Способ получения наноразмерного карбида тантала термотрансформацией пентакис-(диметиламино)тантала

Изобретение относится к получению нанодисперсного тугоплавкого карбида тантала, используемого в качестве наполнителя композиционных материалов, керамического теплозащитного покрытия, химически стойкого материала, материала для высокотемпературных керамоматричных композитов, и может быть использовано в области химической промышленности, авиационной и космической техники. Способ получения нанодисперсного тугоплавкого карбида тантала с образованием микросфер карбида тантала, состоящих из агломератов наночастиц, заключается в проведении ступенчатой термотрансформации раствора пентакис-(диметиламид)тантала в тетрадекане в инертной атмосфере в интервале температур 25-250°C, осуществляемой путем нагрева реакционной массы до 160°C в течение часа и от 160°C до 250°C в течение трех часов, с получением тантал-азот-углеродсодержащего предкерамического полимера и его последующей термообработки путем нагрева до температуры 1100°C со скоростью 10°C/мин с выдержкой в инертной атмосфере в течение 3 часов. Технический результат - сокращение стадий процесса, простота аппаратурного оформления, возможность получения укрупненных партий продукта, использование одного компонента в качестве источника тантала и углерода. 1 з.п. ф-лы, 3 ил., 1 табл., 1 пр.

 

Изобретение относится к области химической промышленности, в частности, к получению нанодисперсного тугоплавкого карбида тантала, который находит свое применение в качестве наполнителя композиционных материалов, керамического теплозащитного покрытия, химически стойкого материала, материала для высокотемпературных керамоматричных композитов, использующихся в авиационной и космической технике, а также употребляется в качестве катализаторов.

Известен способ получения высокодисперсных тугоплавких карбидов металлов для покрытий и композитов на их основе путем контролируемого гидролиза органических растворов металлсодержащих комплексных соединений с полимерами по методикам золь-гель-техники с получением геля, который ступенчато сушат при температурах 20-250°C, далее подвергают пиролизу при 350-600°C в инертной или восстановительной атмосфере или при пониженном давлении с последующим карботермическим синтезом в интервале температур 600-1200°C и при давлении 10-1-10-4 Па (Патент RU №2333888, С01В 31/30, 2008). Этот способ является многостадийным и трудоемким.

Известен способ получения наночастиц переходных металлов взаимодействием соответствующего оксида металла с цианамидом, заключающийся в постепенном нагревании до 1150°C (5°C/мин) запаянной с предварительно откаченным воздухом ампулы, содержащей механически перемешанную и спрессованную в таблетку смесь исходных веществ с заданным мольным отношением (Li P.O., Lei M., Tang W.H. Route to transition metal carbide nanoparticles through cyanamide and metal oxides. // Mat. Res. Bul. Vol.43. 2008. P.3621-3626).

К недостаткам данного способа можно отнести высокую токсичность используемого цианамида (ПДК 0,5 мг/м3), а также сложность масштабирования процесса.

Известен способ получения наночастиц тугоплавких карбидов методом автотермического горения предварительно измельченной смеси оксида, металлического магния, углерода и добавок фторида натрия, начинающегося при 1150-1350°C и достигающего температуры 3000°C за счет протекающей реакции между компонентами с последующим охлаждением, промывкой смеси водой и соляной кислотой (Won H.I., Hayk N., · Won С.W., Lee H.H. Simple synthesis of nano-sized refractory metal carbides by combustion process. // J. Mater. Sci. Vol.46. 2011. P. 6000-6006.).

Способ осложнен длительностью измельчения и гомогенизации исходной смеси (12 часов), требуется дополнительная сушка в вакууме после промывки водой и соляной кислотой полученных наночастиц, реактор автотермического горения малопроизводителен, сложен и дорог в эксплуатации.

