Комплексное соединение оксованадия (iv) с диметилсульфоксидом, обладающее антидиабетическим действием, и способ его получения

Изобретение относится к новому средству, обладающему антидиабетическим действием. Средство представляет собой комплексное соединение оксованадия (IV) с диметилсульфоксидом (DMSO) формулы VO(DMSO)5·(ClO4)2 - пентакис(диметилсульфоксид) оксованадия (IV) перхлорат. Также предложен способ получения комплексного соединения оксованадия (IV) с диметилсульфоксидом. Изобретение может найти применение в комплексном лечении сахарного диабета второго типа. 2 н.п. ф-лы, 2 ил., 1 табл., 4 пр.

 

Изобретение относится к новому средству, которое представляет собой комплексное соединение оксованадия (IV) с диметилсульфоксидом (DMSO) формулы VO(DMSO)5·(ClO4)2 - пентакис(диметилсульфоксид) оксованадия (IV) перхлорат, которое обладает антидиабетическим действием, а также к способу получения указанного средства и может найти применение в комплексном лечении сахарного диабета второго типа.

Сахарный диабет (СД) представляет собой серьезную проблему современной медицины вследствие его широкого распространения и тяжелых осложнений, приводящих к инвалидности и высокому уровню смертности больных. По механизму возникновения СД делится на два типа. СД I типа развивается в результате слабой секреции инсулина поджелудочной железой и корректируется инъекциями инсулина. В основе СД II-го типа лежит резистентность тканей к инсулину, возникающая из-за уменьшения количества и/или сродства специфических рецепторов либо из-за нарушения механизмов передачи гормонального сигнала на пострецепторном уровне. Для коррекции СД II типа используются средства с различными механизмами действия, которые могут применяться индивидуально и в различных сочетаниях: глиниды (меглитиниды), производные сульфонилмочевины, бигуаниды, глитазоны, глиптины и др. Однако длительное применение этих препаратов вызывает снижение функции β-клеток поджелудочной железы и усиление резистентности к инсулину, то есть несмотря на наличие широкого спектра антидиабетических средств к настоящему моменту остается нерешенной проблема создания препаратов, безопасных с точки зрения побочных эффектов.

Непрерывный поиск новых возможностей для более совершенной коррекции СД продолжается, в том числе и среди средств, направленных на регуляцию метаболизма углеводов и липидов. Перспективным в этом отношении классом веществ являются соединения ванадия, поскольку установлено, что ванадий - микроэлемент, способный выполнять многие регулирующие функции в организме, в частности имитировать метаболические эффекты инсулина, усиливать чувствительность к этому гормону и продлевать биологический ответ тканей на инсулин.

Известно, что ванадилсульфат и ванадаты нормализуют уровень глюкозы в крови у крыс с экспериментальным (стрептозотоциновым) диабетом (см., например, McNell J.Η., Delgatty Η., Batell M.L. // Diabetes, 1991, v. 40, pp. 1448-1452; Ramanadham S, Cros S.H. et al. // Can. J. Physiol. Pharmacol. 1990, v. 68, pp. 486-491). Однако использовать эти соединения в качестве активных субстанций для препаратов гипогликемического действия практически невозможно, поскольку они токсичны и плохо всасываются в желудочно-кишечном тракте.

