Пьезоэлектрический первичный источник энергии перепада температур


 


Владельцы патента RU 2559290:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУ ВПО "КнАГТУ") (RU)

Изобретение относится к области электротехники, а более конкретно - к емкостным преобразователям энергии, и может быть использовано для питания маломощных потребителей энергии в климатических условиях с периодическим перепадом температур, например дневных и ночных, либо в полете искусственного спутника Земли на орбите при вхождении в тень планеты и выходе из нее. Устройство с помощью емкости преобразует энергию перепада температур. Устройство включает брусок из любого диэлектрического материала, имеющего большое изменение своих линейных размеров при изменении внешней температуры, пластины емкости, одна из которых закреплена неподвижно, а вторая подвижная прикреплена к одному концу бруска из диэлектрического материала, при этом второй конец этого бруска жестко закреплен на неподвижном основании, материал, имеющий высокую относительную диэлектрическую проницаемость, например сегнетоэлектрик, пьезоэлемент, установленный в пространство между неподвижным корпусом устройства и концом подвижного диэлектрического материала и жестко закрепленный с ними по обеим сторонам. При этом пьезоэлемент выполняет функции источника питания. Техническим результатом является отсутствие дополнительного потребления энергии для первичной зарядки пластин. 1 ил.

 

Изобретение относится к области электротехники, а более конкретно - к емкостным преобразователям энергии, и может быть использовано для питания маломощных потребителей энергии в климатических условиях с периодическим перепадом температур, например дневных и ночных, либо в полете искусственного спутника Земли на орбите при вхождении в тень планеты и выходе из нее. Устройство преобразует энергию перепада температур, например, между днем и ночью в электрическую энергию.

Известны устройства получения энергии на основе использования эффекта перепада температур, например патент RU №2489793, опубл. 10.08.2013.

В известном устройстве имеется брусок из любого диэлектрического материала, имеющего большое изменение своих линейных размеров при изменении внешней температуры, две пластины емкости, одна из которых закреплена неподвижно, а вторая подвижная прикреплена к одному концу бруска из диэлектрического материала. Второй конец этого бруска жестко закреплен на неподвижном основании.

Между неподвижной и подвижной пластинами конденсатора помещен материал, имеющий высокую относительную диэлектрическую проницаемость, например сегнетоэлектрик. Этот диэлектрик помещен между пластинами емкости таким образом, что одна его часть плотно закреплена к неподвижной пластине емкости, а противоположная часть обращена к второй подвижной пластине. Между этой частью сегнетоэлектрика и подвижной пластиной устанавливается небольшой воздушный зазор, который подбирается таким образом, что при максимальном удлинении бруска из пластика подвижная пластина плотно прижимается к нему, а при минимальном размере бруска из пластика подвижная пластина емкости отодвигается от сегнетоэлектрика и образует воздушный зазор. Устройство образует емкость, одна из пластин которой является подвижной.

Устройство также имеет источник возбуждения постоянного тока и контакты, необходимые для заряда емкости в момент максимального сближения пластин и для снятия напряжения в нагрузку в момент их максимального раздвижения.

Когда изменяется внешняя температура, брусок меняет свои линейные размеры и отодвигает или приближает подвижную пластину емкости к неподвижной, в зависимости от направления изменения температуры, меняя тем самым значение емкости конденсатора.

При помещении устройства в пространство с высокой температурой, брусок увеличивает свои размеры в осевом направлении и придвигает подвижную пластину к диэлектрику, имеющему высокую относительную диэлектрическую проницаемость, плотно прижимая ее к нему. В этом случае емкость устройства будет максимальной и пропорциональной относительной диэлектрической проницаемости диэлектрика, помещенного между пластинами емкости. В этом состоянии пластины подключаются к контактам источника возбуждения постоянного тока, после чего конденсатор заряжается зарядами до напряжения возбуждения. Далее источник возбуждения отключается, и конденсатор отсоединяется от него.

При понижении температуры, например ночью, брусок уменьшает свои линейные размеры в осевом направлении и отодвигает подвижную пластину от диэлектрика, имеющего высокую относительную диэлектрическую проницаемость, создавая зазор между ней и диэлектриком. В этом случае емкость устройства резко скачком упадет пропорционально снижению относительной диэлектрической проницаемости диэлектрика вследствие появления воздушного зазора между пластиной емкости и диэлектриком. При этом емкость уменьшается, а напряжение вырастает. Когда подвижная пластина отодвинется на максимальное удаление от неподвижной пластины, напряжение вырастает до максимума, контакт подключается к ней и разряжает ее в сеть на нагрузку. Далее процесс повторяется с периодическим падением и ростом внешней температуры.

