Очистка загрязнённого внесением оксидов серы растворителя на основе амина



Очистка загрязнённого внесением оксидов серы растворителя на основе амина
Очистка загрязнённого внесением оксидов серы растворителя на основе амина
Очистка загрязнённого внесением оксидов серы растворителя на основе амина

 


Владельцы патента RU 2559493:

СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE)

Изобретение относится к способу и устройству для очистки загрязненного внесением диоксидов серы растворителя на основе амина. В загрязненный растворитель вводят соединение калия и окислитель, в результате чего сульфит окисляется в сульфат, при этом окислитель и соединение калия смешивают между собой перед введением в раствор соли аминокислоты. Загрязненный растворитель охлаждают до температуры Т, в результате чего снижается растворимость сульфата калия по сравнению с его имеющейся концентрацией. Сульфат калия отфильтровывают и получают очищенный растворитель. Изобретение позволяет обеспечивать удаление сульфата из раствора. 2 н. и 13 з.п. ф-лы, 3 ил.

 

На электростанциях на ископаемом топливе, генерирующих электроэнергию, при сжигании ископаемого топлива образуется содержащий диоксид углерода дымовой газ. В целях исключения или снижения выбросов диоксида углерода необходимо отделять его от дымовых газов. Для отделения диоксида углерода от газовой смеси широко известны разные методы. В частности, для отделения диоксида углерода от дымового газа после процесса сжигания применяется метод абсорбции-дезорбции. При этом в промышленном масштабе диоксид углерода вымывают из дымового газа посредством абсорбента.

Распространенные химические абсорбенты, как, например, моноэтаноламин, обладают хорошей селективностью и большой емкостью по отношению к диоксиду углерода CO2. Однако аминные растворы в качестве промывочного средства необратимо связывают также кислые компоненты дымового газа, такие как диоксид азота NO2 и диоксид серы SO2 или триоксид серы SO3 в виде сульфита и сульфата, и во время процесса существенно снижают эффективность промывочного средства. Образование сульфита и сульфата происходит в щелочных условиях, присутствующих в растворителях на основе амина, по следующим уравнениям реакции:

S O 2 + 2 O H S O 3 2 + H 2 O

S O 3 + 2 O H S O 4 2 + H 2 O .

Для предупреждения проблемы, вызванной концентрацией сульфита и сульфата, для аминных растворов присутствует возможность очистки дистилляцией. Для этого аминный раствор нагревают, происходит испарение летучих аминов, которые регенерируют конденсацией и в результате отделяют высококипящие примеси.

Правда, заметное давление пара растворенных аминов может быть использовано, с одной стороны, для дистилляционной очистки, но с другой стороны, во время собственно процесса очистки он приводит вследствие контакта с горячим дымовым газом к тому, что амины в малых количествах выбрасываются в окружающую среду вместе с очищенным дымовым газом, что может вызывать нежелательное загрязнение воздуха. Дистилляционные способы очистки требуют, кроме того, больших затрат энергии и на один моль отделенного сульфита или сульфата приходятся два моля активного вещества в остатке, который дополнительно требуется очищать или удалять.

Поэтому, например, соли аминокислоты особенно пригодны в этом отношении для промывки дымовых газов с содержанием CO2, поскольку растворы солей аминокислоты не создают замеряемого давления пара и поэтому не могут уноситься вместе с дымовым газом. Правда, по этой причине при использовании растворов солей аминокислоты невозможна дистилляционная очистка. Для предупреждения блокирования солей аминокислоты кислыми компонентами дымового газа требуется поэтому очень затратная очистка дымового газа (Polishing), обеспечивающая по возможности полное удаление оксидов серы SOx из дымового газа. Эти способы являются очень затратными в части капитальных и производственных вложений.

Следовательно, возникла техническая необходимость в разработке способа очистки загрязненного внесением оксидов серы растворителя на основе амина, при котором активные промывочные вещества практически полностью сохраняются в растворе и который позволяет получить существенно очищенный от сульфита и сульфата растворитель при значительно меньшем расходе энергии и минимальных остатках по сравнению с дистилляционными способами очистки.

Начало этому решению было положено в обоих источниках информации US 2004/0253159 A1 и US 4,389,393. В них описано осаждение сульфата с использованием температуры, причем сульфат получают из водного раствора амина путем добавки гидроксидов или карбонатов при снижении температуры.

Однако недостатком такого способа является то, что в осадок выпадает только сульфат. Для других оксидов серы этот способ недействителен. Именно при промывке дымового газа в растворе амина в качестве промывочного раствора образуются многие другие оксиды серы, которые также подлежат удалению. В частности, это касается широко распространенного диоксида серы, присутствующего в растворе в виде сульфита.

