Трибометр

Изобретение относится к испытательным и обкаточным стендам. Трибометр состоит из предметного стола, ограничивающей рамки, заполняемой пробой насыпного груза, навески и тягового органа для предметного стола с прибором для определения его тягового усилия. Ограничивающая рамка с помощью опорных катков, закрепленных на боковых кронштейнах, опирается на продольные горизонтальные направляющие, закрепленные на стойках, нижние части которых закреплены на боковых кромках предметного стола. Нижние кромки ограничивающей рамки размещены с зазором над верхней поверхностью размещаемого на предметном столе слоя сыпучего груза. Технический результат - повышение точности измеряемых физико-механических показателей сыпучего груза, влияющих на выбор параметров проектируемых и выбираемых типов транспортных машин. 1 ил.

 

Изобретение относится к устройству для определения физико-механических свойств сыпучего груза, транспортируемого горными транспортными машинами различного типа.

Известен принятый за прототип трибометр, состоящий из предметного стола, ограничивающей рамки, заполняемой пробой насыпного груза, навески и тягового органа для предметного стола с прибором для определения его тягового усилия (Ю.Д. Тарасов, Металлургические подъемно-транспортные машины. СПБ, 2000 г., с. 7-8, рис. 1.).

Однако при использовании известного трибометра не совсем точно определяются такие показатели сыпучих грузов, влияющие на выбор параметров транспортных машин, как угол внутреннего трения, угол внутреннего сдвига, коэффициент трения сыпучего груза о рабочую поверхность транспортной машины, за счет упора ограничивающей рамки на расположенный на предметном столе сыпучий груз или на поверхность пластины из материала рабочей поверхности транспортной машины, размещенной на предметной рамке при определении коэффициента трения сыпучего груза о рабочую поверхность транспортной машины.

Задачей изобретения, реализуемой усовершенствованным трибометром, является повышение точности измеряемых физико-механических показателей сыпучего груза и его коэффициента трения о рабочую поверхность транспортной машины.

Технический результат достигается за счет того, что в трибометре, состоящем из предметного стола, ограничивающей рамки, заполняемой пробой насыпного груза, навески и тягового органа для ограничивающей рамки с прибором для определения тягового усилия, ограничивающая рамка с помощью опорных катков, закрепленных на боковых кронштейнах, опирается на продольные горизонтальные направляющие, закрепленные на стойках, нижние части которых закреплены на боковых кромках предметного стола, а нижние кромки ограничивающей рамки размещены с зазором над верхней поверхностью размещаемого на предметном столе слоя сыпучего груза.

Трибометр представлен на фиг. 1 - продольный разрез, на фиг. 2 - разрез А-А по фиг. 1.

Трибометр состоит из предметного стола 1, ограничивающей рамки 2, заполняемой пробой насыпного груза 3, навески 4 и тягового органа 5 для предметного стола 1 с прибором (не показан) для определения его тягового усилия Т при смещении ограничивающей рамки 2 с насыпным грузом 3. Ограничивающая рамка 2 с помощью опорных катков 6, закрепленных на боковых кронштейнах 7, опирается на продольные горизонтальные направляющие 8, закрепленные на стойках 9, нижние части которых закреплены на боковых кромках предметного стола 1. При этом нижние кромки 10 ограничивающей рамки 2 размещены с зазором 11 над верхней поверхностью размещаемого на предметном столе 1 слоя сыпучего груза 12.

При смещении ограничивающей рамки 2 с размещенным в ней сыпучим грузом 3 по продольным направляющим 8 относительно размещенного на предметном столе 1 слоя 12 сыпучего груза или материала рабочего органа транспортной машины (не показан), при определении величины коэффициента трения при взаимодействии с ними сыпучего груза 3, нижние кромки 10 ограничивающей рамки 2 не взаимодействуют с верхней поверхностью насыпного груза 12 за счет размещения нижних кромок 10 ограничивающей рамки 2 с зазором 11 над верхней поверхностью размещенного на предметном столе 1 сыпучего груза 12 или над поверхностью материала транспортной машины, размещенного на поверхности предметного стола 1. Поэтому отличительные признаки изобретения обеспечивают повышение точности измеряемых физико-механических показателей сыпучего груза, влияющих на выбор параметров проектируемых и выбираемых типов транспортных машин.

