхние выходные концы сливных патрубков гидроциклонных камер расположены выше приемных тангенциальных отверстий, гидравлически изолированы относительно их втулками и через общую полость связаны с приемом насоса, а каждая гидроциклонная камера выполнена с единственным тангенциальным отверстием.

Возможность осуществления изобретения, охарактеризованного приведенной выше совокупностью признаков, подтверждается описанием сепаратора механических примесей для жидкости, выполненного в соответствии с настоящим изобретением. Описание сопровождается графическими материалами, на которых изображено следующее:

На Фиг. 1 - сепаратор в разрезе.

На Фиг. 2 - сечение А-А.

Погружной скважинный насосный агрегат (фиг. 1) включает в себя погружной насос, погружной электродвигатель с гидрозащитой, пакер, служащий для герметизации затрубного пространства и обеспечивающий гарантированное движение отсепарированной среды на прием насоса (на рис. не показаны), сепаратор механических примесей 1 и шламосборник 2, предназначенный для накопления отделенных в сепараторе 1 частиц мехпримесей.

Сепаратор 1 включает в себя корпус 3, состоящий из головки 4 с приемными тангенциальными отверстиями 5, обоймы 6 и переходника 7.

Нижняя часть головки 4 со вставкой 8, размещенной внутри обоймы 6, составляют гидроциклон. При этом внутренние цилиндрические расточки в нижней части головки 4 и конусообразные отверстия внутри вставки 8 образуют, по меньшей мере, две гидроциклонные камеры 9 (на фиг. 1 - три камеры). В основании вставки 8 расположена сменная насадка 10 с разгрузочными отверстиями разного диаметра.

Внутри диска 11 установлены сливные патрубки 12, ориентированные в осевом направлении. Верхние (выходные) концы сливных патрубков 12 расположены выше приемных тангенциальных отверстий 5 и гидравлически изолированы относительно них втулками 13. В приемных тангенциальных отверстиях 5 (фиг. 2) происходит раскручивание потока, стимулирующее увеличение центробежной силы, действующей на частицы мехпримесей в перекачиваемой жидкости.

Сливные патрубки 12 фиксируются в отверстиях сменной упорной шайбы 14 и стаканом 15. При этом в зависимости от необходимой производительности гидроциклона часть этих отверстий заглушается, исключая тем самым из работы соответствующие гидроциклонные камеры.

К обойме 6 присоединен переходник 7, предназначенный для соединения сепаратора с шламосборником 2, который представляет расчетное количество соединенных между собой насосно-компрессорных труб с заглушкой (на фиг. 1 не показана) на нижнем конце. Заглушка препятствует выносу мехпримесей в скважину и обеспечивает поступление рабочей жидкости только через приемное отверстие 5.

Для исключения перетока разгрузочной жидкости в гидроциклонные камеры на шламосборнике 2 предусматриваются выходные окна 16, а к нижней части гидроциклона подсоединяется разгрузочный патрубок 17, концентрично расположенный в полости шламосборника 2. При этом сечение разгрузочного патрубка 17 принимается таким, чтобы скорость восходящей жидкости, проходящей через кольцевое пространство и окна 16, не превышала скорости осаждения механических примесей.

Каждая гидроциклонная камера выполнена с единственным приемным тангенциальным отверстием, что, как указывалось выше, позволяет увеличить эффективность сепарации за счет увеличения входной скорости жидкости и, соответственно, роста центробежных сил в гидроциклоне.

Устройство работает следующим образом.

Перекачиваемая жидкость под давлением поступает из скважины через тангенциальные приемные отверстия 5 в гидроциклонные камеры 9 сепаратора 1, приобретает вращательно-поступательное движение, и, в дальнейшем, под действием центробежных сил, вращаясь, движется относительно стенки цилиндрической части гидроциклонной камеры. Внутри гидроциклонной камеры формируется коническая поверхность раздела фаз (зона сепарации), на которой вертикальная скорость потока равна нулю. Внутри этой поверхности раздела образуется восходящий поток, а снаружи - нисходящий поток.