Комплексы ванадия с органическими лигандами менее токсичны, более липофильны и лучше абсорбируются. Исследовано инсулиномиметическое действие множества комплексов ванадия в степени окисления 4+ или 5+ с различными органическими соединениями: хелатные комплексы (например, с ацетилацетонатом и производными пиколиновой и дипиколиновой кислот), комплексы с витаминами, биорастворимыми полимерами и природными антиоксидантами (куркумины и алликсинаты), пептидные комплексы и др. (К.Н.Thompson et al. // J. Inorg. Biochem. 2009, v. 103, pp. 554-558; K.H. Thompson, C. Orvig // J. Inorg. Biochem. 2006, v. 100, pp. 1925-1935; Srivastava A.K., Mehdi M.Z. // Diabetic Med., 2005, v. 22, pp. 2-13; D.C. Crans et al. // Chem. Rev., 2004, v. 104, pp.849-902; A. Levina, P.A. Lay // Dalton Trans. 2011, v. 40, pp. 1167-1168). Ряд разработок в области создания антидиабетических средств на основе соединений ванадия защищен патентами, например, RU 2190618, C07F 9/00, А61К 31/28, 20.01.2002; RU 2101287, C07F 9/00, 10.01.1998; RU 2341528, C07F 9/00, 20.12.2008; US 5300496, А61К 31/555, А61К 31/28, 05.04.1994; US 5527790, А61К 33/24, А61К 31/28, А61К 31/555, 18.06.1996; US 5545661, А61К 31/555, 13.08.1996; US 5888993, A61K 33/24, A61K 31/28, A61K 31/555, 30.03.1999; US 5866563, A61K 33/24, A61K 31/555, A61K 31/28, 02.02.1999.

Следует отметить, что многие из предлагаемых для комплексообразования с ванадием органических соединений (например, производные имидазола и бензимидазола, пирокатехина, дитиокарбаминовая кислота, гидразид изоникотиновой кислоты и др.) могут быть для больного СД тяжелым балластом, вызывающим различные побочные эффекты, ухудшающие деятельность сердечно-сосудистой системы, печени, почек и приводящие к аллергическим реакциям.

В заявляемом средстве, представляющем собой оксованадиевый комплекс VO(DMSO)5·(ClO4)2, органическим лигандом является DMSO. DMSO включен во внутреннюю координационную сферу комплекса, что, однако, не исключает возможности его высвобождения in vivo в результате замещения, диссоциации и т.д. Важно отметить, что DMSO нетоксичен, обладает анальгетическими, противовоспалительными и антиоксидантными свойствами, а также способностью проникать через биологические мембраны (что обусловливает его применение в качестве основы лекарственной формы «Димексид»). DMSO увеличивает всасывание и усиливает действие различных веществ, в частности инсулина. Получены данные, что DMSO влияет на инкретиновый эффект: в присутствии 0,5-2,5% DMSO значительно (в 2-2,5 раза) усиливается функция секреции инсулина глюкагоноподобным пептидом-1 (D.M. Kempa, J.F. Habenera // Biochem. Pharmacol. 2002, v. 64, pp. 689-697).

Заявляемое средство, представляющее собой пентакис(диметилсульфоксид) оксованадия (IV) перхлорат - VO(DMSO)5·(ClO4)2, проявляет антидиабетическую активность, улучшает показатели теста толерантности к глюкозе и относится к умеренно токсичным соединениям.

Получение пентакис(диметилсульфоксид) оксованадия (IV) перхлората и некоторые физико-химические характеристики данного комплекса описаны в работе: J. Selbin, L.H. Holmes Jr., Complexes of oxovanadium. // J. Inorg. Nucl. Chem., 1962, v. 24, pp. 1111-1119. Антидиабетические свойства VO(DMSO)5·(ClO4)2 до настоящего времени не исследовались.

Исходным соединением для получения VO(DMSO)5·(ClO4)2 в известном способе является пентаоксид ванадия (V) V2O5, который растворяют при нагревании в смеси воды, этилового спирта и соляной кислоты. Упариванием раствора получают гидратированный оксодихлорид ванадия (IV) VOCl2·nH2O в виде сиропообразной жидкости. Далее полученный оксодихлорид ванадия (IV) используют в виде водного раствора для получения перхлората ванадила VO(ClO4)2: к водному раствору VOCl2 прибавляют хлорную кислоту, небольшое количество этанола и греют на кипящей водяной бане для удаления HCl. Отсутствие иона хлора в полученном водном голубом растворе перхлората ванадила VO(ClO4)2 контролируют реакцией с нитратом серебра. Водный раствор VO(ClO4)2 прибавляют к чистому DMSO, раствор при этом разогревается, впоследствии из него выпадают синие кристаллы оксованадиевого комплекса VO(DMSO)5·(ClO4)2, их промывают эфиром и сушат в вакууме. Выход ни на одной стадии синтеза не приводится.

