Метод обнаружения малогабаритных беспилотных летательных аппаратов

Изобретение относится к области обнаружения и распознавания малогабаритных беспилотных летательных аппаратов (МБЛА). В заявленном способе примененяются три и более изображений и сигналов в трех и более пространственно разнесенных точках на гиростабилизирующих платформах, связанных между собой рабочими базами. Рабочие базы автоматически определяют расстояния между собой и свои пространственные координаты, что позволяет разместить в любых удобных местах как на подвижном, так и стационарном объекте. На каждой базе размещено по три датчика, работающих в оптическом (камеры кругового обзора), акустическом и в трех и более настраиваемых радиолокационных диапазонах электромагнитных волн. Управление работой трех каналов и обработкой полученной информации и сигналов осуществляет ЭВМ с элементами искусственного интеллекта, которая сама выбирает наиболее эффективные каналы для более точного обнаружения и определения пространственных координат МБЛА в различных условиях ведения наблюдения, что позволяет построить объемное 3D изображение МБЛА и сравнить с известными изображениями для их распознавания и определения средств борьбы с МБЛА. Технический результат - разработка метода обнаружения МБЛА в различных условиях ведения наблюдения с использованием датчиков, работающих в оптическом, звуковом и радиолокационных диапазонах электромагнитных волн. 4 ил.

 

Изобретение относится к области обнаружения и распознавания малогабаритных беспилотных летательных аппаратов (МБЛА) и может быть использовано в военной технике.

Известны различные методы и технические решения для обнаружения летательных аппаратов с использованием способа кругового обзора матричным фотоприемным устройством и устройство для его осуществления (патент РФ №2445644), оптическим локатором кругового обзора (патент РФ №2352957) [1, 2]. Недостатками являются сложность конструкции, большие размеры, большая мощность двигателя для вращения камеры (кругового обзора) и соответственно ошибки в снятии результата.

Способ визуально-оптического контроля лазерного сканирования атмосферы (патент РФ №2489732). Недостатками являются активный метод обнаружения и минимальные турбулентные потоки из-за малых размеров и использования электродвигателей МБЛА [3].

Способ обнаружения объектов (патент РФ №2331084, прототип), заключающийся в селекции объекта на удаленном фоне, заключающийся в приеме и формировании двух изображений в двух пространственно разнесенных точках, а также одновременной регистрации сформированных цифровых изображений, отличающийся тем, что опорное и сравниваемое цифровые изображения регистрируют одномоментно для каждого фрагмента (пикселя) изображений двумя идентичными видеосистемами на основе многоэлементных высокоскоростных фотоприемников, например CMOS-матриц с объективами, которые предварительно фиксируют на небольшом по сравнению с удалением от предполагаемого места появления объекта расстоянии между собой параллельно друг другу в направлении на контролируемое пространство, а анализ изображений проводят при помощи определения величин смещения Δ характерных фрагментов сравниваемого изображения с аналогичными фрагментами опорного при максимально возможном их совпадении в направлении параллактического смещения и последующего выявления селектируемого и фоновых объектов из полученных смещений Δ и т.д. [4].

Известный способ имеет следующие недостатки: ограниченные функциональные возможности, связанные с невозможностью обнаружения МБЛА на 360° по горизонтали и на 180° по вертикали; ограниченную применимость видимым диапазоном работы видеокамер; невозможность использования в движении и создания достоверного трехмерного объемного изображения МБЛА и определения его дальнейшего направления движения.

Задачей, стоящей перед настоящим изобретением, является повышение возможности обнаружения МБЛА на 360° по горизонтали и на 180° по вертикали, параллельной работе в оптическом, звуковом и радиолокационном диапазоне электромагнитных волн, возможности размещения на подвижных объектах и создания достоверного трехмерного объемного изображения МБЛА и определения его дальнейшего направления движения.

Поставленная задача решается следующим образом.