Следовательно задачей изобретения является создание способа очистки загрязненного внесением оксидов серы растворителя на основе амина, в котором исключаются недостатки, присущие уровню техники. В частности, раствор согласно изобретению должен обеспечивать удаление также сульфита из раствора.

Эта задача изобретения решается посредством признаков способа по пункту 1 формулы изобретения. При этом в загрязненный растворитель вносится прежде всего соединение калия, загрязненный растворитель охлаждают до температуры T, в результате снижается растворимость сульфата калия по сравнению с его имеющейся концентрацией. Сульфат калия отфильтровывают и получают очищенный растворитель. Затем в загрязненный растворитель вводят окислитель, в результате чего сульфит окисляется в сульфат.

Способ предназначен, в частности, для очистки растворителя, который загрязнен преимущественно внесением оксидов серы и применяется для промывки дымового газа с содержанием CO2 при проведении процесса отделения диоксида углерода. При этом подобные процессы отделения диоксида углерода CO2 являются неотъемлемой частью очистки дымового газа на электростанциях на ископаемом топливе.

При этом в основе изобретения лежит, в частности, замысел, что загрязненный сульфитом и сульфатом растворитель можно очищать выборочной кристаллизацией.

В способе согласно изобретению сульфат осаждают путем охлаждения растворителя и добавки соединения калия в качестве сульфата калия, при этом концентрация сульфата калия доводится до показателей, превышающих его растворимость. На следующей или параллельной операции сульфат калия отфильтровывают и получают очищенный растворитель.

При этом в изобретении используется низкая растворимость сульфата калия в растворителе на основе амина, которая обеспечивает отделение сульфата калия в результате снижения температуры. При этом предпочтительно загрязненный растворитель охлаждается или приводится к температуре T от 5 до 45°C.

Наряду с сульфатом растворитель загрязнен также сульфитом, который по сравнению с сульфатом является довольно хорошо растворимым, но нелегко выкристаллизовывается со снижением температуры в требуемом диапазоне. Поэтому усовершенствованным вариантом развития способа предусмотрено, чтобы в загрязненный растворитель вводился окислитель и происходило окисление сульфита в сульфат.

В результате добавки соединения калия и окислителя могут образовываться градиенты распределения и местные сверхконцентрации, приводящие из-за слишком высокой концентрации соединения калия к выпадению в осадок или дефектности растворителя вследствие слишком высокой концентрации окислителя. Согласно оптимальному варианту выполнения окислитель и соединение калия смешивают друг с другом перед введением в загрязненный растворитель. В результате смешивания перед введением в растворитель должно достигаться быстрое однородное распределение.

Предпочтительно, чтобы в качестве окислителя использовались перекись водорода и озон. В принципе может применяться и кислород. Однако перекись водорода или озон обладают тем преимуществом, что им присущи достаточная активность и достаточный окислительный потенциал для окисления сульфита, не вызывая дефектности растворителя.

Отдельным вариантом выполнения способа предусмотрено, чтобы количество введенного соединения калия было эквимолярным по отношению к количеству кристаллизованного сульфата калия. В результате процесс кристаллизации будет постоянно обеспечиваться достаточным количеством калия. Также может оказаться эффективной сверхстехиометрическое количество добавляемого соединения калия для создания буфера для процесса кристаллизации.

Согласно предпочтительному варианту развития способа обеспечивают теплообмен между очищенным и загрязненным растворителями, в результате чего загрязненный растворитель охлаждается очищенным растворителем. Это обеспечивает рекуперацию тепла.

Способ может применяться самостоятельно, причем загрязненный растворитель поступает из резервуаров, очищенный растворитель приготавливают также в резервуарах. Предпочтительно способ может быть интегрирован в работу электростанции и применяться для процесса отделения диоксида углерода, благодаря чему загрязненный растворитель может непосредственно выводиться из контура процесса отделения диоксида углерода.

Способ эффективно применяется для очистки растворов солей аминокислоты, а также аминных растворов. Поскольку в отношении растворов солей аминокислоты не может применяться дистилляционная очистка, то благодаря способу впервые обеспечивается возможность достижения эффективного и энергетически приемлемого решения.

Наряду с энергетическими преимуществами при очистке аминных растворов обеспечиваются дополнительные преимущества, в частности при тонкой очистке. С помощью дистилляции возможно выделение только части аминов из растворов и, следовательно, примесей. Значительная часть остается в находящемся в отстойнике растворе. Благодаря способу согласно изобретению этот раствор в отстойнике может дополнительно очищаться, в результате чего регенерируется значительная часть аминов.