Недостатками известного способа получения VO(DMSO)5·(ClO4)2 являются низкая чистота промежуточных соединений из-за окисления V4+ при нагревании, необходимость промежуточной стадии получения VO(ClO4)2 и высокая чувствительность процесса кристаллизации конечного целевого продукта к условиям проведения реакции.

В предлагаемом способе также сначала получают оксодихлорид ванадия (IV) VOCl2 растворением пентаоксида ванадия (V) V2O5 в концентрированной HCl в присутствии этанола. Полученный после удаления растворителей VOCl2 хранят и используют для получения комплекса VO(DMSO)5·(ClO4)2 в виде раствора в ацетонитриле. Комплекс VO(DMSO)5·(ClO4)2 получают взаимодействием ацетонитрильного раствора VOCl2 с избытком DMSO и расчетным количеством перхлората магния Mg(ClO4)2.

В предлагаемом способе получения VO(DMSO)5·(ClO4)2 отсутствует стадия получения VO(ClO4)2. В качестве исходного соединения для взаимодействия с DMSO используется стабильный в течение практически неограниченного времени раствор VOCl2 в ацетонитриле. В синтезе используется высокогигроскопичное вещество - перхлорат магния, способствующее связыванию излишков воды, содержащихся в растворе VOCl2. Кристаллизация конечного целевого продукта не вызывает затруднений - в результате достигается высокий выход комплекса и упрощается технологический процесс.

Приводим примеры, подробно раскрывающие сущность предлагаемого изобретения.

Пример 1. Получение пентакис(диметилсульфоксид) оксованадия (IV) перхлората.

4,55 г (0,025 моля) пентаоксида ванадия (V) V2O5 растворяют в 12,1 мл концентрированной (38%) HCl, добавив несколько капель этанола. Упариванием раствора на роторном испарителе получают сиропообразную темно-синюю массу оксодихлорида ванадия (IV) VOCl2, которую растворяют в 30 мл ацетонитрила. К полученному ацетонитрильному раствору, содержащему 0,05 моля VOCl2 (раствор устойчив при комнатной температуре в течение месяца и более), добавляют 20 мл чистого DMSO, затем медленно добавляют 11,15 г (0,05 моля) перхлората магния, удаляют избыток растворителя на роторном испарителе и охлаждают льдом, выпадают ярко-голубые кристаллы, их перекристаллизовывают из ацетона, промывают эфиром и сушат в вакууме, получают 26,6 г (81%) комплекса ванадила с диметилсульфоксидом формулы VO(DMSO)5·(ClO4)2, комплекс хорошо растворяется в воде и в полярных органических растворителях.

Найдено, %: ClO4 29,6.

Вычислено, % для [VO{(CH3)2 SO}5](ClO4)2: 30,3.

Количественное определение аниона перхлората проводили в соответствии с методикой, изложенной в работе авторов (Е.В. Наянова, Е.В. Елипашева, Г.М. Сергеев «Фотометрическое редокс-определение оксианонов хлора и брома в гипохлоритных дезинфицирующих растворах» // Аналитика и контроль. 2013. Т.17. №4. С. 472-476)

ИК-спектр: (ацетонитрил) 989 см-1 (VO+2), 933 и 959 см-1 (S=O координированного DMSO), 1103 и 1094 см-1 (Cl-O аниона ClO4).

Спектры ЭПР: g||=1,937; g=1,987; А||=179,6; А=65,77 (DMSO); g||=1,936; g=1,985; А||=18179,7; A=68,40 (этанол).

Пример 2. Исследование токсичности.