В технической литературе описан способ получения нанокристаллического карбида тантала взаимодействием пентахлорида тантала и карбоната натрия с металлическим магнием под давлением (в автоклаве) при температуре 600°C в течение 8 часов с последующим охлаждением, промывкой полученной смеси абсолютированным этиловым спиртом, водой, соляной кислотой и сушкой в вакууме (Ма J., Du Y., Wu M., Pan M.C. One simple synthesis route to nanocrystalline tantalum carbide via the reaction of tantalum pentachloride and sodium carbonate with metallic magnesium. // Mat. Let. Vol.61. 2007. P.3658-3661).

К недостаткам способа можно отнести проведение процесса под давлением, дополнительные стадии отмывки и сушки продукта.

Известен сольвотермический способ синтеза наноструктурных карбидов взаимодействием пентахлорида тантала с металлическим литием и углеродом нагреванием смеси до 275°C. Полученную смесь отмывают водой, азотной кислотой и сушат на воздухе в течение 24 часов [Kelly J.P., Kanakala R., Graeve O.A. A Solvothermal approach for the preparation of nanostructured carbide and boride ultra-high-temperature ceramics. // J. Am. Ceram. Soc. Vol. 93. 2010. P. 3035-3038.]. Описанный способ ограничен в масштабировании.

Известен способ получения карбидов переходных металлов путем взаимодействия хлоридов переходных металлов с n-бутилитием с образованием в результате реакции коллоидного полупродукта, который термообрабатывают при 1000°C (Chang Y.-H., Chiu C.-W., Chen Y.-C, Wu C.-C, Tsai C.-P., Wang J.-L., Chiu H.-T. Syntheses of nano-sized cubic phase early transition metal carbide from metal chlorides and n-butyllithium. // J. Mater. Chem. Vol. 12. 2002. P. 2189-2191).

К недостаткам метода можно отнести использование самовоспламеняющегося n-бутилития и стадию отмывки коллоидного полупродукта от солей лития.

Задачей данного изобретения является получение нанодисперсного тугоплавкого карбида тантала.

Для решения поставленной задачи предложен способ получения нанодисперсного тугоплавкого карбида тантала с образованием микросфер карбида тантала, состоящих из агломератов наночастиц, заключающийся в проведении ступенчатой термотрансформации раствора пентакис-(диметиламид)тантала в тетрадекане в инертной атмосфере в интервале температур 25-250°C, осуществляемой путем нагрева реакционной массы до 160°C в течение часа и от 160°C до 250°C в течение трех часов, с получением тантал-азот-углеродсодержащего предкерамического полимера и его последующей термообработке путем нагрева до температуры 1100°C со скоростью 10°C/мин с выдержкой в инертной атмосфере в течение 3 часов.

Получение нанодисперсного тугоплавкого карбида тантала состоит из двух стадий. На первой стадии проводят ступенчатую термотрансформацию пентакис(диметиламино)тантала в растворе тетрадекана в интервале температур 25-250°C в инертной атмосфере (сухой азота или аргон), в процессе которой происходит образование предкерамического тантал-азот-углеродсодержащего полимера и элиминирование диметиламина по следующей схеме:

На второй стадии проводится термообработка полученного предкерамического полимера до 1100°C и выдержка в течение 3 часов в атмосфере аргона в результате чего образуется карбид тантала.

Изучение морфологии поверхности и элементного состава карбида тантала осуществлялось с использованием сканирующего электронного микроскопа, совмещенного с энергодисперсионным анализатором (ЭДС). Результаты СЭМ с ЭДС представлены на рисунке 1, из которого следует, что карбид тантала образует микросферы диаметром 1-3 мкм. В результате высокой сорбции кислорода элементный анализ показывает в образце наличие кислорода, что на самом деле не соответствует действительности. На рисунке 2 представлен результат рентгенофазового анализа образца карбида тантала, в котором отсутствуют примеси оксида тантала (V). Исследование образцов с помощью рентгенофлуоресцентного анализа показало наличие тантала в количестве 93,53 мас. %, что также подтверждает отсутствие иных примесей. Исследование образца с помощью просвечивающей электронной микроскопии высокого разрешения (ПЭМ) позволяет утверждать, что микросферы образованы агломератами наночастиц размером около 20 нм (Рисунок 3).