Твердые частицы под действием центробежной силы отбрасываются к стенкам гидроциклонной камеры и сосредотачиваются в основном во внешнем нисходящем потоке, а незначительное количество частиц механических примесей, попавших в восходящий поток, уносятся через сливные патрубки 12 и верхнюю часть головки 4 через пакер на прием насоса. Механические примеси в составе разгрузочной жидкости через отверстия в насадке 10 гидроциклона и через патрубок 17 попадают в шламосборник 2, где твердые частицы оседают в нижней его части, а избыточная жидкость, потерявшая первоначальную скорость, через окна 16 выводится в затрубное пространство.

Источники информации

1. Патент RU 66417 U1, 10.09.2007.

2. АС SU 1308754 А1, 07.05.1987.

3. Патент RU 2148708 А1, 05.10.2000.

4. Гутман Б.М., Мустафаев A.M. Гидроциклоны в нефтедобывающей промышленности, М., "Недра", 1981.

Сепаратор механических примесей для жидкости, включающий цилиндрический корпус с приемными отверстиями и соединительными элементами в верхней и нижней части, установленный в нем сепарирующий узел со сливным патрубком для отвода жидкости и заглушенный снизу отстойник для сбора механических примесей, отличающийся тем, что в цилиндрическом корпусе, состоящем из головки с приемными тангенциальными отверстиями, обоймы и переходника, нижняя часть головки со вставкой, размещенной внутри обоймы, составляют гидроциклон, а внутренние цилиндрические расточки в нижней части головки и конусообразные отверстия внутри вставки образуют, по меньшей мере, две гидроциклонные камеры, причем верхние выходные концы сливных патрубков гидроциклонных камер расположены выше приемных тангенциальных отверстий, гидравлически изолированы относительно них втулками и через общую полость связаны с приемом насоса, а каждая гидроциклонная камера выполнена с единственным тангенциальным отверстием.



 

Похожие патенты:

Группа изобретений относится к нефтедобывающей промышленности, в частности к эксплуатации нефтяных месторождений с высокой обводненностью добываемой продукции.

Изобретение относится к нефтяной промышленности и может быть применено для кустового сброса и утилизации попутно добываемой воды на нефтяных месторождениях поздней стадии разработки.

Группа изобретений относится к нефтедобывающей промышленности и может быть применена при добыче нефти с большими значениями газового фактора и дебита. Технический результат заключается в увеличении коэффициента сепарации и повышении надежности работы.

Изобретение относится к газовой промышленности. Технический результат заключается в повышении эффективности сепарации жидкости из газожидкостного потока со сбросом ее в скважину под уровень газоводяного контакта.

Изобретение относится к нефтедобывающей промышленности и может быть применено для разработки многопластовых залежей нефти. Способ включает спуск колонны труб с фильтром ниже уровня жидкости в скважине, отбор продукции из скважины, разделение нефти и воды в стволе скважины, закачку воды в другой пласт, подъем нефти на поверхность.

Изобретение относится к нефтедобывающей промышленности и может быть применено для разработки неоднородных терригенных или карбонатных продуктивных пластов. Способ включает спуск в ствол добывающей скважины ниже уровня жидкости колонны труб с насосами, а также с установленными на концах труб фильтрами, отбор продукции из нижнего продуктивного пласта, раздел нефти и воды в стволе скважины, закачку воды в верхний пласт, подъем нефти на поверхность.

Изобретение относится к области эксплуатации скважин различного назначения, преимущественно нефтяных, осложненных пескопроявлением, и предназначено для очистки пластового флюида от песка и механических примесей.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для эксплуатации водозаборных скважин с содержанием попутной нефти в продукции, а также высокообводненных нефтяных скважин, используемых в качестве скважин-доноров - водозаборных.

Изобретение относится к исследованию газонефтяных скважин на многопластовых залежах с существенными различиями параметров работы пластов. Способ включает определение значений дебитов верхнего и нижнего пластов и пластовых давлений, а также степень обводненности продукции нижнего пласта.