Токсичность пентакис(диметилсульфоксид) оксованадия (IV) перхлората исследовали на здоровых беспородных белых крысах-самцах массой 220-250 г. Изолированным от внешних раздражителей животным осуществляли однократное пероральное введение исследуемого комплекса в дозах 100, 200, 500, 625, 750, 825, 1000 мг/кг. После введения комплекса животные находились под постоянным наблюдением в течение 4-х часов, в последующие дни за ними наблюдали два раза в сутки: утром и вечером. Длительность эксперимента составляла 14 дней. По окончании срока наблюдения регистрировалась клиника отравления, количество летальных исходов и число выживших животных. У животных были выявлены признаки отравления, выраженность которых была пропорциональна увеличению вводимой дозы комплекса, в частности ограничение подвижности, заторможенность, снижение реактивности, диарея, рвотный рефлекс, развитие седации вплоть до полной обездвиженности. Среднелетальная доза ЛД50 исследуемого комплекса ванадия рассчитывалась методом Беренса, ее стандартная ошибка - по формуле Геддама (Беленький М.А. Элементы количественной оценки фармакологического эффекта. - Л.: Медицина, 1963, 116 с.) и составила 683 мг/кг.

Согласно литературным данным при однократном пероральном введении NaVO3 (метаванадат натрия) ЛД50 составляет 98 мг/кг (Liobet J.Μ., Domingo J.L. // Toxic. Lett., 1984, v. 23, pp. 227-231), при введении пентагидрата сульфата ванадила - 298 мг/кг (RU 2341528, C07F 9/00, 20.12.2008). По другим данным ванадилсульфат (в виде тригидрата) еще более токсичен: ЛД50 составляет 95 мг/кг (RU 2101287, C07F 9/00, 10.01.1998).

Таким образом, токсичность предлагаемого средства существенно ниже, чем у неорганических соединений ванадия, его следует отнести к умеренно токсичным соединениям.

Пример 3. Исследование антидиабетической активности.

Антидиабетическую активность комплекса оценивали по снижению уровня глюкозы в плазме крови у животных с сахарным диабетом. Для этих целей использовались белые крысы-самцы с экспериментальным стрептозотоцин-индуцированным сахарным диабетом (ССД). ССД вызывали стрептозотоцином (внутривенно, однократно в дозе 45 мг/кг). За развитием ССД следили по увеличению уровня глюкозы в плазме крови и появлению глюкозы в моче, а также по общему состоянию животных. В опыт отбирали крыс с выраженным диабетом (содержание глюкозы в плазме крови свыше 10 ммоль/л) на 3-4 сутки после интоксикации стрептозотоцином. Одной группе животных начинали ежедневно давать водные растворы исследуемого комплекса, а другой - препарата сравнения - сульфата ванадила кристаллогидрата [VO(H2O)4(SO4)]H2O, в одинаковых дозах в пересчете на ванадий, а именно 2,73 мг/кг ванадия. Длительность эксперимента - 14 дней. Концентрацию глюкозы в крови крыс определяли глюкозооксидазным способом натощак на 3, 7, 14-е сутки после введения стрептозотоцина. Образцы крови для определения глюкозы забирали через 2 часа после введения препаратов. Полученные данные суммированы в таблице.

Как видно из приведенных данных, уровень глюкозы в крови интактных крыс в течение двух недель наблюдений соответствовал нормальным значениям 4,41-4,99 ммоль/л. У крыс с развившимся ССД на 3-й день после введения стрептозотоцина уровень глюкозы в крови превышал норму в 2,4 раза и сохранялся на стабильно высоком уровне на протяжении всего эксперимента. Развитие ССД проявлялось наличием характерных симптомов: полиурией, высоким потреблением воды животными, потерей веса. Высокая степень декомпенсации углеводного обмена приводила к гибели животных.