Вследствие падения емкости на конденсаторе, напряжение его пропорционально растет, и нагрузка получает напряжение, более высокое по сравнению с напряжением источника возбуждения.

Необходимость иметь дополнительно источник энергии для возбуждения в известном устройстве является недостатком.

Задачей настоящего изобретения является устранение данного недостатка за счет использования энергии пьезоэлемента, установленного в устройство.

Техническим результатом является отсутствие дополнительного потребления энергии для первичной зарядки пластин.

Схема устройства приведена на чертеже, где 1 - брусок из любого диэлектрического материала, имеющего большое изменение своих линейных размеров при изменении внешней температуры, 2 и 3 - пластины емкости, одна из которых закреплена неподвижно, а вторая подвижная прикреплена к одному концу бруска 1 из диэлектрического материала, при этом второй конец этого бруска жестко закреплен на неподвижном основании, 4 - материал, имеющий высокую относительную диэлектрическую проницаемость, например сегнетоэлектрик, 5 - пьезоэлемент.

На чертеже представлены: а) - положение системы при высокой температуре t°max - емкость заряжается до напряжения возбуждения Uв; б) - положение системы при низкой температуре t°min, система разряжается на нагрузку.

Сущность изобретения следующая. В известное устройство добавлен пьезоэлемент 5, который помещается между одним концом бруска из пластика и неподвижной стенкой, жестко закрепленный к этой стенке одной стороной, например приклеенный, и также жестко закреплен к концу диэлектрического бруска 1.

Линейные размеры диэлектрического бруска 1 подбираются таким образом, чтобы при его максимальном удлинении он плотно придвигал подвижную пластину к диэлектрику, имеющему высокую относительную диэлектрическую проницаемость, и кроме того, создавал силу давления на пьезоэлемент.

Устройство работает следующим образом. При помещении устройства в пространство с высокой температурой, брусок увеличивает свои размеры в осевом направлении и придвигает подвижную пластину к диэлектрику, имеющему высокую относительную диэлектрическую проницаемость, плотно прижимая ее к нему. В этом случае емкость устройства будет максимальной и пропорциональной относительной диэлектрической проницаемости диэлектрика, помещенного между пластинами емкости. Одновременно брусок создает давление на пьезоэлемент, на выходных контактах которого появляется напряжение.

В этом состоянии пластины емкости подключаются к контактам пьезоэлемента, после чего конденсатор заряжается зарядами до напряжения возбуждения.

При понижении температуры, например ночью, брусок уменьшает свои линейные размеры в осевом направлении, и так как он жестко закреплен одним концом к пьезоэлементу, который тоже жестко закреплен к бруску и неподвижной стенке, то второй его конец отодвигает подвижную пластину от диэлектрика, имеющего высокую относительную диэлектрическую проницаемость, создавая зазор между ней и диэлектриком, одновременно отключая эту пластину от вывода пьезоэлемента. В этом случае емкость устройства резко скачком упадет пропорционально снижению относительной диэлектрической проницаемости диэлектрика вследствие появления воздушного зазора между пластиной емкости и диэлектриком. При этом емкость уменьшается, а напряжение на выходе пропорционально возрастает. Когда подвижная пластина отодвинется на максимальное удаление, напряжение вырастает до максимума, пластина подсоединяется к нагрузке. Далее процесс повторяется с периодическим падением и ростом внешней температуры.

Вследствие падения емкости на конденсаторе, напряжение его, полученное от пьезоэлемента, пропорционально растет, и нагрузка получает напряжение, более высокое по сравнению с напряжением пьезоэлемента.

Пьезоэлектрический первичный источник энергии перепада температур, состоящий из емкости, одна пластина которой закреплена неподвижно, а вторая закреплена на подвижном диэлектрическом материале, который передвигается при помощи энергии перепада температур и имеет возможность отдаляться и приближаться к неподвижной пластине, источника возбуждения и контактной системы, обеспечивающей заряд емкости при сближении пластин и разряд при максимальном их отдалении, отличающийся тем, что в пространство между неподвижным корпусом устройства и концом подвижного диэлектрического материала дополнительно установлен пьезоэлемент, который жестко закреплен с ними по обеим сторонам и выполняет функции источника питания.