Трибометр, состоящий из предметного стола, ограничивающей рамки, заполняемой пробой насыпного груза, навески и тягового органа для предметного стола с прибором для определения его тягового усилия, отличающийся тем, что ограничивающая рамка с помощью опорных катков, закрепленных на боковых кронштейнах, опирается на продольные горизонтальные направляющие, закрепленные на стойках, нижние части которых закреплены на боковых кромках предметного стола, а нижние кромки ограничивающей рамки размещены с зазором над верхней поверхностью размещаемого на предметном столе слоя сыпучего груза.



 

Похожие патенты:

Техническое решение относится к устройствам для измерения величины износа и температуры изделий при трении. Устройство для измерения величины износа и температуры изделия при трении содержит последовательно соединенные источник лазерного излучения, светоделитель и как минимум один измерительный волоконно-оптический световод, второй конец которого размещен в изделии на глубине Н, равной или меньшей расстояния R до трущейся поверхности.

Изобретение относится к машиностроению и может быть использовано для изучения процесса работы поверхностей деталей машин. Согласно заявленному способу определения длительности этапов эксплуатации циклически нагруженных поверхностей деталей машин регистрируют изменения во времени параметра состояния контактирующих поверхностей деталей, нагруженных в соответствии с реальными условиями эксплуатации.

Изобретение относится к испытаниям материалов на фреттинг-усталость. Способ испытания материалов на фреттинг-усталость заключается в том, что испытуемый цилиндрический образец, в виде стержня переменного сечения с напрессованной на него втулкой контробразца, располагается в машине для усталостных испытаний типа НУ.

Изобретение относится к испытательной технике, а именно к стендам для испытаний резьбовых соединений, и может быть использовано для исследований износа резьбовых соединений труб нефтяного сортамента при свинчивании-развинчивании в коррозионной среде.

Изобретение относится к области сельского хозяйства и может быть использовано для исследования физико-механических свойств корнеклубнеплодов. Устройство для исследования физико-механических свойств корнеклубнеплодов содержит раму (1) с прикрепленными к ней электродвигателем (2), на валу которого установлен сменный диск (3) с исследуемой поверхностью, и направляющей (4), на которой установлена подвижная тележка (5).

Изобретение относится к испытательной технике, в частности к машинам для проведения испытаний на устойчивость к колееобразованию дорожных покрытий, и может применяться в соответствующих областях народного хозяйства.

Испытательный цилиндр и способ испытания сверхтвердого компонента. Испытательный цилиндр включает в себя первый конец, второй конец и боковую стенку, продолжающуюся от первого конца до второго конца.

Изобретение относится к области исследования прочностных свойств материалов и может быть использовано при испытании сверхтвердых компонентов на сопротивление абразивному износу и/или стойкость к ударной нагрузке.

Изобретение относится к области исследования прочностных свойств материалов и может быть использовано для испытания сверхтвердого компонента на сопротивление абразивному износу и/или стойкость к ударной нагрузке.

Предусмотрены стачиваемый цилиндр и способ изготовления данного стачиваемого цилиндра. Стачиваемый цилиндр включает в себя первый конец, второй конец и боковую стенку, проходящую от первого конца ко второму концу.

Изобретение относится к области «Физики материального контактного взаимодействия» жесткого плоского тела с пористой материальной средой и предназначено для определения ее параметров деформируемости и прочности.

Изобретение относится к области инженерных изысканий и предназначено, в частности, для определения распределения реактивных нормальных напряжений грунтовых оснований по площади приложения нагрузки, необходимых для расчета внутренних усилий в теле фундаментов, и может быть использовано для определения деформационных характеристик грунтов.

Изобретение относится к испытательной технике, к методам определения механических свойств материалов. Сущность: испытывают одновременно два объекта испытаний.