В методе обнаружения МБЛА, заключающемся в приеме и формировании трех и более изображений и сигналов в трех и более пространственно разнесенных точках на гиростабилизирующих платформах 1, связанных между собой рабочими базами 2, автоматически определяющими расстояния между собой и свои пространственные координаты, что позволяет разместить в любых удобных местах как на подвижном объекте, так и стационарном (фиг. 1). На каждой базе размещено по три датчика: датчик 3 (камера кругового обзора), работающий в оптическом диапазоне, датчик 4, работающий в акустическом диапазоне, и датчик 5, работающий в трех и более настраиваемых радиолокационных диапазонах электромагнитных волн. Управление работой и обработкой полученной информации осуществляется ЭВМ 6 с элементами искусственного интеллекта, который сам выбирает наиболее эффективные датчики для более точного обнаружения и определения пространственных координат МБЛА в различных условиях. Одновременная регистрация кадров видеопоследовательности и определения геометрических и цветовых изменений сформированных изображений [5], согласно изобретению контрольное (наиболее ярко-выраженное) и сравниваемое цифровые изображения регистрируют одновременно для каждого фрагмента изображений тремя и более идентичными видеосистемами (датчиками) 3 на основе многоэлементных высокоскоростных фотоприемников 7 (фиг. 2). Анализ изображений проводится на ЭВМ 6 и определяются величины смещения P1, Р2, Р3 (фиг. 3) характерных фрагментов 8 (фиг. 4) сравниваемого изображения с аналогичными фрагментами контрольного при максимально возможном их совпадении в направлении параллактического смещения 9. Сущность измерения расстояния до МБЛА заключается в суммарном определении линейного параллакса, которое рассчитывается между двумя датчиками 1-2 (2-3, 1-3 или 1-i), одновременно по трем и более базам (фиг. 2) по формуле Д=Б/tgY (стереоскопический базовый метод измерения дальности).

Дальность Д1 до точки 1 МБЛА определяется по величине параллактического угла Y1 и по величине базы между датчиками Б1-2, определяемой суммой Y 1 = Y 1 1 + Y 2 1 = P 1 / f + P 2 / f (фиг. 2). Соответственно также определяются расстояния до других точек МБЛА (Д2, Д3, Д4), что позволяет с помощью ЭВМ 6 построить объемное 3D изображение и сравнить с известными МБЛА с целью их распознавания. Определяя координаты датчиков 3 и углы направления Y 1 1 , Y 2 1 , ЭВМ 6 рассчитывает пространственные координаты МБЛА в оптическом диапазоне электромагнитных волн. Определяя постоянно пространственные координаты, ЭВМ 6 определяет скорость и направление движения, что позволяет производить сопровождение МБЛА.

Для наиболее достоверного обнаружения МБЛА в условиях плохой видимости, когда оптический канал по выбору ЭВМ 6 не эффективно использовать (густой туман, полная темнота и т.д.), в процессе обнаружения используется звуковой и радиолокационный каналы. Датчики 4 и 5 размещены совместно на гиростабилизирующих платформах 1 и параллельно фиксируют появления объекта, и также с помощью ЭВМ 6 определяют пространственные координаты МБЛА в звуковом и радиолокационном диапазонах электромагнитных волн.

Источники информации

1. Броун Ф.М., Волков Р.И., Филатов М.И., Хазов A.M. Способ кругового обзора матричным фотоприемным устройством и устройство для его осуществления. - Патент на изобретение №2445644, 20.03.2012 г.

2. Архипов В.Г., Чжан Ю.В. Оптический локатор кругового обзора. - Патент на изобретение №2352957, 20.04.2009 г.

3. Попсуй С.П., Таурин В.Э., Швецов И.В., Швецова С.А. Способ визуально-оптического контроля лазерного сканирования атмосферы. - Патент на изобретение №2489732, 10.08.2013 г.

4. Подгорнов В.А. Способ обнаружения объектов. - Патент на изобретение №2331084, 10.08.2008 г.

5. Шишков С.В. Программа определения геометрических изменений на кадрах видеопоследовательности для обнаружения ДПЛА. / Музаи К., Устинов Е.М., Пархоменко А.В., Чернов Е.М., Щербаков А.С. /. Свидетельство о государственной регистрации программы для ЭВМ №2013611694, 31.01.13.

Метод обнаружения малогабаритных беспилотных летательных аппаратов (МБЛА), заключающийся в селекции объекта на удаленном фоне, в приеме и формировании изображений в пространственно разнесенных точках, а также одновременной регистрации сформированных цифровых изображений высокоскоростными фотоприемниками, анализ изображений проводят при помощи определения величин смещения характерных фрагментов сравниваемого изображения с аналогичными фрагментами опорного, отличающийся тем, что в приеме и формировании используются три и более изображений и сигналов в трех и более пространственно разнесенных точках на гиростабилизирующих платформах, связанных между собой рабочими базами, автоматически определяющими расстояния между собой и свои пространственные координаты, что позволяет разместить в любых удобных местах как на подвижном, так и стационарном объекте, на каждой базе размещено по три датчика, работающих в оптическом (камеры кругового обзора), акустическом и в трех и более настраиваемых радиолокационных диапазонах электромагнитных волн, управление работой трех каналов и обработкой полученной информации и сигналов осуществляет ЭВМ с элементами искусственного интеллекта, которая сама выбирает наиболее эффективные каналы для более точного обнаружения и определения пространственных координат МБЛА в различных условиях ведения наблюдения, что позволяет построить объемное 3D изображение МБЛА и сравнить с известными для их распознавания и определения средств борьбы с МБЛА.