Результаты проведенного исследования показали гипогликемическую эффективность пентакис(диметилсульфоксид) оксованадия (IV) перхлората - при курсовом введении данного соединения ванадия (в дозе 2,73 мг/кг ванадия в день) уровень глюкозы в крови крыс со стрептозотоцин-индуцированным СД к 7-му дню и далее снизился примерно в два раза по сравнению с крысами с сахарным диабетом, не получавшими лечения.

Валено отметить, что количество выживших животных на 7-й день эксперимента при введении сульфата ванадила составило 87,5%, а к 14-му дню не превышало 37,5%, в то время как при использовании предлагаемого средства наблюдалась 100%-ная выживаемость животных в течение всего эксперимента.

Пример 4. Исследование антидиабетического действия при проведении перорального глюкозотолерантного теста.

Пероральный глюкозотолерантный тест (ПГТТ) осуществляли на 7-е и 14-е сутки после инъекции стрептозотоцина. За 18 часов до проведения теста глюкозной нагрузки крысам ограничивали доступ к пище при свободном доступе к воде. Исследуемые препараты ванадия - пентакис(диметилсульфоксид) оксованадия (IV) перхлорат и препарат сравнения сульфат ванадила - вводили в одинаковых дозах в пересчете на ванадий, а именно 2,73 мг/кг ванадия, начиная с 3-го дня после инъекции стрептозотоцина ежедневно, в день проведения ПГТТ - за 1 час до проведения теста. Для осуществления теста всем животным - экспериментальной группе животных с сахарным диабетом, получавшей препараты ванадия, контрольной группе с сахарным диабетом, не получавшей лечения, и интактным крысам - вводили глюкозу в дозе 3 г/кг веса, перорально. Пробы крови для определения гликемии забирали перед введением глюкозы, затем через 30 минут после введения глюкозы и в течение двух часов с 30-минутным интервалом. Концентрацию глюкозы в крови определяли вышеуказанным (глюкозооксидазным) методом. Скорость утилизации глюкозы оценивали исходя из степени снижения площади под кривой содержания глюкозы (Древаль А.В. Взаимосвязь HbAlc и параметров перорального теста толерантности к глюкозе у больных сахарным диабетом 2 типа. / А.В. Древаль, Редькин Ю.А., Богомолов В.В. // Проблемы эндокринологии. - М. - 2005. - Деп. №53913). Статистическую обработку данных проводили с использованием пакета программ Statistica 6.0 (StatSoft, США) и Excel 2007 (MS Office 2007, США). Проводился расчет базовых статистических показателей, характеризующих вариационные ряды (среднее арифметическое значение М, стандартная ошибка средней арифметической m), с использованием парного t-критерия Стьюдента.

При проведении ПГТТ на 7-й день после инъекции стрептозотоцина для крыс с индуцированным ССД (контроль-диабет нелеченный) регистрируется увеличение площади под кривой «концентрация глюкозы-время», превышающее контрольные значения интактной группы животных в 3,1 раза (602,5 у.е и 1862, 2 у.е. соответственно). В группе крыс, получающих изучаемые препараты ванадия, на 7-й день эксперимента выявлена их антидиабетическая активность, причем предлагаемое средство - комплекс ванадия с диметилсульфоксидом VO(DMSO)5·(ClO4)2 - проявлял несколько большую эффективность, чем препарат сравнения сульфат ванадила (1121,18 у.е и 1054,8 у.е. соответственно) (см. рис. 1).

Различие в эффективности исследуемых препаратов еще более проявляется при увеличении длительности эксперимента. На 14-й день исследования антидиабетическое действие предлагаемого средства превысило эффект от введения сульфата ванадила более чем в 3 раза - комплекс VO(DMSO)5·(ClO4)2 снижал патологический подъем сахарной кривой на 45,84%, тогда как сульфат ванадила - на 14,90% (см. рис. 2). При этом в контрольной группе крыс с индуцированным ССД сохранялась нарушенная толерантность организма к нагрузке глюкозой - площадь под кривой «концентрация глюкозы-время» для нелеченных крыс с ССД превышала контрольные значения интактных животных в 3,1 раза аналогично 7-му дню эксперимента.

