Способ определения местоположения объекта навигации

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации. Достигаемый технический результат - повышение точности определения местоположения объекта навигации с обеспечением помехозащищенности. Способ основан на излучении объектом навигации высокочастотного гармонического сигнала, приеме его в нескольких опорных радионавигационных точках с известными координатами, при этом с объекта навигации дополнительно излучают второй высокочастотный гармонический сигнал, отличающийся по частоте от первого на заданную величину, в каждой из опорных радионавигационных точек принимают этот сигнал, наряду с первым, формируют из принятых сигналов сигналы разностной частоты, передают сформированные сигналы в центральный приемный пункт, где измеряют разность фаз сигналов разностной частоты, полученных из разных опорных точек, а результаты этих измерений с учетом взаимного расположения центрального приемного пункта и опорных радионавигационных точек пересчитывают в координаты объекта навигации. 2 ил.

 

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации.

Известен защищенный патентом РФ №2204145, кл. G01S 3/46, 2003, способ определения координат источника излучения, основанный на приеме его сигнала тремя антеннами, образующими ортогональные базы.

Такое действие, как определение направления на источник излучения, является существенным признаком и заявляемого способа.

Известен также защищенный патентом РФ №2013785, кл. G01S 13/00, 1994, способ определения местоположения подвижных объектов, заключающийся в излучении кодированных сигналов передатчиками объектов, приеме сигналов в N пространственно разнесенных пунктах с последующей ретрансляцией их на центральный приемный пункт и измерении задержек между принятыми сигналами.

Ретрансляция сигналов на центральный приемный пункт является существенным признаком и заявляемого способа.

Причиной, препятствующей достижению в этих аналогах, защищенных патентами РФ, технического результата, обеспечиваемого изобретением, является необходимость использования достаточно сложной системы единого времени.

Известен разностно-дальномерный способ определения местоположения мобильных объектов, заключающийся в поочередном излучении сетью опорных навигационных пунктов, расположенных в точках пространства с известными координатами, когерентных гармонических сигналов, их приеме на мобильном объекте, принятых от каждого опорного объекта, и вычислении по ним координат мобильного объекта [Бакулев П.А., Сосновский А.А. Радиолокационные и радионавигационные системы. - М.: Радио и связь, 1994, с. 211-214].

Измерение фазовых сдвигов сигналов и вычисление по ним координат мобильного объекта является существенным признаком и заявляемого способа.

Причиной, препятствующей достижению в этом аналоге технического результата, обеспечиваемого изобретением, является необходимость в использовании высокоточной шкалы единого времени на объекте навигации и сложность реализации при больших расстояниях между опорными радионавигационными точками и объектом навигации.

Наиболее близким по технической сущности к заявляемому (прототипом) является обращенный разностно-дальномерный способ определения координат [Кинкулькин И.Е., Рубцов В.Д., Фабрик М.А. Фазовый метод определения координат. - М.: Сов. радио, 1979, с. 10-11, с. 97-100].

Способ заключается в одновременном излучении объектом навигации и передатчиком, установленным в неподвижной точке с известными координатами, непрерывных гармонических высокочастотных сигналов и одновременном приеме указанных гармонических сигналов в нескольких опорных радионавигационных точках.

Такие действия, как излучение высокочастотных гармонических сигналов объектом навигации и прием излучаемых гармонических высокочастотных сигналов в опорных радионавигационных точках с известными координатами являются существенными признаками и заявляемого способа.

Причиной, препятствующей достижению в способе-прототипе технического результата, обеспечиваемого изобретением, является то обстоятельство, что координаты неподвижного передатчика всегда определяются с некоторой погрешностью, что приводит в конечном итоге к снижению точности измерения координат объекта навигации.

Еще одной причиной, препятствующей обеспечению в способе-прототипе технического результата, обеспечиваемого изобретением, является необходимость непрерывного излучения сигнала неподвижным передатчиком. Это ухудшает условия электромагнитной совместимости оборудования. Возникает необходимость одновременного приема и передачи двух сигналов с близкими частотами, что ухудшает условия обеспечения информационной безопасности оборудования и облегчает возможность подавления его работы потенциальным злоумышленником. Указанные обстоятельства существенно снижают помехозащищенность устройств, реализующих данный способ.