 

Похожие патенты:

Изобретение относится к области электромашиностроения. Технический результат: повышение эксплуатационной надежности емкостного двигателя, повышение технологичности, упрощение конструкции.

Предлагаемое изобретение относится к электротехнике, в частности к микроэлектромеханическим генераторам, преобразующим энергию механических колебаний в электрическую энергию, и может быть использовано для подзаряда химического источника тока.

Изобретение относится к электротехнике. Электростатический генератор содержит расположенный на валу и состоящий из диэлектрического материала цилиндр.

Изобретение относится к технике высоких напряжений, к электростатическим генераторам с транспортерами-проводниками. Технический результат состоит в повышении мощности.

Изобретение относится к области электротехники и направлено на достижение технического результата, состоящего в повышении точности и расширении функциональных возможностей микроэлектромеханических систем за счет использования реверсивного микродвигателя вращения в качестве углового шагового микро-, нанопозиционера, реверсивного высокоэнергоемкого быстродействующего вращательного микропривода в шаговом и квазиустановившимся режимах.

Изобретение относится к области преобразования электрической энергии, а именно к устройствам преобразования статического электричества в электрическую энергию небольших напряжений при малых токах.

Изобретение относится к области генерации электроэнергии путем электризации диэлектрических веществ, а именно к устройствам, в которых тепловая или кинетическая энергия преобразуется в электрическую энергию путем ионизации жидкой или газовой среды и снятия с нее заряда.

Изобретение относится к области генерации электроэнергии путем электризации диэлектрических веществ, а именно к устройствам, в которых тепловая или кинетическая энергия преобразуется в электрическую энергию путем ионизации жидкой или газовой среды и снятия с нее заряда.

Изобретение относится к электротехнике, к устройствам электромеханического преобразования энергии и является быстродействующим высокоэнергоемким емкостным преобразователем энергии, изготавливаемым методами технологии микроэлектроники, может быть использовано в устройствах, в которых необходимо создание больших механических сил за короткое время, например в устройствах впрыска топлива в цилиндры двигателей внутреннего сгорания, инжекторов струй жидкости, в микродвигателях для микролетательных аппаратов и микророботов.

Изобретение относится к электротехнике и может быть использовано для промышленного получения электроэнергии, а также в технологиях индукционного нагрева вещества.

Изобретение относится к системам очистки воздуха с использованием электрического поля для поляризации частиц и материала и может использоваться в системах отопления, вентиляции и кондиционирования воздуха, автономных блоках фильтров или вентиляторах, а также в промышленных системах очистки воздуха. Технический результат состоит в снижении габаритов и расширении функциональных возможностей за счет обеспечения сепарации твердых частиц воздуха. В электростатическом сепараторе диэлектрический корпус состоит из нескольких секций, разделенных разделительными перегородками, и содержит заземляющие решетки, а также заряжающие электроды, предварительно заземленные. Проволочный электрод подключен к источнику положительного постоянного тока напряжением большим, чем напряжение источника питания металлических электродов. Изобретение обеспечивает отделение частиц газов, различающихся по их удельному весу друг от друга, и их раздельный сбор в приемные секционированные ячейки с возможностью их раздельной утилизации путем поляризации частиц газов в электростатическом поле и их осаждения на металлических электродах. 1 ил.

Электростатический генератор высокого напряжения (ЭГВН) относится к устройствам, предназначенным для генерации высокого напряжения или высоковольтных электрических разрядов и может использоваться для генерации импульсов тока высокого напряжения в системах зажигания двигателей внутреннего сгорания. В настоящем изобретении в качестве ЭГВН используется электрический конденсатор переменной емкости (ЭКПЕ), емкость которого зависит от расстояния между электродами ЭКПЕ, главным отличием которого от аналогов является дополнительное использование диэлектрического материала с повышенной электрической прочностью, специально помещаемого в пространство, образующееся между электродами ЭКПЕ при увеличении расстояния между ними в процессе работы ЭКПЕ. Это необходимо для того, чтобы уменьшить величину напряжения электрического пробоя между электродами ЭКПЕ и тем самым во много раз увеличить рабочее напряжение и мощность ЭГВН. Наиболее перспективным является использование для этих целей жидкого диэлектрика, который естественным образом заполняет все внутреннее пространство между электродами ЭКПЕ при отдалении электродов ЭКПЕ друг от друга и вытесняется из этого пространства при обратном сближении электродов ЭКПЕ. 7 з.п. ф-лы.
Наверх