 

Похожие патенты:

Изобретение относится к области приборостроения и может быть использовано в оптико-электронных системах, в которых фотоприемные устройства размещены на снаряжении бойца.
Изобретения относятся к системам для активной защиты Земли и могут быть использованы при реализации комплексов для борьбы с летающими объектами естественного и искусственного происхождения, приближающимися к Земле.

Изобретение относится к области океанографических измерений и преимущественно может быть использовано для контроля состояния поверхности океана. Технический результат - повышение точности определения характеристик морской поверхности за счет разделения воздействия на отражённый от морской поверхности радиосигнал двух факторов, доминантных ветровых волн и мелкомасштабной ряби. Сущность: формируют короткие радиоимпульсы постоянной длительности и вертикально зондируют ими морскую поверхность, регистрируют отражённые радиоимпульсы и по их форме определяют характеристики морской поверхности, при этом дополнительно формируют более длинные радиоимпульсы и вертикально зондируют ими морскую поверхность, причем длительность дополнительно сформированных радиоимпульсов обеспечивает одновременное отражение от всей площади морской поверхности, освещаемой в пределах диаграммы направленности антенны, определяют амплитуду отраженных импульсов большей длительности, по ней определяют скорость ветра, и определяют характеристики морской поверхности с учетом скорости ветра.

Изобретение относится к области океанологических измерений и преимущественно может быть использовано для контроля состояния поверхности океана. Технический результат - повышение точности определения асимметрии распределения возвышений морской поверхности. Сущность: формируют короткие радиоимпульсы постоянной длительности, зондируют ими морскую поверхность в надир и регистрируют отражённые радиоимпульсы.

Система предназначена для измерения и контроля геометрических параметров железобетонных шпал, влияющих на прочность и надежность работы рельсового пути. На каркасе установлена линейная направляющая, с перемещаемой кареткой.

Настоящее изобретение относится к области оптической связи. Согласно способу используют лазерный луч, который состоит из импульсов длительностью не менее 1 нс, которые формируют из множества волн путем фазовой синхронизации и интерференции.

Изобретение относится к приборостроению и предназначено для формирования лазерного растра систем управления, лазерных прицелов и может быть использовано при управлении, посадке и стыковке летательных аппаратов, проводке судов по сложным фарватерам, обнаружении оптикоэлектронных приборов по «блику», дистанционном управлении робототехническими устройствами.

Изобретение относится к области измерительной лазерной техники. Способ электронного сканирования пространства для получения трехмерной модели портрета сцены заключается в проецировании структурированной лазерной подсветки, формируемой с помощью нескольких лазерных генераторов линий, расположенных под фиксированными углами относительно друг друга, регистрации ее с помощью матричного фоторегистрирующего устройства, последовательно снимающего кадры с подсветкой и без подсветки для последующего дифференцирования фона, передаче изображения линий подсветки на вычислительное устройство и определении вычислительным устройством объемного изображения сцены триангуляционным методом.

Изобретение относится к автоматизированным системам обнаружения и мониторинга нефтегенных загрязнений морского нефтегазового промысла. Система включает в себя сеть флуоресцентных лидаров, установленных на нефтегазодобывающей платформе, танкерах, осуществляющих транспортировку нефти, и судах, обслуживающих промысел; сеть установленных на удалении от нефтегазодобывающей платформы автоматических плавучих комплексов мониторинга (КМ), каждый из которых содержит контактирующие с водой датчики регистрации нефтегенных углеводородов, физико-химических и гидрологических параметров воды, и находящийся в погружном, в частности, в подледном положении герметичный буй, в котором размещены программируемый контроллер с системами сбора, предварительной обработки и передачи данных, генерируемых датчиками КМ; а также единую автоматизированную информационную систему (ИС) с функциями сбора, обработки и хранения данных, генерируемых лидарами и плавучими КМ.

Изобретение относится к технике экологического контроля, в частности, к автоматизированным средствам измерения показателей качества водных объектов, преимущественно подверженных риску нефтегенных загрязнений, и может использоваться в составе систем экологического мониторинга природных сред.

Изобретение касается прецизионного датчика расстояния. Особенностью указанного датчика является то, что приемная схема выполнена двухканальной и состоит из оптической системы, включающей две ромб-призмы и два отклоняющих клина, и приемной проекционной системы, включающей цилиндрическую линзу и сферический объектив, а в качестве фотодетектора использована двухкоординатная ПЗС-матрица, выход которой подключен к персональному компьютеру или контроллеру. Технический результат заключается в повышении абсолютной и относительной точности измерений. 2 ил.