Технической задачей, на решение которой направлено изобретение, является повышение точности определения местоположения объекта навигации и помехозащищенности устройств, реализующих предлагаемый способ.

Для достижения указанного технического результата в известном способе определения местоположения объекта навигации, заключающемся в излучении объектом навигации высокочастотного гармонического сигнала, приеме его в нескольких опорных радионавигационных точках с известными координатами, с объекта навигации дополнительно излучают второй высокочастотный гармонический сигнал, отличающийся по частоте от первого на заданную величину, в каждой из указанных опорных радионавигационных точек принимают этот сигнал, как и первый, формируют из принятых сигналов сигналы разностной частоты, передают сформированные сигналы в центральный приемный пункт, где измеряют разность фаз сигналов разностной частоты, полученных из разных опорных точек, а результаты этих измерений с учетом взаимного расположения центрального приемного пункта и опорных точек пересчитывают в координаты объекта навигации.

Сущность изобретения поясняется чертежом, на котором приведены:

- на фиг. 1 - взаимное положение объекта навигации и трех опорных радионавигационных точек;

- на фиг. 2 - структура формирователя сигнала разностной частоты.

Способ реализуется с помощью трех опорных радионавигационных точек с известными координатами и объекта навигации.

Функционирование способа поясняется фиг. 1, на которой показаны мобильный объект навигации (МО), находящийся в точке с неизвестными координатами X и Y, и опорные радионавигационные точки ОРТ1, ОРТ2 и ОРТ3, расположенные в точках с известными координатами X1 и Y1, X2 и Y2 и X3 и Y3 соответственно. Там же показаны расстояния D1, D2, D3 между объектом навигации и опорными радионавигационными точками, а также направление N на север.

С помощью передатчика объекта навигации излучают в направлении точек ОРТ1, ОРТ2 и ОРТ3 сумму двух гармонических высокочастотных сигналов с частотами f0 и f1:

Эти сигналы имеют амплитуды A и начальные случайные фазы φ0 и φ1.

Эти сигналы принимаются в точках ОРТ1, ОРТ2 и ОРТ3 на расстояниях D1, D2 и D3 соответственно от объекта навигации:

где C=3·108 м/с - скорость распространения радиоволн в атмосфере.

В каждой из опорных радионавигационных точек ОРТ1, ОРТ2 и ОРТ3 формируют сигналы разностной частоты.

Структура формирователя сигналов разностной частоты приведена на фиг. 2. Он представляет собой последовательно включенные перемножитель и узкополосный низкочастотный полосовой фильтр.

В каждой из опорных радионавигационных точек сигнал представляющий собой сумму двух высокочастотных гармонических сигналов с частотами f0 и f1, поступает на оба входа перемножителя.

На выходе перемножителя формируется сумма постоянного напряжения и четырех гармонических сигналов с частотами 2f0, 2f1 и f0+f1 и разностной частотой fp=f0-f1 (частотой биений). Все эти гармонические сигналы, за исключением сигнала с частотой биений, подавляются фильтром.

Сигналы разностной частоты, формируемые в каждой из опорных радионавигационных точек имеют вид:

Нетрудно видеть, что сигналы, формируемые в каждой из опорных радионавигационных точек, различаются по фазам, которые определяются расстояниями D1, D2 и D3 соответственно. Эти сигналы передаются в центральный приемный пункт. В качестве такового может быть использована, например, одна из опорных радионавигационных точек. Примем для определенности, что территориально центральный приемный пункт находится в точке ОРТ2.

Таким образом, на центральном приемном пункте принимаются три следующих сигнала:

1) сигнал, поступивший из ОРТ1

Он отличается от сигнала амплитудой и дополнительным фазовым сдвигом который обусловлен прохождением расстояния R21, разделяющего ОРТ1 и центральный приемный пункт (в рассматриваемом случае точку ОРТ2).

Этот сигнал можно представить в следующем виде:

где

2) сигнал, непосредственно принятый в точке ОРТ2 (центральном приемном пункте)

В данном случае A222, а дополнительный фазовый сдвиг отсутствует, поскольку расстояние между точкой ОРТ2 и центральным приемным пунктом равно нулю.