Таким образом, совокупность результатов проведенных испытаний показывает, что предлагаемое средство, представляющее собой оксованадиевый комплекс с диметил-сульфоксидом формулы VO(DMSO)5·(ClO4)2, проявляет гипогликемические свойства и улучшает показатели теста толерантности к глюкозе, при этом антидиабетическое действие заявляемого средства превосходит действие препарата сравнения сульфата ванадила.

На основании имеющихся в научной и патентной литературе сведений об относительной эффективности гипогликемического действия различных соединений ванадия - среди них можно выделить комплексы ванадила с мальтолом (3-гидрокси-2-метил-4-пироном) (US 5300496, А61К 31/555, А61К 31/28, 05.04.1994) и с этилмальтолом (US 5866563, А61К 33/24, А61К 31/555, А61К 31/28, 02.02.1999), так как оба соединения прошли первые фазы клинических испытаний - и их сравнения с эталонным антидиабетическим препаратом инсулином можно сделать вывод о сопоставимости эффекта действия предлагаемого средства и известных антидиабетических препаратов.

Предлагаемое средство, являясь умеренно токсичным соединением, проявляющим антидиабетическую активность, может быть использовано в качестве активного компонента сублингвальных, интраназальных, ректальных, трансдермальных лекарственных форм.

Способ получения предлагаемого средства отличается достаточной простотой технологии и обеспечивает высокий выход кристаллического целевого продукта.

1. Средство, обладающее антидиабетическим действием, представляющее собой комплексное соединение оксованадия (IV) с диметилсульфоксидом (DMSO) формулы VO(DMSO)5·(ClO4)2 - пентакис(диметилсульфоксид) оксованадия (IV) перхлорат.

2. Способ получения комплексного соединения оксованадия (IV) с диметилсульфоксидом формулы VO(DMSO)5·(ClO4)2 по п.1, включающий растворение пентаоксида ванадия (V) V2O5 при нагревании в смеси этилового спирта и соляной кислоты с получением промежуточного соединения оксодихлорида ванадия (IV) VOCl2, удаление растворителей, получение ацетонитрильного раствора оксодихлорида ванадия (IV) VOCl2, взаимодействие полученного раствора с DMSO и перхлоратом магния.



 

Похожие патенты:

Изобретение направлено на металлоценовое соединение, которое может обеспечивать прохождение полимеризации с получением олефиновых полимера или сополимера с высокой полимеризационной активностью и стабильностью, которые сохраняются продолжительное время, и включающая его композиция катализатора и использующий его способ полимеризации олефина.

Изобретение относится к бис[3-(4-хлорфенил)-1-(4-метилфенил)карбоксамидо-1,3-пропандионато]оксованадию формулы Соединение обладает гипогликемической и антигипоксической активностью.
Изобретение относится к улучшенному синтезу пентаалкоксидов ниобия и тантала методом переэтерификации н-бутиловым спиртом соответствующих более низкомолекулярных алкоксидов.
Изобретение относится к области электрохимии, а именно к электрохимическому способу получения метилата ниобия, который является исходным сырьем для получения высокочистого оксида ниобия (V), находящего применение в радиоэлектронике.

Изобретение относится к электрохимическому синтезу алкоголятов тантала, которые являются перспективными предшественниками высокочистых и высокодисперсных моно- и смешанных оксидных композиций для нанотехнологических процессов.

Изобретение относится к способу получения комплексов трикрезил-, три(1,3-дихлорпропил) и три(2-этилгексил)фосфатов с хлоридами Sn или Ti общей формулы 2(RO)3Р=O·ЭCl 4, где R=-С4Н6 СН3, -СН(Cl)СН2СН 2(Cl) или -СН2СН(С 2Н5)(СН2) 3СН3, Э=Sn, Ti, и может быть использован в органическом синтезе.