Ниже подробнее поясняются примеры выполнения изобретения с помощью приложенных схематических чертежей, на которых изображено:

фиг.1 - способ очистки загрязненного щелочного раствора калия и солей аминокислоты, известный из уровня техники,

фиг.2 - вариант развития показанного на фиг.1 способа с дополнительным процессом смешения, согласно изобретению,

фиг.3 - устройство для очистки загрязненного абсорбента для диоксида углерода.

На фиг.1 показан способ согласно изобретению, включающий три последовательно проводимых технологических операции.

На первой технологической операции 20 подводится и охлаждается раствор 1 калия и солей аминокислоты, загрязненный сульфитом и сульфатом. В результате охлаждения снижается растворимость сульфата калия ниже его имеющейся концентрации, вследствие чего происходит выкристаллизовывание сульфата калия и образуется первая суспензия 24 из загрязненного растворителя 1 и сульфата калия, подаваемая на вторую технологическую операцию 21.

На второй технологической операции 21 в загрязненный растворитель 1 вводится соединение 5 калия, которым компенсируется потеря калия в растворителе, вызванная кристаллизацией сульфата калия. Образующаяся на второй технологической операции суспензия 25 подается на третью технологическую операцию 22.

На третьей технологической операции 22 фильтруют суспензию 25, отделяют сульфат 6 калия и получают очищенный растворитель 3.

На фиг.2 представлен вариант развития изображенного на фиг.1 способа. Дополнительно к способу на фиг.1 на вторую технологическую операцию 21 подается наряду с соединением 5 калия также окислитель 2. Для этого предусмотрен смесительный процесс 23, в который вводятся окислитель 2 и соединение 5 калия, перемешиваются и затем в смешанном состоянии подаются на вторую технологическую операцию 21.

На фиг.3 показано устройство 9 для очистки загрязненного растворителя 1 для диоксида углерода. Устройство 9 содержит в основном реактор 10 для кристаллизации, фильтр 11, холодильник 12 и теплообменник 13.

Реактор 10 для кристаллизации содержит подводящий трубопровод 7 для подачи загрязненного растворителя 1. В подводящий трубопровод врезаны теплообменник 13 и холодильник 12. К реактору 10 для кристаллизации дополнительно подключены подводящий трубопровод 14 для подачи соединения 5 калия и подводящий трубопровод 15 для подачи окислителя 2. К подающему трубопроводу 14 подключен первый регулирующий насос 16, ко второму подводящему трубопроводу 15 - второй регулирующий насос 17. Подводящий трубопровод 15 является при этом факультативным.

На стороне выпуска реактор 10 для кристаллизации подключен к фильтру 11 через трубопровод 8 для подачи суспензии. К трубопроводу 8 для подачи суспензии подключен нагнетательный насос 18.

Для выпуска кристаллического твердого вещества емкость 19 сообщена с фильтром. Для выпуска очищенного растворителя 3 к фильтру 11 подключен трубопровод 26, сообщенный с теплообменником 13. Через теплообменник 13 тепло от загрязненного растворителя 1 передается очищенному растворителю 3.

Наличие теплообменника 13 является необязательным и, в частности, эффективно при непосредственном встраивании устройства 9 в устройство для отделения диоксида углерода.

Хотя изобретение было подробно проиллюстрировано и описано с помощью предпочтительного примера своего выполнения, оно не ограничивается раскрытым примером, и специалист может сделать отсюда выводы относительно других вариантов, не выходя за рамки объема защиты изобретения.

1. Способ очистки загрязненного внесением оксидов серы растворителя (1) на основе амина, в котором
- в загрязненный растворитель (1) вводят соединение калия и охлаждают загрязненный растворитель (1) до температуры Т, в результате чего снижается растворимость сульфата калия по сравнению с его имеющейся концентрацией,
- отфильтровывают сульфат калия и получают очищенный растворитель (3), отличающийся тем, что в загрязненный растворитель (1) вводят окислитель (2), в результате чего сульфит окисляется в сульфат, при этом окислитель (2) и соединение калия смешивают между собой перед введением в раствор соли аминокислоты.

2. Способ по п. 1, в котором в качестве окислителя (2) применяют перекись водорода или озон.

3. Способ по п. 1 или 2, в котором количество подведенного соединения калия эквимолярно количеству кристаллизованного сульфата калия.

4. Способ по п. 1, в котором температура Т загрязненного растворителя (1) после охлаждения составляет от 5 до 45°С.

5. Способ по п. 1, в котором создают теплообмен между очищенным растворителем (3) и неочищенным растворителем (1), в результате чего загрязненный растворитель (1) охлаждается очищенным растворителем (3).

