Способ определения места повреждения линий электропередачи и связи

Изобретение относится к электроэнергетике и может быть использовано при создании приборов для определения места повреждений линий электропередачи и связи. Технический результат: обеспечение возможности обнружения слабых дефектов, расположенных вблизи основного дефекта. Сущность изобретения: излучают в линию гармонические колебания различных частот последовательно во времени. Принимают отраженные сигналы. Определяют по принятым отраженным сигналам коэффициенты отражения Г(fi). Умножают коэффициенты отражения на M значений e j 4 π f n x m V ф , где xm=xmin+m·Δx, Δx - шаг (дискрет значений), xmin - нижняя граница области возможного положения дефекта. Запоминают полученные M значений. Определяют значения мощностей отраженных сигналов дважды по формулам: | U m 1 | 2 = | i = 1 N A n Г ( f i ) e j 4 π f i x m V ф | 2 и | U m 2 | 2 = | i = 1 N 1 A n Г ( f i ) e j 4 π f i x m V ф i = N 1 N A n Г ( f i ) e j 4 π f i x m V ф | 2 , где 1<N1<N. Далее определяют значения мощности отраженных сигналов Um как разность первого и второго значений мощностей, исключая отрицательные значения: | U m | 2 = { | U m 1 | 2 | U m 2 | 2     | U m | 2 > 0 0                          | U m | 2 0 , и по максимальному значению определяют место повреждения. 5 ил.

 

Изобретение относится к электроэнергетике и может быть использовано при создании приборов для определения места повреждения линий электропередачи и связи.

Известен способ для определения места повреждения линий электропередачи и связи (Патент РФ №2330298, кл. G01R 31/11 от 03.07.2006), согласно способу в линию передачи посылают зондирующие импульсы напряжения. Определяют место повреждения по временной задержке отраженного импульса относительно зондирующего. Далее излучают квазинепрерывный колебательный сигнал, представляющий собой импульсы напряжения, мгновенные значения которых получены суммой гармонических составляющих двух и более частот. Принимают отраженный сигнал в моменты времени, соответствующие предварительно определенному месту повреждения. Уточняют дальность до места повреждения по фазочастотному спектру.

Наиболее близким техническим решением к предлагаемому способу определения места повреждения линий электропередачи и связи является способ определения места повреждения линий электропередачи и связи и устройство для его осуществления, патент РФ №2446407, кл. G01R 31/11 от 27.03.2012.

Согласно прототипу-способу в линию электропередачи и связи излучают гармонические колебания на каждой fi из N частот последовательно во времени, определяют по принятым отраженным сигналам коэффициенты отражения Г(fi), измеренные значения умножают на M значений e j 4 π x m V Ф i , где xm=xmin+m·Δx, Δx - шаг (дискрет значений), xmin - нижняя граница области возможного расстояния до дефекта, полученные M значений запоминают, для каждого из M значений ожидаемой дальности xm суммируют значения измеренных коэффициентов отражения, умноженных на значения e j 4 π x m V Ф i , и определяют значения мощностей по формуле | U m | 2 = | i = 1 N Г ( f i ) e j 4 π f i V ф 1 | 2 , находят максимальное из них: | U S | 2 = m a x | U m | 2 m = 1 M , и его номер s и определяют расстояние до дефекта по формуле xд=xmin+s·Δx.

Недостатком способа определения места повреждения линий электропередачи и связи и устройства для его осуществления согласно прототипу - патенту РФ №2446407, кл. G01R 31/11 от 27.03.2012, является то, что зависимость мощности | U m | 2 от значений дальности представляет собой пик, окруженный боковыми лепестками. При присутствии в линии электропередачи и связи второго дефекта, расположенного ближе, чем основной дефект, его наличие маскируется боковыми лепестками более сильного отклика. Также при расположении второго дефекта на небольшом расстоянии от основного дефекта возможность его наблюдения и пространственного разрешения ограничено уровнями боковых лепестков основного отклика.

Задачей изобретения является обеспечение возможности обнаружения слабых дефектов, расположенных вблизи основного дефекта, и улучшение их пространственного разрешения.