Этот сигнал также можно представить в виде

где

3) сигнал, поступивший из ОРТ3

Этот сигнал также можно записать в виде:

где Исправить в этой формуле индекс: было а надо !!!

Найдем разность фаз сигналов и и разность фаз сигналов и

Из этих выражений следует, что в этих разностях отсутствуют случайные фазовые сдвиги φ0 и φ1.

Исключив из последних выражений для Δψ21 и Δψ23 известные фазовые сдвиги и получим окончательные выражения для расчета неизвестных координат объекта навигации разности Δφ21 фаз сигналов разностной частоты, сформированных второй и первой опорными точками, а также для расчета разности Δφ23 фаз сигналов разностной частоты, сформированных второй и третьей опорными точками:

Таким образом, параметр Δφ21 представляет собой разность фаз сигналов разностной частоты между второй и первой опорными точками, а параметр Δφ23 - между второй и третьей опорными точками. Указанные разности фаз однозначно соответствуют разностям дальностей D2-D1 и D2-D3 соответственно.

Это позволяет сделать вывод, что по результатам измерений параметров Δφ21 и Δφ23 могут быть рассчитаны параметры D1, D2 и D3 - расстояния между объектом навигации и опорными радионавигационными точками, а следовательно и координаты объекта навигации.

Ниже приведен алгоритм пересчета результатов измерения разности фаз сигналов разностной частоты в координаты объекта навигации. Этот алгоритм применим для локальных навигационных систем, когда допустимо пренебречь сферичностью Земли, а скорость распространения радиоволн в зоне действия навигационной системы можно считать постоянной.

Исходными данными для расчета являются:

- разность Δφ21 фаз сигналов разностной частоты для первой и второй радионавигационных точек;

- разность Δφ23 фаз сигналов разностной частоты для третьей и второй радионавигационных точек.

Кроме того, в расчете используются следующие константы:

- значение первой высокой частоты f0;

- значение второй высокой частоты f1;

- скорость распространения радиоволн в атмосфере C;

- расстояние между первой и второй опорными радионавигационными точками R21;

- расстояние между третьей и второй опорными радионавигационными точками R23.

Порядок расчета следующий.

1. Вычисляются разности расстояний от объекта навигации до опорных точек

Здесь D1, D2, D3 - расстояния от объекта навигации (МО) до первой ОРТ1, второй ОРТ2 и третьей ОРТ3 опорных радионавигационных точек в соответствии с фиг. 1.

2. Нормируются величины ΔD21 и ΔD23 по длинам базовых линий и вычисляется параметр γ:

3. Определяются постоянные параметры:

где α21 - угол между направлением на север и базовой линией R21;

α23 - угол между направлением на север и базовой линией R23.

4. Составляется уравнение для расчета угла β23 между базовой линией R23 и направлением на объект навигации:

Это уравнение решается относительно угла β23 каким-либо из численных итерационных методов, например методом деления отрезка пополам.

5. Вычисляются координаты объекта навигации в местной прямоугольной системе координат, начало которой находится в точке ОРТ2:

При необходимости координаты объекта навигации пересчитываются в исходную прямоугольную систему координат;

Таким образом, в предлагаемом способе исключена присущая способу-прототипу составляющая погрешности определения координат неподвижного передатчика второго гармонического высокочастотного сигнала. В предлагаемом способе этот передатчик не используется, а используется тот же передатчик, что и для первого гармонического сигнала. Следовательно, точность измерения координат в предлагаемом способе существенно выше, чем в прототипе.

Кроме того, в предлагаемом способе отсутствует необходимость в непрерывном излучении второго гармонического сигнала, поскольку он может излучаться лишь в промежутки времени, достаточные для измерения разности фаз сигналов разностной частоты. Это время не превышает долей миллисекунды. Малое время излучения сигнала затрудняет его обнаружение, а следовательно, и подавление потенциальным противником. Это значительно повышает помехоустойчивость аппаратуры, реализующей способ, по сравнению с прототипом.

Техническая реализация способа не вызывает затруднений. В качестве примера реализации рассмотрим реализацию предлагаемого способа для построения локальной навигационной системы для управления движением транспорта в местах повышенной опасности, где требуется высокоточное определение местоположения высокоскоростных движущихся объектов: на критических участках трасс их движения (например, при приближении к местам переключения стрелок на железнодорожных путях, вблизи крутых закрытых поворотов автомобильных трасс). Для реализации системы может быть выбран диапазон частот 1200-1400 МГц. Зона действия локальной навигационной может составлять несколько сотен метров.