6. Способ по любому из пп. 1, 2, 4, 5, в котором загрязненный растворитель (1) образуется при проведении процесса (4) отделения диоксида углерода на электростанции на ископаемом топливе.

7. Способ по п. 6, в котором загрязненный растворитель (1), образовавшийся в процессе отделения диоксида углерода, очищают периодически.

8. Способ по любому из пп. 1, 2, 4, 5, 7, в котором загрязненным растворителем (1) является раствор солей аминокислоты.

9. Способ по любому из пп. 1, 2, 4, 5, 7, в котором загрязненным растворителем (1) является один или несколько аминов.

10. Способ по любому из пп. 1, 2, 4, 5, 7, в котором соединением калия являются гидроксид калия KOH, водородкарбонат калия или карбонат калия.

11. Устройство (9) для очистки загрязненного оксидом серы растворителя (1) на основе амина, включающее в себя холодильник (12), реактор (10) для кристаллизации и фильтр (11), при этом в реактор (10) для кристаллизации через холодильник (12) подается загрязненный растворитель (1) и соединение калия, причем из реактора (10) для кристаллизации выпускается кристаллизованный продукт в фильтр (11) и с помощью фильтра очищенный растворитель (3) отделяется от кристаллизованного продукта.

12. Устройство по п. 11, отличающееся тем, что в реактор (10) для кристаллизации дополнительно вводится окислитель, а в реакторе (10) для кристаллизации предусмотрена статическая мешалка, с помощью которой смешиваются окислитель и соединение калия.

13. Устройство (9) по п. 11 или 12, отличающееся тем, что оно является составной частью устройства для отделения диоксида углерода, применяемого на электростанции на ископаемом топливе, и что устройство предусмотрено для очистки загрязненного растворителя (1), образующегося в устройстве для отделения диоксида углерода.

14. Устройство по п. 11 или 12, отличающееся тем, что предусмотрен теплообменник, соединенный первично при подаче с фильтром (11) и первично при отводе с устройством для отделения диоксида углерода, а вторично при подаче с устройством для отделения диоксида углерода и вторично при отводе с реактором (10) для кристаллизации.

15. Устройство по п. 13, отличающееся тем, что предусмотрен теплообменник, соединенный первично при подаче с фильтром (11) и первично при отводе с устройством для отделения диоксида углерода, а вторично при подаче с устройством для отделения диоксида углерода и вторично при отводе с реактором (10) для кристаллизации.



 

Похожие патенты:

Изобретение относится к способу обработки потока жидких углеводородов, содержащего воду, в котором поток жидких углеводородов вводится в первый сепаратор, отделяющий по меньшей мере свободную воду из указанного потока жидких углеводородов.

Изобретение относится к способу запуска процесса очистительного выделения кристаллов акриловой кислоты из суспензии S ее кристаллов в маточнике с применением гидравлической промывочной колонны, имеющей контур циркуляции расплава кристаллов, включая пространство плавки кристаллов, а также рабочее и распределительное пространства, которые отделены друг от друга дном со сквозными проходами, соединяющими оба пространства, при реализации которого для первоначального формирования слоя кристаллов контур циркуляции расплава кристаллов и по меньшей мере частично рабочее пространство сначала заполняют содержащей акриловую кислоту стартовой жидкостью, температура кристаллообразования акриловой кислоты в которой ниже или равна повышенной на 15°C температуре суспензии S, а затем продолжают заполнение промывочной колонны суспензией S и, необязательно, регуляторным маточником, пока разность между давлением в контуре циркуляции расплава кристаллов и давлением в распределительном пространстве внезапно не упадет, причем вплоть до этого момента среднее арифметическое значение протекающего в совокупности через фильтры фильтровальных труб промывочной колонны потока регуляторного маточника относительно площади всех фильтров составляет не более 80 м3/(м2·ч).

Изобретение относится к химической промышленности. Способ очистки и выделения химического соединения из суспензии его кристаллов в маточном растворе включает транспортировку слоя кристаллов (5) сверху вниз в промывочной колонне.

Изобретение относится к технологиям создания новых материалов и предназначено для использования в области технологии кристаллических и стеклокристаллических материалов.

Изобретение относится к способу формирования микрочастиц. Заявленный способ включает обеспечение первого раствора, включающего анион, и обеспечение второго раствора, включающего катион, смешивание указанных первого и второго растворов в присутствии первого соединения, имеющего молекулярную массу по меньшей мере 20 кДа, для формирования пористых матриц.