Решаемая задача в способе определения места повреждения линий электропередачи и связи, заключающемся в излучении в линию электропередачи и связи гармонических колебаний различных частот последовательно во времени, приеме отраженных сигналов, определении по принятым отраженным сигналам коэффициентов отражения Г(fi), умножении на M значений e j 4 π f n x m V Ф i измеренных значений коэффициентов отражения Г(fi);

где xm=xmin+m·Δx, Δx - шаг (дискрет значений),

xmin - нижняя граница области возможного положения дефекта, запоминании полученных M значений, определении значений мощностей путем суммирования значения измеренных коэффициентов отражения, умноженных на значения e j 4 π f n x m V Ф i для каждого из M значений ожидаемой дальности xm, нахождении номера s, соответствующего максимальному значению мощности | U s | 2 , и определении расстояния до дефекта как xд=xmin+s·Δx, достигается тем, что значения мощностей отраженных сигналов определяют дважды по формуле | U m 1,2 | 2 = | i = 1 N A n Г ( f i ) e j 4 π f i x m V ф | 2 ; причем первое Um1 - как синфазное суммирование, и все значения коэффициента An выбирают положительными, второе значение мощности отраженных сигналов Um2 определяют после умножения остальных (N-N1) измеренных значений мощностей на (-An) по формуле | U m 2 | 2 = | i = 1 N 1 A n Г ( f i ) e j 4 π f i x m V ф i = N 1 N A n Г ( f i ) e j 4 π f i x m V ф | 2 , где 0<N1<N, далее определяют значения мощности Um отраженных сигналов как разность первого и второго значений мощностей, исключая отрицательные значения: | U m | 2 = { | U m 1 | 2 | U m 2 | 2     | U m | 2 > 0 0                          | U m | 2 0 , по которой и определяют место повреждения линий электропередачи и связи.

На фиг.1 показана схема осуществления измерения расстоянии до дефекта.

На фиг.2 показаны значения мощностей при различных значениях предполагаемой дальности до дефекта.

На фиг.3 приведены результаты определения места повреждения линий электропередачи и связи, полученные моделированием процесса измерения согласно изобретению.

На фиг.4 приведено устройство определения места повреждения линий электропередачи и связи, с помощью которого может быть осуществлен способ определения места повреждения линий электропередачи и связи.

На фиг.5 приведена схема алгоритма работы вычислительного блока при обработке сигнала.

Устройство для определения места повреждения линий электропередачи и связи (фиг.4) содержит: 1 - блок индикации, 2 - вычислительный блок, 3 - генератор, 4 - приемник, 5 - переключатель, 6 - направленный ответвитель, 7 - линия электропередачи и связи.

Рассмотрим осуществление способа и работу устройства для определения места повреждения линий электропередачи и связи.

Заявленный способ может быть реализован в устройстве согласно прототипу (патент РФ №2446407, кл. G01R 31/11 от 27.03.2012). Реализация заключается в следующем. Устройство определения места повреждения линий электропередачи и связи, представленное на фиг.4, работает следующим образом. Вычислительный блок 2 формирует сигнал - команду генератору 3 для генерации колебания на частоте f1. На входы приемника 4 поступают сигналы на частоте f1, пропорциональные амплитуде падающей и отраженной волны k U п а д e j 2 π f 1 t и k U о т р e 2 α ( f 1 ) x д e j 2 π f 1 ( t 2 x д V ф 1 ) . После оцифровки эти сигналы поступают в вычислительный блок 2 в цифровой форме. Далее процесс повторяется для значений частот f2…fM. В вычислительном блоке 2 осуществляется цифровая обработка согласно заявляемому способу определения места повреждения линий электропередачи и связи. Схема алгоритма обработки сигнала приведена на фиг.5.

Устройство определения места повреждения линий электропередачи и связи может быть реализовано следующим образом. Генератор может быть выполнен на основе известных устройств с синтезатором частоты. Направленный ответвитель в зависимости от диапазона частот - на основе связанных линий электропередачи или на дискретных элементах. Направленные ответвители указанного вида широко применяются в измерительной технике, в частности в приборах для измерения коэффициента стоячей волны и ослаблений, выпускаемых промышленностью. Вычислительный блок может быть выполнен на основе микроЭВМ, содержащей центральный процессор достаточного быстродействия, оперативную память умеренной емкости и устройство ОЗУ, например на основе приборозарядовой связи. Индикатор - любого типа, например, жидкокристаллический.

Определение расстояния до дефекта, согласно заявляемому способу определения места повреждения линий электропередачи и связи, осуществляют следующим образом (см фиг.1). В линии электропередачи и связи возбуждают электромагнитную волну на частоте f1. Коэффициент отражения нагруженной линии электропередачи и связи от дефекта на расстоянии x равен:

где VФ(f1) и α(f1) - фазовая скорость и коэффициент затухания волны на частоте f1. Гд - коэффициент отражения от дефекта. [см., например, Д.М. Сазонов, А.Н. Гридин, Б.А. Мишустин. Устройства СВЧ: Учеб. пособие / Под ред. Д.М. Сазонова. - М.: Высшая школа, 1981, стр.23].