Формирование двух гармонических сигналов (основного и дополнительного) на объекте навигации можно реализовать на основе двух синтезаторов частоты, синхронизируемых общим опорным генератором и сумматора. В качестве синтезаторов частоты можно применить, например, микросхемы типа ADF4360-5, позволяющие сформировать два высокостабильных гармонических сигнала с разносом частот от (0,1-100) МГц, в качестве опорного генератора - термостабилизарованный кварцевый генератор типа NT3225SA.

Для приема гармонических сигналов в опорных навигационных точках можно использовать интегральные СВЧ-усилители - микросхемы типа SPF5122Z, для нормировки принятых сигналов по амплитуде логарифмический усилитель AD8309, в качестве узла формирования сигнала разностной частоты - смеситель на транзисторе BFP620, нагрузкой которого является фильтр нижних частот с частотой среза, равной разностной частоте. Передачу сигналов разностной частоты из опорных навигационных точек в центральный приемный пункт можно реализовать либо по проводным каналам (при небольших расстояниях между опорными навигационными точками и центральным приемным пунктом - порядка 100 м), либо по радиоканалам с разделением их по частоте (при более значительных расстояниях между опорными навигационными точками и центральным приемным пунктом).

Выделение разности фаз сигналов разностной частоты в центральном приемном пункте реализуется на основе фазового детектора (например, на микросхеме SYPD-1 или подобной).

Аналоговые сигналы с выхода фазового детектора подаются через аналого-цифровые преобразователи на входные порты микропроцессора типа STM, в котором реализуется решение навигационной задачи по приведенному выше алгоритму.

Способ может найти применение для построения локальной навигационной системы для управления движением транспорта в местах повышенной опасности, где требуется высокоточное определение местоположения высокоскоростных движущихся объектов, на критических участках трасс их движения (например, при приближении к местам переключения стрелок на железнодорожных путях, вблизи крутых закрытых поворотов автомобильных трасс).

Способ определения местоположения объекта навигации, заключающийся в излучении объектом навигации высокочастотного гармонического сигнала, приеме его в нескольких опорных радионавигационных точках с известными координатами, отличающийся тем, что с объекта навигации дополнительно излучают второй высокочастотный гармонический сигнал, отличающийся по частоте от первого на заданную величину, в каждой из опорных радионавигационных точек принимают этот сигнал, наряду с первым, формируют из принятых сигналов сигналы разностной частоты, передают сформированные сигналы в центральный приемный пункт, где измеряют разность фаз сигналов разностной частоты, полученных из разных опорных точек, при этом второй высокочастотный сигнал излучают одновременно с первым и лишь в течение интервалов времени, достаточных для измерения разности фаз сигналов разностной частоты, а результаты измерений сигналов разностной частоты с учетом взаимного расположения центрального приемного пункта и опорных радионавигационных точек пересчитывают в координаты объекта навигации.



 

Похожие патенты:

Изобретение предназначено для выявления и радиолокационного сопровождения групп взаимодействующих воздушных объектов (ВО). Достигаемый технический результат - увеличение времени сопровождения групп ВО за счет более раннего их выявления.

Изобретение относится к технике радиолокации, радиосвязи, радионавигации и радиоуправления и может быть использовано в радиоэлектронных системах для решения задачи обнаружения сигналов.
Группа изобретений относится к системам вооружения. При способе самонаведения ракеты с оружием на цель облучают цель непрерывным сигналом с частотной модуляцией по одностороннему пилообразно линейно возрастающему закону (НЛЧМ сигнал).

Изобретение относится к лазерной технике и может быть использовано при оптической локации быстроперемещающихся объектов. Достигаемый технический результат - повышение эффективности оптической локации и селекции высокоскоростных целей в условиях действия помех.

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные волны, определяют фазовый сдвиг между падающими и отраженными волнами или изменение амплитуды (мощности) принимаемых волн по отношению к их значениям для падающих волн, предварительно определяют, соответственно, основной фазовый сдвиг этих волн или основное изменение амплитуды (мощности) этих волн в отсутствие покрывающего слоя на поверхности дороги.