Изобретение относится к области систем безопасности, предназначенных для предотвращения несанкционированного доступа винтокрылых беспилотных летательных аппаратов (БПЛА) в контролируемую зону и отслеживания перемещения винтокрылых БПЛА 1 в контролируемой зоне 3 с одновременной их аутентификацией. Техническим результатом изобретения является создание системы и способа обнаружения винтокрылых беспилотных летательных аппаратов с увеличенной точностью определения типа и параметров винтокрылого БПЛА 1 и увеличенной информативностью данных о винтокрылом БПЛА за счет автоматического видеонаблюдения за винтокрылым БПЛА 1 в дополнение к методам обнаружения БПЛА 1 с помощью спектрального и временного анализа акустического сигнала акустическими датчиками 2. 2 н. и 14 з.п. ф-лы, 3 ил.

Изобретение относится к устройствам для мониторинга подводных частей нефтепроводов и нефтепродуктопроводов в местах пересечения ими водных преград: рек, водохранилищ, озер и других водных объектов суши, с целью раннего обнаружения и установления местоположения утечек из подводной части нефтепровода; также может применяться для мониторинга морских нефтепроводов вблизи их выхода на сушу с той же целью. Заявленное устройство включает в себя комплекс мониторинга (КМ), предназначенный для обнаружения и контроля нефтяных загрязнений проб воды в установленной на берегу кювете, в которой проба воды автоматически обновляема посредством устройства забора воды с двумя или более входными портами, расположенными вдоль подводной части нефтепровода. Технический результат - непрерывное слежение за герметичностью трубопровода, раннее обнаружение протечек и снижение затрат на мониторинг подводных частей нефтепроводов и нефтепродуктопроводов в местах пересечения ими водных преград. 7 з.п. ф-лы, 1 ил.

Триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве содержит этап, на котором источник излучения формирует на поверхности исследуемого объекта световое пятно в виде двух пересекающихся световых линий за счет освещения исследуемого объекта засветкой в виде двух ортогональных световых ножей. Величину отклонения исследуемого объекта определяют по отклонению центра пересечения световых линий на принимаемом изображении, а ориентацию исследуемого объекта в пространстве определяют на основании значений двух углов наклона световых линий на принимаемом изображении. Технический результат заключается в повышении точности измерений отклонений объекта. 1 ил.

Изобретение относится к области оптической локации. Система содержит импульсный лазер, выходную оптическую систему, фотоприемное устройство, однокоординатное сканирующее устройство, оптический объектив фотоприемного устройства, вычислительное устройство, массив фотоприемных устройств, включающий К фотоприемников, а также волоконно-оптический жгут, содержащий К волокон, которые с одной стороны обращены торцами к соответствующим фотоприемникам массива фотоприемных устройств, а с другой стороны волокна жгута смонтированы в однорядную линейку из К волокон, торцы которой обращены к выходу оптического объектива фотоприемного устройства и расположены в его фокальной плоскости, причем выход фотоприемного устройства регистрации момента излучения лазерного импульса подключен на вход синхронизации вычислительного устройства. Вход синхронизации лазера подключен к выходу синхронизации вычислительного устройства, а выходы К фотоприемников подключены к измерительным входам дальности вычислительного устройства. Система характеризуется тем, что выходная оптическая система передающего канала включает оптику, формирующую астигматический лазерный пучок с отношением угловых расходимостей по ортогональным координатам ϕх:ϕу=1:К, причем большая расходимость ϕу соответствует координате, параллельной оси вращения однокоординатного сканирующего устройства и ориентации однорядной линейки из К волокон в фокальной плоскости оптического объектива фотоприемного устройства, меньшая расходимость ϕх соответствует угловому размеру элемента разрешения системы, а диаметр оптоволокна в жгуте d и фокальное расстояние объектива F выбираются из условия d/F=ϕx.Технический результат заключается в сокращении времени обзора, уменьшении габаритно-массовых характеристик, повышении надежности и информативности лазерного локатора. 2 ил.

Изобретение относится к области вооружения, в частности к способам защиты объектов. Способ защиты объекта от средств поражения с оптико-электронными и радиолокационными системами наведения и подрыва заключается в определении траектории средства поражения, доставке средства защиты объекта в расчетную точку траектории атакующего средства поражения и приведении средства защиты объекта в рабочее состояние. Защиту объекта осуществляют с помощью плазменно-вихревого образования, сформированного при подрыве средства защиты в виде корпуса с полым цилиндрическим зарядом бризантного взрывчатого вещества и алюминиевой трубкой в полости цилиндрического заряда в качестве плазмообразующего вещества. Достигается повышение надежности защиты объекта. 1 ил.