Измерение комплексного коэффициента отражения технически реализуемо даже при использовании в качестве зондирующего немодулированного монохроматического сигнала [см., например, Двояршин Б.В. Метрология и радиоизмерения: Учеб. пособие для студ. высш. учеб. Заведений. - М.: Издательский центр «Академия», 2005, стр.213].

Измеренное значение коэффициента отражения умножают на M значений e j 4 π f n x m V Ф i , где xm=xmin+m·Δx, Δx - шаг (дискрет значений), xmin - нижняя граница области возможного положения дефекта. Результат умножения соответствует сдвигу по фазе отраженной волны на величину 4 π f n x m V Ф 1 . Получают M значений Г ( f 1 ) e j 4 π f n x m V Ф 1 .

Далее процесс повторяют для частоты f2, f3, … fN. Значение ширины полосы частот Δf=[fmin, fmax] и величину дискрета выбирают из условия требуемой точности измерения. [см., например, Теоретические основы радиолокации. Под ред. Ширмана Я.Д. Учебное пособие для ВУЗов. - М.: Советское радио, 1970, стр 190].

Для каждого из M значений ожидаемой дальности xm суммируют значения измеренных коэффициентов отражения, сдвинутых по фазе на величины 4 π f n x m V Ф i , и определяют значения его мощности дважды: первый раз аналогично способу в прототипе изобретения, а именно:

Второй раз:

Причем значение номера N1 выбирается в рамках 1<N1<N таким образом, чтобы второе значение мощности в точке xm имело минимальное значение. Затем находят значения мощностей | U m | 2 как разность | U m 1 | 2 и | U m 2 | 2 , опуская отрицательные значения | U m | 2 = { | U m 1 | 2 | U m 2 | 2     | U m | 2 > 0 0                          | U m | 2 0

Среди значений | U m | 2 максимальным является такое s - e значение, которое соответствует истинному расстоянию до дефекта xд≈xs, т.к. при этом все члены суммы являются вещественными и положительными.

Таким образом, находя максимальное значение | U m | 2 (m=1…M)

Определяют его номер - s, а измерение значения расстояния до дефекта вычисляют как xд=xmin+s·Δx.

На фиг.2 показаны значения мощностей при различных значениях предполагаемой дальности до дефекта, находящегося в точке xд. Кривая 8 соответствует значениям | U m 1 | 2 , т.е. согласно прототипу, кривая 9 соответствует значениям | U m 2 | 2 . Кривая 10 - результат обработки согласно заявляемому способу.

Достижение решаемой задачи происходит потому, что ближайшие к точке xд максимальные значения зависимостей | U m 2 | 2 , как правило, превосходят по амплитуде значения боковых лепестков зависимости | U m 1 | 2 (кривая 9). После вычитания большинство значений | U m 1 | 2 | U m 2 | 2 , соответствующих боковым лепесткам | U m 1 | 2 , исключаются из рассмотрения (кривая 10, фиг.2).

Расчеты зависимостей | U m 1 | 2 , | U m 2 | 2 и | U m 1 | 2 | U m 2 | 2 для различных расстояний до дефектов подтверждают решение поставленной задачи. На фиг.3 приведены результаты определения места повреждения линий электропередачи и связи, полученные моделированием процесса измерения согласно изобретению. Моделирование соответствует измерению в линии электропередачи и связи с относительной фазовой скоростью V ф с = 0 , 6 8 8 , коэффициенту затухания α=0 с использованием измерительных сигналов в полосе частот 30-70 МГц. Основной дефект с коэффициентом отражения Гд1=1 (обрыв) находился на расстоянии 100 м, второй дефект (несанкционированное разветвление) с коэффициентом отражения Гд2=-0,5 находился ближе основного дефекта на расстояниях 2,65 м, 4 м, 5 м. Отношение сигнал/шум для измеряемых коэффициентов отражения -17 дБ. Результаты приведены на фиг.3, где показаны слева - результаты измерений согласно способу-прототипу, справа - согласно заявляемому способу. Как видно из данных фиг.3, при измерениях согласно заявляемому способу:

- происходит уменьшение ширины «пика», что повышает точность определения места повреждений;

- более четко наблюдается отклик от дефекта, расположенного ближе основного дефекта. При измерении согласно прототипу этот отклик маскируется боковыми лепестками. При измерении согласно заявленному способу наличие этого дефекта становится более заметным (справа на фиг.3).