Изобретение относится к созданию новых химических соединений, обладающих гипогликемическим эффектом, а именно нового комплексного соединения оксованадия (IV) с глицином.
Изобретение относится к области химии фосфорорганических соединений, в частности к фосфорорганическим полимерам. .

Изобретение относится к способу получения ниобий(V)- и тантал(V)алкоголятов формулы M(OR)5 (I), где М означает Nb или Та и R означает С1-С5 -алкил, которые могут быть использованы для получения соответствующих металлических покрытий посредством химического осаждения из паровой фазы.

Изобретение относится к области биотехнологии, конкретно к производным аналога GLP-1, и может быть использовано в медицине. Синтезируют соединение, обладающее активностью GLP-1 и являющееся производным аналога GLP-1, где аналог имеет первый остаток K37 в позиции, соответствующей позиции 37 GLP-1 (7-37) (SEQ ID №1), второй остаток K26 в позиции, соответствующей позиции 26 GLP-1 (7-37), а также не более четырех аминокислотных модификаций по сравнению с GLP-1 (7-37), включая K37 и Q или R в позиции, соответствующей позиции 34 в GLP-1 (7-37).

Настоящее изобретение относится к новым соединениям глюкагона, содержащим три или более отрицательно заряженных фрагмента, где один из указанных отрицательно заряженных фрагментов расположен дистально от липофильного фрагмента.

Предложена группа изобретений, касающаяся лечения гипергликемии у пациентов с сахарным диабетом II типа и не вызывающая увеличения веса. Предложены: состав с немедленным высвобождением в форме таблетки, исходного гранулята или капсулы, содержащий дапаглифлозин или пропилегликольгидрат дапаглифлозина (S), гидрохлорид метформина, гидроксипропилцеллюлозу, микрокристаллическую целлюлозу, натриевый гликолят крахмала или гидроксипропилцеллюлозу с низкой степенью замещения в качестве разрыхлителя и стеарат магния; комбинация указанной фармацевтической композиции с противодиабетическим средством и комбинация указанной фармацевтической композиции со средством для снижения массы тела.
Изобретение относится к медицине, а именно к восстановительной медицине, и может быть использовано для коррекции сосудистых нарушений у больных сахарным диабетом.

Изобретение относится к области биотехнологии, конкретно к новым аналогам глюкагон-подобного пептида, и может быть использовано в медицине для активации экспрессии инсулина у млекопитающих и для лечения сахарного диабета.

Настоящее изобретение относится к фармацевтической композиции, содержащей соединение инсулина в концентрации, достаточной для поддержания терапевтически эффективного уровня соединения инсулина в плазме крови в течение по меньшей мере 3 дней.

Изобретение относится к медицине, а именно к терапии и кардиологии, и касается коррекции когнитивных нарушений у пациентов с артериальной гипертонией на фоне сахарного диабета 2 типа.

Изобретение относится к медицине, а именно к терапии и кардиологии, и касается коррекции повышенного уровня тревоги и депрессии у пациентов с артериальной гипертонией на фоне сахарного диабета 2 типа.

Группа изобретений относится к способам лечения диабета 2 типа, резистентности к инсулину, пониженной продукции инсулина, ожирения, гипергликемии и гиперинсулинемии, включающим введение субъекту эффективного количества антитела к IL-1β или его фрагмента, а также к применению антитела к IL-1β или его фрагмента в производстве композиции, предназначенной для лечения вышеуказанных заболеваний или состояний.

Изобретение относится к новым N-содержащим гетероарильным производным формулы I или II или их фармацевтически приемлемым солям, которые обладают свойствами ингибиторов киназы JAK, в частности JAK3, и могут найти применение для лечения таких заболеваний, как астма и хроническое обструктивное заболевание легких (COPD).

Изобретение относится к медицине, онкологии, лучевой и химиотерапии. Лечение неоперабельного немелкоклеточного рака легкого включает химиотерапию и ежедневное двухразовое лучевое воздействие с интервалом 5-6 часов в течение 5-ти дней в неделю.
Наверх