Изобретение относится к области радиолокации и может быть использовано в автономных бортовых радиосистемах управления посадкой летательных аппаратов. Достигаемый технический результат - расширение функциональных возможностей за счет измерения составляющих вектора скорости.

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами по нормали к ней, принимают отраженные от этого участка поверхности электромагнитные волны.

Изобретение относится к области радиолокационной техники и может быть использовано при построении различных радиолокационных систем, предназначенных для определения дальности до поверхности земли, использующих принцип отражения радиоволн (радиодальномеры или дальномеры).
Изобретения относятся к области радиолокации и могут быть использованы в радиолокационных станциях (РЛС) для защиты от импульсных помех. Достигаемый технический результат - формирование признаков импульсной и, в частности, синхронной ответной помехи и ее распознавание на любой дальности.

Изобретение относится к области радиолокации, в частности к юстировочным щитам. Юстировочный щит моделирует прямые и зеркально отраженные от земли радиосигналы, идущие от ракеты и цели на конечном участке наведения.

Изобретение относится к способам локации на малых дальностях и может быть использовано в радиосистемах посадки летательных аппаратов, сближения и стыковки космических объектов, безопасности вождения и парковки автомобилей. Достигаемый технический результат - разработка способа локации объекта при малых дальностях с использованием прерывистого сигнала при подавлении побочных лепестков его автокорреляционной функции. Сущность изобретения состоит в том, что способ основан на использовании прерывистого импульсного сигнала, при этом выбор параметров прерывистого сигнала осуществляют исходя из требуемого подавления «дифракционных» лепестков (ДЛ) автокорреляционной функции этого сигнала, для чего определяют требуемое число Ктр подавляемых первых (ближних) ДЛ и осуществляют их подавление за счет размещения их в «нулевых» зонах автокорреляционной функции, что достигается за счет определенного выбора периода повторения этих лепестков и соответствующих длительностей, при этом Ктр может быть определено исходя из требуемой величины подавления ДЛ. 2 з.п. ф-лы, 6 ил.

Изобретение относится к радиотехнике и может быть использовано в многопозиционных системах пассивной радиолокации для определения местоположения и скорости движения радиоизлучающих объектов. Достигаемый технический результат - обеспечение измерения скорости движения объекта при одновременном увеличении точности определения координат в моноимпульсном режиме. Указанный результат достигается за счет того, что способ включает прием радиосигналов объекта в пространственно-разнесенных пунктах приема и передачу их с периферийных на центральный пункт приема, где измеряют и компенсируют разности доплеровских частот радиосигналов периферийных и центрального пункта приема. Затем, с учетом времени распространения электромагнитных волн в пункты приема, выполняют пространственно-временную обработку преобразованных радиосигналов и определяют координаты объекта, а по измеренным разностям частот и координатам объекта вычисляют вектор его скорости. 5 ил.

Изобретение относится к системам разнесенной радиолокации околоземного космоса и может быть использовано для решения задач дистанционного зондирования Земли с помощью летательных и космических аппаратов. Достигаемый технический результат - расширение зоны мониторинга и обнаружения целей, повышение надежности и помехозащищенности радиолокационной системы. Указанный результат достигается за счет того, что в способе оперативного получения радиолокационной информации производят оперативное развертывание локальной радиолокационной системы на основе локальных разнесенных станций в определенном, заранее заданном районе, путем запуска в данный район носителя с отделяемыми платформами, на каждой из которых устанавливают локальную станцию с приемопередающим оборудованием, при этом используют сигналы подсвета от внешнего источника излучения или от локального источника излучения, который устанавливают на одной из отделяемых платформ или непосредственно на носителе. Радиолокационная система содержит локальную радиолокационную систему с локальными станциями приема и обработки данных, а также внешний или локальный источник излучения сигналов подсвета. 2 н. и 17 з.п. ф-лы, 3 ил.