Способ определения места повреждения линий электропередачи и связи, заключающийся в излучении в линию электропередачи и связи гармонических колебаний различных частот последовательно во времени, приеме отраженных сигналов, определении по принятым отраженным сигналам коэффициентов отражения Г(fn), умножении на M значений e j 4 π f n x m V ф n измеренных значений коэффициентов отражения Г(fn);
где xm=xmin+m·Δx, Δx - шаг (дискрет значений),
xmin - нижняя граница области возможного положения дефекта, запоминании полученных M значений, определении значений мощностей путем суммирования значения измеренных коэффициентов отражения, умноженных на значения e j 4 π f n x m V ф n для каждого из M значений ожидаемой дальности xm, нахождении номера s, соответствующего максимальному значению мощности | U s | 2 , и определении расстояния до дефекта как x=xmin+s·Δx, отличающийся тем, что значения мощностей отраженных сигналов определяют дважды, причем первое Um1 - как синфазное суммирование, и все значения коэффициента An выбирают положительными, при этом | U m 1 | 2 = | i = 1 N A n Г д e j 4 π x д f n V ф n e 2 α ( f n ) x д e j 4 π f n x m V ф n | 2 , второе значение мощности отраженных сигналов Um2 определяют после умножения (N-N1) измеренных значений мощностей на (-An) по формуле | U m 2 | 2 = | n = 1 N 1 A n Г д e j 4 π x д f n V ф n e 2 α ( f n ) x д e j 4 π f n x m V ф n | 2 - | N 1 N A n Г д e j 4 π x д f n V ф n e 2 α ( f n ) x д e j 4 π f n x m V ф n | 2 , причем значение номера N1 выбирается в рамках 1<N1<N таким образом, чтобы второе значение мощности в точке xm имело минимальное значение, далее определяют значения мощности отраженных сигналов Um как разность первого и второго значений мощностей, исключая отрицательные значения:
| U m | 2 = { | U m 1 | 2 | U m 2 | 2     | U m | 2 > 0 0                          | U m | 2 0 , и находят максимальное значение | U m | 2 .



 

Похожие патенты:

Изобретение относится к электротехнике, в частности может быть применено для построения автоматических локационных показателей места повреждения ЛЭП. Технический результат: повышение точности.

Изобретение относится к электроизмерительной технике, и может быть использовано для генерирования гармонических сигналов в составе измерительного комплекса для реализации индукционного метода поиска и диагностики подземных коммуникаций.

Изобретение относится к электроэнергетике и может быть использовано при создании приборов для определения места повреждений линий электропередачи и связи. .

Изобретение относится к электротехнике, а именно к системной автоматике и релейной защите, и предназначено для реализации в устройствах определения места повреждения линий электропередачи (ЛЭП), в устройствах контроля погасания дуги ЛЭП, измерительных органах дистанционной защиты.

Изобретение относится к радиолокационным технологиям для дистанционного определения места повреждения высоковольтных линий (ВЛ), характеризующихся большим количеством неоднородностей.

Изобретение относится к электроизмерительной технике и предназначено для определения мест повреждения (ОМП) в сетях электропередачи и связи. .

Изобретение относится к диагностике линий электропередач и предназначено для измерения расстояния до места повреждения, а также выделения поврежденного ответвления в разветвленной электрической сети.

Изобретение относится к контрольно-измерительной технике, в частности к способам контроля качества электрических контактов. Способ может быть использован для проведения диагностики и оценки качества электрических контактов в электрических цепях. Сущность: воздействуют на электрический контакт тестовым видеоимпульсным сигналом x(t). Регистрируют тестовый видеоимпульсный сигнал x(t). Принимают от электрического контакта сигнал-отклик u1(t) на тестовый видеоимпульсный сигнал. Повторно воздействуют тестовым видеоимпульсным сигналом с постоянным смещением. Регистрируют тестовый видеоимпульсный сигнал с допустимой нестабильностью формы [x(t)+Δx(t)] при повторном воздействии. Принимают от электрического контакта сигнал-отклик u2(t) на повторное воздействие тестовым видеоимпульсным сигналом. Вычисляют характеристику нелинейности ε*(t). Сравнивают полученное значение ε*(t) со значением ε*(t), измеренным для заведомо качественного электрического контакта. По результату сравнения определяют качество контакта. Технический результат: уменьшение влияния нестабильности параметров тестового сигнала на результат вычисления характеристики нелинейности электрического контакта. 4 ил.