Пример 1

Четырехгорлую колбу емкостью 0,5 л, предварительно отвакуумированную и заполненную газообразным инертным газом (сухой азот или аргон), помещают в азотный бокс. После продувки в азотном боксе в колбу загружают 198,39 г тетрадекана, осушенного и свежеперегнанного в атмосфере инертного газа, 10 г (24,94 ммоль) пентакис-диметиламид)тантала. Колбу в токе инертного газа подсоединяют к предварительно отвакуумированной и заполненной инертным газом системе, состоящей из двух параллельно соединенных линий, снабженных запорной арматурой. Первая линия состоит из обратного холодильника, вторая - из насадки с термометром, нисходящего холодильника, аллонжа и колбы-приемника для отбора растворителя. Затем колбу снабжают азотным капилляром и термометром.

Процесс термотрансформации ведут при постоянном токе инертного газа. Перекрывают линию 2 и нагревают реакционную массу в течение часа (τ1) до 160°C. Начиная от 160°C до 250°C массу нагревают медленно в течение 3 часов (τ2). При температурах выше 160°C масса начинает темнеть от светло-желтого до темно-коричневого и в итоге до черного, начинает выделяться диметиламин, пик интенсивности выделения которого достигается при 180-220°C. По достижении температуры массы 250°C газовыделение прекращается, после чего массу кипятят в течение часа (τ3) и охлаждают. Затем в вакууме осторожно отгоняют тетрадекан до его полного удаления. Получают 7,31 г предкерамического тантал-азот-углеродсодержащего полимера предполагаемого строения:

Полученный полимер не растворяется в углеводородах, чрезвычайно чувствителен к кислороду и влаге воздуха.

Колбу с полученным полимером помещают в бокс, заполненный инертным газом, в котором готовят навеску, и термообрабатывают в трубчатой печи сопротивления до 1100°C со скоростью нагрева 10°C/мин, выдерживают 3 часа. Получают карбид тантала с керамическим выходом 65,0 мас.%.

Остальные примеры выполнены аналогично примеру 1, изменяемые параметры загрузок и времени проведения процесса термотрансформации, а также керамический выход карбида тантала приведены в таблице 1.

Таблица 1
Загрузка τ1, час τ2,
час
τ3,
час
Выход полимера в расчете на Ta[NMe2]5, г/% Керамический выход,
мас.%
Ta[NMe2]5, г/ммоль Тетрадекан, г/моль
1 10/24,94 198,39/1 1 3 1 7,31/73,1 65,0
2 10/24,94 99,20/0,5 1 3 1 7,28/72,8 64,8
3 20/49,88 198,39/1 1 3 1 14,50/72,5 65,0
4 20/49,88 99,20/0,5 1 3 1 14,55/72,75 65,2
5 20/49,88 99,20/0,5 0,5 2 0,5 14,60/73,00 64,8
6 10/24,94 99,20/0,5 0,5 2 0,5 7,25/72,5 65,1

1. Способ получения нанодисперсного тугоплавкого карбида тантала с образованием микросфер карбида тантала, состоящих из агломератов наночастиц, заключающийся в проведении ступенчатой термотрансформации раствора пентакис-(диметиламид)тантала в тетрадекане в инертной атмосфере в интервале температур 25-250°C, осуществляемой путем нагрева реакционной массы до 160°C в течение часа и от 160°C до 250°C в течение трех часов, с получением тантал-азот-углеродсодержащего предкерамического полимера и его последующей термообработки путем нагрева до температуры 1100°C со скоростью 10°C/мин с выдержкой в инертной атмосфере в течение 3 часов.

2. Способ по п. 1, отличающийся тем, что в качестве инертной среды предпочтительно использовать сухой азот или аргон.