Группа изобретений относится к скважинным устройствам, способам разделения жидкостей и твердых веществ в скважине, а также к способам подготовки системы разделения скважинных флюидов и твердых веществ.

Изобретение относится к нефтедобывающей промышленности и, в частности, к эксплуатации глубинно-насосных скважин с газопроявлениями. Технический результат - повышение сепарационной способности, ускорение процесса освоения скважин и вывода их на технологический режим работы, упрощение конструкции. Глубинно-насосная установка включает штанговый насос, трубу-хвостовик с обратным клапаном, установленные на пакере. На упоры трубы-хвостовика насажен коммутатор, который гидравлически соединяет упомянутую трубу-хвостовик через обратный клапан, установленный на его верхнем конце с трубой-свечой. Длина этой свечи превышает расстояние от динамического уровня до глубины подвески насоса. При этом труба-хвостовик с трубой-свечой образуют гидравлический канал сообщения забоя скважины с затрубным пространством. Параллельно трубе-свече на верхней полумуфте упомянутого коммутатора установлен штанговый насос. При этом нижний торец коммутатора выполнен в виде усеченного конуса с основанием, направленным вниз, а по наружному диаметру снабжен центраторами. 1 ил.

Изобретение относится к нефтяной промышленности и может быть использовано для защиты погружных нефтяных насосов от гидроабразивного износа. Технический результат заключается в увеличении наработки погружной насосной установки за счет предотвращения засорения скважины мелкими механическими примесями. Погружной сепаратор механических примесей содержит корпус с входными отверстиями и выходными каналами, шнек и защитную гильзу, установленную в корпусе с образованием кольцевого зазора. Гильза выполнена перфорированной в области шнека для отхода от него потока с отсепарированными механическими примесями, а кольцевой зазор в верхней части выполнен с сужением и соединен с выходными каналами. 3 з.п. ф-лы, 4 ил.

Изобретение относится к нефтяной промышленности и может быть применено для кустового сброса и утилизации попутно добываемой воды на нефтяных месторождениях поздней стадии разработки. Технический результат - повышение эффективности кустового сброса и утилизации попутно добываемой воды. По способу замеряют приемистость нагнетательной скважины. Подают продукцию одной или более добывающих скважин в скважину или шурф для предварительного сброса воды. Замеряют количество сырой нефти и газа, а также обводненность сырой нефти, плотность нефти и воды, поступающих в скважину или шурф для предварительного сброса воды. Делят скважинную продукцию на частично обезвоженную нефть, газ и воду. Направляют частично обезвоженную нефть и газ в сборный коллектор. Подают сброшенную воду в нагнетательную скважину. Определяют совместимость сброшенной воды с водой пласта. При совместимости вод нагнетательную скважину оснащают устройством для создания давления воды, достаточного для закачки воды в пласт, выполненного с возможностью изменения подачи и, в том числе, минимальной подачи. Определяют соответствие качества сброшенной воды геологическим условиям пласта. При неудовлетворительном качестве сброшенной воды ее направляют в сборный коллектор. При удовлетворительном качестве сброшенной воды ее направляют в нагнетательную скважину. Замеряют количество поступающей в нагнетательную скважину сброшенной воды. Затем с выбранным постоянным или переменным шагом производят увеличение подачи устройства для создания давления воды. Увеличение подачи воды производят до тех пор, пока качество сброшенной воды удовлетворяет геологическим условиям пласта. При этом, когда из скважины или шурфа для предварительного сброса воды частично обезвоженная сырая нефть с газом поступает в сборный коллектор, то на входе в скважину или шурф повышают давление поступающей скважинной продукции по меньшей мере на величину потерь давления при сепарации, и/или повышают количество сбрасываемой воды, и/или пропускают через скважину или шурф всю скважинную продукцию, проходящую по сборному коллектору. Повышение давления обеспечивают таким образом, что всю частично обезвоженную нефть с газом направляют в сборный коллектор. При этом исключают возможность попадания нефти в трубопровод отвода воды. 2 з.п. ф-лы, 1 ил.
Наверх