Изобретение относится к радиолокации и может быть использовано для экспериментальной оценки вклада участков крупногабаритного объекта, например авиационного турбореактивного двигателя, в интегральную величину эффективной поверхности рассеяния двигателя. Достигаемый технический результат - определение эффективной поверхности рассеяния участков объекта для различных ракурсов. Указанный результат достигается за счет того, что способ измерения эффективной поверхности рассеяния крупногабаритных объектов включает установку объекта на опорно-поворотное устройство, измерение фона, эталонирование неподвижного объекта при его полном укрытии радиопоглощающим материалом, облучение и определение мощности отраженных сигналов при вращении объекта вокруг вертикальной оси, при этом объект разбивают на участки, измеряют мощность отраженных сигналов от участков при последовательном удалении с них радиопоглощающего материала и определяют ЭПР участков, затем получают интегральную ЭПР методом сравнения измерений, проведенных в штатном состоянии и с замаскированным участком, при этом относительный вклад каждого участка объекта в интегральную ЭПР в заданном угловом секторе определяют в соответствии с выражением: где - средние значения ЭПР объекта в штатном состоянии и с замаскированным участком соответственно. В качестве радиопоглощающего материала используют материал с коэффициентом отражения электромагнитного излучения на металлической поверхности не более -20 дБ в рабочем диапазоне частот и поляризации электромагнитного излучения. 1 з.п. ф-лы.

Изобретение относится к радиотехнике и может быть использовано в системах пеленгации и сопровождения различных объектов. Достигаемый технический результат - повышение точности пеленгации и сопровождения объектов за счет учета изменений крутизны и нелинейных искажений пеленгационной характеристики в процессе функционирования системы антенна-обтекатель. В отличие от известных устройств принципиально новый эффект уменьшения погрешностей пеленгации и сопровождения достигается путем введения устройства решения уравнения компенсации, сигнальные входы которого подключены к выходам пеленгационного приемника, а выходы подключены к входам электромеханического привода, N входов коэффициентов пеленгационной характеристики устройства решения уравнения компенсации подключены к N выходам текущих значений коэффициентов пеленгационной характеристики вычислителя аппроксимирующих сплайнов, где N - количество коэффициентов разложения пеленгационной характеристики системы антенна-обтекатель, используемых для компенсации, причем значение N выбирается равным N≥2. 2 ил.

Изобретение относится к радиолокации и может быть использовано в импульсных радиолокационных станциях (РЛС). Достигаемый технический результат - улучшение эффективности работы РЛС при флуктуациях эффективной площади рассеяния (ЭПР) обнаруживаемых объектов, а также в условиях прицельных по частоте активных шумовых помех (АШП) в дальней зоне работы при сохранении качества подавления помеховых сигналов, отраженных от местных предметов в ближней зоне работы РЛС. Указанный технический результат достигается за счет использования для обзора дальней и ближней рабочих зон РЛС двух последовательностей импульсов, которые формируют на промежуточной частоте и после смешивания их с синусоидальными сигналами высокой частоты и фильтрации преобразуют в зондирующие импульсы, при этом обзор дальней зоны производят, перестраивая поимпульсно рабочую частоту зондирующих импульсов путем изменения высокой частоты синусоидальных сигналов от такта к такту, а обзор ближней зоны - на постоянной рабочей частоте, затем принятый отраженный сигнал смешивают с высокочастотным синусоидальным сигналом своей зоны, преобразуя его на промежуточную частоту, фильтруют и, после аналого-цифрового преобразования, подвергают обработке. Устройство, реализующее способ, состоит из основной и компенсационной антенн, двух формирователей сигналов, двух смесителей, двух генераторов синусоидального сигнала, твердотельного передающего устройства, приемников основного и компенсационного каналов, коммутатора синусоидальных сигналов, устройств первичной обработки, отображения, вторичной обработки и сопряжения, с соответствующими связями. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области радиолокационной техники и может быть использовано при пассивной локации быстроперемещающихся объектов. Достигаемый технический результат изобретения - повышение эффективности пассивной локации за счет увеличения чувствительности и помехоустойчивости локационной системы, реализации возможности пассивной локации высокоскоростного объекта в условиях действия помех. Сущность изобретения заключается в том, что в способе пассивной локации подвижного объекта, основанном на приеме сигналов, излучаемых объектом, оптимальной обработке принятых сигналов, принимают излучаемые объектом сигналы в разнесенных в пространстве точках, вычисляют взаимную корреляционную функцию (ВКФ) сигналов, принятых в разнесенных точках, предварительно осуществив компенсацию доплеровского сдвига частоты сигналов, по превышению импульсного значения корреляционной функции сигналов над порогом судят о наличии объекта в обозреваемом пространстве, при этом компенсацию доплеровского сдвига частоты принятых сигналов осуществляют путем мультипликативного преобразования частотного спектра названных сигналов, вычисление ВКФ принятых сигналов производят многократно, варьируя величину корректирующего сдвига частоты сигнала, после вычисления ВКФ сигналов выбирают выходной сигнал с максимальным импульсным значением. 2 з.п. ф-лы, 2 ил.