 

Похожие патенты:

Изобретение может быть использовано в химической технологии. Для получения наноразмерных и наноструктурированных материалов на основе слоистых трихалькогенидов переходных металлов общей формулы MQ3, где M=Ti, Zr, Hf, Nb, Та; Q=S, Se, Те, в качестве исходного материала используют порошкообразные трихалькогениды, которые диспергируют в наноразмерные частицы посредством ультразвуковой обработки в органическом растворителе.
Изобретение относится к способу получения наночастиц оксида переходного металла, покрытых аморфным углеродом. .
Изобретение относится к области химической технологии, а именно к области получения соединений электролитическим способом, конкретно к способам получения интеркаляционных соединений, содержащих чередующиеся монослои дихалькогенида металла и органического вещества.
Изобретение относится к новым химическим соединениям и может быть использовано в медицине, в частности к рентгенологии в качестве рентгеноконтрастного агента при рентгенологических исследованиях различных органов.
Изобретение относится к области получения оксидного порошка состава Pb(Mg1/3Ta2/3O3 ) со структурой типа перовскита и может быть использовано в изготовлении материалов для пьезотехники.
Изобретение относится к области получения люминесцентного порошка политанталата тербия состава Tb2O3 ·nTa2O5 (n=7-9) и может быть использовано для изготовления материалов квантовой электроники.

Изобретение относится к получению порошка оксида вентильного металла и может быть использовано для получения порошков вентильного металла или недооксидов вентильного металла с помощью восстановления.
Изобретение относится к получению материалов для производства сегнетоэлектрической керамики, используемой в электронной технике. .
Изобретение относится к синтезу неорганических соединений, а именно к способу получения гидроксида тантала, и может быть использовано для изготовления материалов компьютерной, электронной и оптоэлектронной техники.
Изобретение относится к области получения гептатанталата европия, классу сложных редкоземельных элементов и может быть использовано для изготовления материалов квантовой электроники.
Изобретение может быть использовано в металлургии. Для получения карбида хрома Cr3C2 смесь порошка хрома и сажи механически активируют в центробежной планетарной мельнице при ускорении шаров 25-45 g и соотношении шихта : шаровая загрузка по массе 1:20 в течение 30-40 мин.
Изобретение может быть использовано в области порошковой металлургии. Способ получения карбида титана включает нагрев шихты, состоящей из диоксида титана и порошка нановолокнистого углерода с удельной поверхностью 138…160 м2/г, взятых в массовом соотношении диоксида титана к порошку нановолокнистого углерода 68,5:31,5, при температуре 2250°C.
Изобретение может быть использовано при изготовлении режущего инструмента, при износостойкой наплавке, для получения композиционных электрохимических покрытий и контактного материала, обладающего повышенным сопротивлением эрозионному действию электрической дуги.
Изобретение может быть использовано в химической промышленности. Полимерная композиция включает соединение тугоплавкого металла и углеродоноситель в виде фенолоформальдегидного связующего, взятые в стехиометрическом отношении, и смазку.
Изобретение относится к получению наноструктур. Содержащую карбид наноструктуру получают осаждением на основу нанослоя металла или неметалла, или их окислов и последующей карбидизацией путем обработки в угарном газе в присутствии угля или сажи при температуре 1400-1500°С.

Изобретение относится к металлургии тугоплавких соединений. Способ получения карбида титана включает использование в качестве исходных компонентов субхлорида алюминия, тетрахлорида титана и углерода.
Изобретение относится к способу получения наночастиц оксида переходного металла, покрытых аморфным углеродом. .

Изобретение относится к способу получения железоуглеродных наночастиц, характеризующемуся тем, что гранулы железа обрабатывают импульсными электрическими разрядами в реакторе в дисперсионной среде октана или декана.

Изобретение относится к порошковой металлургии и может быть использовано для получения нанопорошков систем элемент-углерод, т.е. .

Изобретение относится к области энергетики, а именно к области использования солнечной энергии, и может быть применено при генерировании электрического тока с использованием энергии солнечного излучения в качестве источника теплового излучения.
Наверх