Изобретение относится к области исследований и анализа физических свойств изделий и материалов и может быть использовано преимущественно для определения физических свойств текстильных изделий путем приложения сжимающих нагрузок.

Изобретение относится к испытательной технике и, в частности, к определению коэффициента сцепления транспортного средства с дорожным покрытием. Метод заключается в измерении параметров дорожного покрытия непосредственно на транспортном средстве с учетом его параметров.

Изобретение относится к области методов контроля качества сталей и сплавов. Технический результат - повышение точности измерений.

Использование: для изучения первичной рекристаллизации. Сущность: заключается в том, что осуществляют нагартовку образца и повышение его температуры до температуры прохождения рекристаллизации, при этом к образцу прикладывают постоянную нагрузку, приводящую к упругой деформации, а при повышении температуры фиксируют изменение модуля упругости, находят на зависимости изменения модуля упругости в функции температуры зону повышения градиента модуля упругости, продолжают линию, предшествующую началу зоны смены градиентов модуля упругости, продолжают линию после завершения зоны смены градиентов модуля упругости до пересечения с линией, предшествующей зоне смены градиентов модуля упругости, и идентифицируют абсциссу этой точки с температурой начала рекристаллизации.

Использование: для лазерной вибродефектоскопии крупногабаритных оболочек из полимерных многослойных клееных материалов. Сущность: заключается в том, что устройство лазерного вибропреобразователя содержит корпус с размещенным в нем оптоволокном с объективом лазерного излучения, соединенным с преобразователем, при этом преобразователь выполнен в виде подпружиненного бойка, взаимодействующего одним концом с оптоволокном, установленным в корпусе с возможностью качания, а другим с исследуемым объектом, при этом на подпружиненном бойке жестко закреплена упругая пластина, конец которой жестко связан с корпусом, а подпружиненный боек имеет паз под выступы ротора, установленного в корпусе, при этом оптоволокно оптически связано с отражающим зеркалом, которое также взаимодействует с чувствительным элементом, электрически связанным с вычислительной машиной, при этом сам корпус связан с динамометром посредством пружины сжатия и с устройством перемещения, взаимодействующие между собой с помощью направляющей, при этом в корпусе установлены шаровые опоры, перемещающиеся по исследуемому объекту, обеспечивающие зазор.

Изобретение относится к области анализа материалов, преимущественно смазочных масел, в частности для оценки влияния масел на поверхности деталей двигателей внутреннего сгорания в зонах высоких температур, и может быть использовано в химической и нефтехимической промышленности для оценки моющих свойств масел при их допуске к производству и применению в технике.

Изобретение относится к нанотехнологическому оборудованию и предназначено для идентификации материалов в насыпном виде и экспресс-контроля микромеханических, реологических и микро-электромеханических характеристик продукции, их стабильности на разных стадиях производства продукта и отклонений от эталонных образцов.

Использование: механические испытания материалов, в частности определение динамического коэффициента внешнего трения. Для определения динамического коэффициента внешнего трения используются два образца, нижний из которых закрепляют на платформе, способной поворачиваться относительно горизонтальной оси подвески в вертикальной плоскости. Плоскую рабочую поверхность платформы располагают параллельно оси подвески и перпендикулярно плоскости, проходящей через ось подвески и геометрический центр рабочей поверхности платформы. Верхний образец свободно устанавливают на поверхности нижнего, платформу с образцами отклоняют из нижнего положения на некоторый угол θ и отпускают для свободного движения по закону физического маятника. На пути платформы помещают упор, останавливающий ее вместе с нижним образцом в нижнем горизонтальном положении. После измерения пути S, по инерции пройденного верхним образцом на поверхности нижнего, определяют динамический коэффициент внешнего трения по формуле. Техническим результатом является возможность определения динамического коэффициента внешнего трения при ограниченных габаритах образцов одинаковой формы без измерения сил трения путем использования принципа равенства между кинетической энергией образца, движущегося с определенной начальной скоростью, и работой силы трения, совершаемой в процессе относительного перемещения образца до полной его остановки. 1 ил.
Наверх