Изобретение относится к вариантам способа разделения. Один из вариантов включает выделение пара-ксилола и молекулярного кислорода из суспензии, содержащей пара-ксилол и другие изомеры ксилола, при котором на стадии разделения устанавливают давление, которое на 0.5-30 psi выше атмосферного давления.
Изобретение относится к установке для кристаллизации адипиновой кислоты, содержащей резервуар для кристаллизации, снабженный средствами для перемешивания, средствами для охлаждения и/или концентрирования раствора адипиновой кислоты, где по меньшей мере часть стенок резервуара для кристаллизации и/или средств для охлаждения и/или концентрирования, находящихся в контакте с раствором адипиновой кислоты, выполнена из материала, выбранного из аустенитных нержавеющих сталей типа AISI 310L в соответствии с номенклатурой AISI (USA) или XlCrNi25-21 (1.4335) в соответствии с европейской номенклатурой.

Изобретение относится к способу омыления сложных эфиров и к способу утилизации натриевых солей в производстве капролактама, а также к установкам для их осуществления.

Изобретение относится к способу получения газовых гидратов, например гидратов метана, пропана и двуокиси углерода, с целью хранения и транспорта газа в газогидратном состоянии.

Изобретение относится к массообмену и может быть использовано в массообменной аппаратуре при проведении различных химических, технологических, фармацевтических и других процессов.

Изобретение относится к способу обработки серосодержащего газа и к катализатору гидрирования, используемому для этого. Описан катализатор гидрирования, который включает в качестве активного компонента оксид никеля, оксид кобальта, а также оксид молибдена или оксид вольфрама.

Изобретение относится к установкам сепарации кислых компонентов. Установка для сепарирования кислых компонентов, пыли и смолы из горячих газов установок газификации, содержащая резервуар (8), в котором находятся циклонный сепаратор (9) и расположенная над ним в направлении силы тяжести фильтровальная камера (10), которая оснащена фильтровальными свечами (17) и в которую выведена центральная труба (20) циклонного сепаратора (9), отличающаяся тем, что между циклонным сепаратором (9) и фильтровальной камерой расположена разделительная стенка (19), выполненная в виде воронкообразного дна, через которое проходит центральная труба (20) циклонного сепаратора (9), причем в центральной трубе (20) расположена меньшая по диаметру спускная труба (21) для отвода тонкой пыли, снабженная подводящими элементами (24) для перемещения тонкой пыли с воронкообразного дна (19) в спускную трубу (21) и подведенная к сборнику (23) пыли посредством снабженного шлюзами узла (22) выгрузки пыли.

Настоящее изобретение относится к пластине, выполненной с возможностью поддержания слоя жидкого абсорбента в устройстве для очистки газа, имеющей верхнюю и нижнюю стороны в рабочем положении в устройстве.

Изобретение относится к отделению диоксида серы и твердых частиц от дымовых газов. Настоящее изобретение характеризуется тем, что использует несколько трубок Вентури, выполненных в пластине, содержащей верхнюю поверхность, рядом друг с другом, и газ на первой стадии переносят через трубки Вентури в направлении, противоположном направлению силы тяжести, и на второй стадии барботируют через жидкий слой абсорбента, расположенный на верхней поверхности.

Изобретение относится к способу добавления кислорода к жидкому абсорбенту, содержащему по меньшей мере одно соединение, способное вступать в реакцию с кислородом, в устройстве (1) для очистки газа.
Изобретение применяется на морских судах. Комплексная система выполнена в трех вариантах.

Изобретение относится к способу понижения содержания углерода в золе из топки, включающему операцию нагревания в топке ископаемого топлива в присутствии присадки - улучшителя топлива, в составе которой преобладают оксид железа и диоксид кремния.

Изобретение относится к распылительному сушильному абсорберу для удаления газообразных загрязняющих веществ из горячего технологического газа. Распылительный сушильный абсорбер содержит по меньшей мере два диспергатора.

Изобретение относится к способу очистки дымового газа, насыщенного диоксидом углерода, а также к котельной установке. Котельная установка для реализации способа очистки дымового газа, насыщенного диоксидом углерода, состоит из котла для сжигания топлива в присутствии газа, содержащего кислород, и системы газоочистки, обеспечивающей удаление части примесей из дымового газа, насыщенного диоксидом углерода, образованного в котле, а также устройства сжатия, обеспечивающего сжатие части дымового газа, насыщенного диоксидом углерода, из которого была удалена по меньшей мере часть примесей, и канала подачи диоксида углерода, обеспечивающего подачу по части сжатой части дымового газа, насыщенного диоксидом углерода, из которого была удалена часть примесей в одно устройство газоочистки для использования в нем в качестве рабочего газа.
Наверх