Изобретение относится к электротехнике и может быть использовано для определения мест повреждения на кабельных линиях электропередачи и связи. Сущность: устройство содержит импульсный измеритель, радиотелефон, источник радиоактивного излучения, который установлен в центре свинцового контейнера в расположенном по его оси симметрии вертикальном канале. В нижней части свинцового контейнера установлено механическое затворное устройство, состоящее из свинцовой крышки, по центру которой выполнен вертикальный узконаправленный выходной канал, расположенный на одной оси с вертикальным каналом свинцового контейнера, и установленного внутри свинцовой крышки свинцового затвора с вертикальным проходным каналом, смещенным относительно оси симметрии свинцового контейнера влево, прижимаемого к нижней части свинцового контейнера прижимными пружинами с шариками и имеющего возможность плавно перемещаться вдоль нее до полного совмещения вертикального проходного канала свинцового затвора с вертикальным каналом свинцового контейнера и вертикальным узконаправленным выходным каналом свинцовой крышки по оси симметрии свинцового контейнера. Свинцовый затвор торцевыми частями упруго связан со свинцовой крышкой распорными пружинами и своей левой стороной соединен посредством гибкого троса, находящегося в стальной оболочке, с кнопкой дистанционного управления. Технический результат: снижение радиационного воздействия радиоактивного излучения на оператора, перемещающего источник радиоактивного излучения, повышение точности определения места повреждения кабеля путем снижения рассеивания γ-излучения. 2 ил.

Изобретение относится к электротехнике и предназначено для поиска участка с пониженным сопротивлением изоляции на землю в цепях постоянного оперативного тока электрических станций и подстанций. Способ основан на выделении активной составляющей тока фидера от внешнего наложенного напряжения. Производят наложение внешнего низкочастотного напряжения, вычисляют отношение интеграла квадрата мгновенного значения переменной составляющей потенциала шин и активной составляющей мощности, а также вычисляют интеграл произведения мгновенных значений переменных составляющих полного опорного тока щита и тока контролируемого присоединения. Технический результат заключается в повышении чувствительности. 1 ил.

Изобретение относится к электроэнергетике и может быть применено для оперативного получения сведений о грозовой обстановке и интенсивности грозовой деятельности на трассах высоковольтных воздушных линий электропередач (ВЛ). Система мониторинга грозовых разрядов на воздушных линиях электропередачи, включающая минимум два регистратора грозовых перенапряжений, установленных с двух концов контролируемой линии, каждый из регистраторов снабжен приемником сигналов точного времени и выполнен с возможностью фиксации значений текущего времени и записи с преобразованием в цифровую форму выходного сигнала соответствующего датчика, каждый регистратор подключен первым входом к первому датчику грозовых перенапряжений, характеризуется тем, что минимум один регистратор содержит второй и последующий входы, соединенные со вторым и последующими датчиками грозовых перенапряжений, подключенными к соответствующим воздушным линиям. Датчики грозовых перенапряжений могут выполняться в виде трансформаторов тока в цепях подключения фильтров присоединения технологической ВЧ-связи к разделительным конденсаторам. Система может дополнительно содержать средство цифровой обработки, связанное информационными каналами с регистраторами. Изобретение может с успехом применяться при производстве систем мониторинга событий, в том числе грозовых разрядов на воздушных линиях электропередач. Технический результат - улучшение массогабаритных характеристик - достигается совмещением функционала нескольких устройств в одном без потери функциональных возможностей. Технический результат - повышение надежности системы - достигается тем, что снижается количество элементов, в частности регистраторов, каждый из которых обладает ненулевой вероятностью выхода из строя, необходимых для контроля нескольких объектов (ВЛ). Технический результат - повышение надежности передачи информации - достигается снижением количества информационных каналов (линий связи) с регистраторами. 2 з.п. ф-лы, 1 ил.

Изобретение относится к электроизмерительной технике и может быть использовано для оперативного определения места однофазного замыкания на землю в распределительных сетях с изолированной или компенсированной нейтралью. Технический результат – расширение функциональных возможностей на основе определения места однофазного замыкания на землю в линии электропередачи при любом переходном сопротивлении в месте повреждения, не требующего при своей реализации стационарно установленной сложной системы. Для этого обеспечивают поочередную генерацию высокочастотного синусоидального сигнала в поврежденную и неповрежденную фазы с последующим определением резонансной частоты каждой из них. На основании поученных данных производят расчет расстояния до места повреждения по выражению: где ƒ1 - резонансная частота одной из неповрежденных фаз линии, Гц; ƒ2 - частота, определенная для поврежденной фазы линии, Гц; - длина неповрежденной фазы отходящей линии электропередачи, км. 3 ил.
Наверх