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации. Система содержит два расположенных на объекте навигации передатчика высокочастотных гармонических сигналов с общей передающей антенной, три приемника этих сигналов с приемными антеннами, установленных в опорных радионавигационных точках с известными координатами, три измерительных канала (каналы формирования разностной частоты), три фазовых детектора, три аналого-цифровых преобразователя и вычислитель координат объекта навигации. Каждый из измерительных каналов содержит последовательно включенные балансный смеситель, узкополосный фильтр, усилитель-ограничитель и резонансный усилитель. Достигаемый технический результат - повышение точности определения местоположения объекта навигации и помехозащищенности системы. 2 ил.

Изобретение относится к области радиотехники и может быть использовано при создании средств идентификации воздушных целей. Достигаемый технический результат изобретения - повышение вероятности правильной идентификации воздушных целей, обнаруженных бортовой радиолокационной станцией (РЛС) в условиях многоцелевой обстановки за счет уменьшения объема неопределенности радиолокационной системы с активным ответом (РСАО). Сущность изобретения заключается в применении в РСАО дополнительной селекции запросного сигнала по пространственным координатам обнаруженной воздушной цели, заключающейся в выделении на стороне каждого i-го воздушного судна из множества запросных сигналов, запросного сигнала, адресованного данному воздушному судну, где , I - число воздушных судов, находящихся в зоне действия самолетного радиолокационного запросчика, имеющих на борту самолетный радиолокационный ответчик. Данная процедура осуществляется путем сравнения собственных пространственных координат i-го воздушного судна и пространственных координат воздушной цели, обнаруженной бортовой РЛС запрашивающего воздушного судна, информация о которых передается в запросном сигнале, что позволяет уменьшить пространственный объем неопределенности РСАО до размеров, определяемых ошибками измерения пространственных координат обнаруженной воздушной цели, а также ошибками измерения пространственных координат собственного местоположения запрашивающего и i-го воздушных судов. 2 ил.

Изобретение относится к области радиолокации и может быть использовано на вертолетах и других летательных аппаратах для обнаружения наземных объектов. Достигаемый технический результат - улучшение технико-эксплуатационных характеристик. Указанный результат достигается за счет того, что вертолетный радиолокационный комплекс (РЛК) содержит бортовую радиолокационную станцию (БРЛС) в составе антенно-приемопередающего устройства (АППУ) с фазированной антенной решеткой (ФАР), бортового процессора (ПБ), бортового рабочего места оператора (РМОБ), бортовой части широкополосной линии связи (ШЛСБ), включающей антенну и аппаратуру связи, и бортовой части узкополосной линии связи (УЛСБ), а также наземный пост (НП) в составе рабочих мест операторов (РМОН), наземной части ШЛС (ШЛСН), включающей направленную антенну, расположенную на телескопической мачте, и аппаратуру связи, наземной части УЛС (УЛСН), системы ориентации и топопривязки (СОТ), наземного процессора (ПН) и генератора мощности (ГМ) с соответствующими связями, содержит также систему ориентации и навигации (СОН) в составе бесплатформенной инерциальной системы (БИНС), встроенной в ФАР, навигационного приемника сигналов и электронно-вычислительную машину, а также модуль жизнеобеспечения и технического обслуживания (МЖТО) в составе жилого отсека, второго ГМ и отсека технического обслуживания с соответствующими связями. Кроме того, в программное обеспечение ПБ введена программа для обнаружения разрывов снарядов, основанная на особенностях доплеровского спектра отраженных от них сигналов, увеличены размеры ФАР, антенна ШЛСБ выполнена в виде четырех направленных антенн, расположенных по бортам вертолета, а направленная антенна ШЛСН является реперным отражателем вертолетного РЛК. 1 ил.
Наверх