Изобретение относится к метрологии, в частности к способу наблюдения и слежения за метеорами. Способ предполагает определение местоположения метеорного тела, основанное на измерении расстояния до метеорного тела. В период между измерениями расстояния до метеорного тела местоположение метеорного тела определяют путем интегрирования скорости движения тела, измеренной по доплеровскому сдвигу частоты сигнала, отраженного телом, с учетом релятивистской поправки. При сближении метеорного тела с наблюдателем релятивистскую поправку к значению скорости движения тела определяют в соответствии с выражением где νr - скорость, вычисленная по результатам измерения доплеровского сдвига частоты сигнала, отраженного телом, с - скорость света, при удалении метеорного тела от наблюдателя релятивистскую поправку к значению скорости движения тела определяют в соответствии с выражением Технический результат - уменьшение ошибок при сближении с метеорным телом и повышение вероятности его перехвата. 1 з.п. ф-лы.

Изобретение относится к области оптико-электронных систем управления, предназначенных преимущественно для автоматического сопровождения подвижных объектов с перемещающегося основания, и может быть использовано в образцах техники, работающих в условиях воздействия помех и пропадании информационных сигналов, а также в установках для научных исследований. Способ управления объектом, включающий выделение сигнала ошибки управления, формирование команды управления объектом, формирование признака недостоверности сигнала ошибки управления, при отсутствии этого признака производится фильтрация сигнала ошибки управления, формирование сигнала компенсации фазового запаздывания фильтрации сигнала ошибки управления, а при наличии признака недостоверности сигнала ошибки управления проводится прогнозирование сигнала ошибки управления и формирование по ней команд управления. При этом передаточная функция образовавшегося с помощью цепи внутренней обратной связи замкнутого контура выбирается в соответствии с передаточной функцией системы управления объектом. Причем в процессе управления формируется обратная связь по выходным координатам или по командам управления. При отсутствии признака недостоверности сигнала ошибки управления фильтрация сигнала ошибки управления осуществляется с учетом инерционных свойств входного сигнала и объекта управления, а управление производится по неотфильтрованному или отфильтрованному сигналу ошибки управления. При наличии признака недостоверности сигнала ошибки прогнозирование сигнала ошибки управления производится с учетом сигнала по цепи внутренней обратной связи и инерционных свойств входного сигнала и объекта управления. Технический результат заключается в повышении помехоустойчивости и повышении устойчивости и точности отработки высоко динамических управляющих воздействий в условиях помех измерения, прерывании оптической связи и в условиях возмущений, вызванных работой комплекса, увеличении допустимого времени нахождения в инерционном режиме, снижении вероятности срыва сопровождения объекта, снижении вероятности ложного захвата объекта. 7 н. и 4 з.п. ф-лы, 6 ил.

Изобретение относится к области навигационного приборостроения и может найти применение в системах позиционирования и навигации подвижных объектов, использующих мобильные терминалы. Технический результат – расширение функциональных возможностей. Для этого способ и устройство для оповещения о состоянии дороги включают: определение состояния дороги в пределах заданной зоны при получении команды, запускающей в мобильном терминале заданную функцию, и, при обнаружении на дороге дорожного препятствия в пределах заданной зоны, выведение оповещающей информации. Согласно изобретению производится определение состояния дороги в пределах заданной зоны и, при обнаружении на дороге дорожного препятствия в пределах заданной зоны, выдается оповещающая информация. В результате обеспечивается автоматическое определение состояния дороги в пределах зоны, заданной в мобильном терминале. При этом благодаря оповещающей информации пользователю становится легче избежать повреждений, вызываемых дорожными препятствиями. 3 н. и 8 з.п. ф-лы, 7 ил.

Изобретение относится к неразрушающему контролю заготовок. Способ контроля заготовки включает сохранение данных модели, связанных с заготовкой, в систему контроля и определение относительного положения измерителя удаленности по отношению к заготовке. Также способ включает калибровку точки обзора для системы контроля по отношению к модели на основании положения измерителя удаленности по отношению к заготовке и измерение данных о фактическом расстоянии удаленности одного элемента отображения измерителя удаленности по отношению к заготовке. На основании данных о фактическом расстоянии удаленности определяют, удовлетворяет ли заготовка предварительно установленным критериям контроля. Повышается точность и надежность контроля. 2 н. и 13 з.п. ф-лы, 3 ил.
Наверх