Способ тарировки скважины по удлинению ствола скважины относительно ее вертикальной составляющей

Изобретение относится к нефтедобывающей промышленности и может быть использовано при расчетах технологических процессов, происходящих в наклонно-направленных скважинах. Техническим результатом является повышение точности определения степени кривизны и удлинения ствола скважины. Предложен способ тарировки скважины по удлинению ствола скважины относительно ее вертикальной составляющей, заключающийся в определении высоты гидростатического столба жидкости по давлению в его нижней точке. При этом скважину с обсадной колонной перекрывают пакером над продуктивным пластом или на необходимой глубине, заполняют пресной или минерализованной водой с известной плотностью, поддерживают уровень воды на устье скважины неизменным, замеряют давление и температуру в стволе скважины через равные промежутки длины спущенного кабеля или проволоки с манометром-термометром. А удлинение ствола скважины от ее вертикальной составляющей определяется по приведенному математическому выражению. 1 з.п. ф-лы, 1 табл., 1 ил.

 

Заявляемое изобретение относится к теории и практике эксплуатации нефтедобывающих скважин с помощью глубинно-насосного оборудования и может использоваться в нефтедобывающей промышленности.

При кустовом бурении большинство нефтедобывающих скважин имеют не вертикальный ствол, а направленный под определенным углом к вертикальной линии, причем на разной глубине величина угла может доходить до 90°. Благодаря этому длина ствола наклонной скважины может значительно превышать ее вертикальную составляющую, которая определяется как разница между ними. Расчеты давления газа и газожидкостных систем в таких скважинах основаны на данных по вертикальной составляющей любой точки ствола скважины. Такая информация выдается строителями скважины буровой организацией. Ввиду несовершенства применяемой техники и технологий существуют определенные погрешности в этих паспортных данных скважин.

Известно устройство для определения степени искривления скважины, в котором отход ствола скважины от вертикали оценивают с помощью светового луча и приемной мишени (Патент РФ на изобретение №2166085, опубл. 27.04.2001). Данное устройство состоит из множества высокоточных и дорогостоящих измерительных приборов и элементов и ввиду своей конструктивной сложности имеет определенную мультипликативную погрешность измерений.

Часто паспортизацию ствола скважины по ее кривизне выполняют с помощью инклинометров самой разной конструкции. В патенте РФ №2004786 на изобретение «Инклинометр» (опубл. 15.12.1993) приводится описание устройства, в котором использованы гироскопы различного назначения и работающие в различных и необходимых режимах. Применение устройства требует высокоточной специальной аппаратуры, которая по определенному алгоритму вычисляет характеристики скважины.

Технической задачей изобретения является создание технологии тарировки скважин с кривизной по вертикальной составляющей ее ствола и удлинению ствола скважины относительно этой вертикальной части без привлечения сложной измерительной техники и вторичных интерпретационных приборов.

Задача решается тем, что скважину с обсадной колонной перекрывают пакером над продуктивным пластом или на необходимой глубине, заполняют пресной или минерализованной водой с известной плотностью, поддерживают уровень воды на устье скважины неизменным, замеряют давление и температуру в стволе скважины через равные промежутки длины спущенного манометра-термометра, а удлинение ствола скважины от ее вертикальной составляющей ΔLi определяется по формуле:

где: Li - длина ствола скважины в ее i-ой точке;

Pi - давление в i-ой точке ствола скважины;

ρср - средняя плотность воды в интервале от устья до i-ой точки (находится в функциональной зависимости от температуры T);

g - ускорение свободного падения.

Плотность пресной воды при различных температурах является величиной табулированной. Эти данные приведены во многих источниках, в частности в книге: Справочник нефтяника / Авт.-сост. Ю.В. Зейгман, Г.А. Шамаев. С 74. 2-е изд., доп. и перераб. - Уфа: Тау, 2005. - 272 с. (табл. 2.12 на стр. 35).

Скважина с кривизной и схема реализации способа приведены на рисунке, где цифрами отмечены: 1 - обсадная колонна, 2 - пакер, 3 - постоянный уровень воды на устье скважины, 4 - емкость для долива воды в скважину, 5 - емкость для сбора стекающей воды от уровня затрубного вентиля, 6 - глубинный манометр-термометр, 7 - геофизический кабель или скребковая проволока, 8 - счетчик длины кабеля или проволоки Li.

Способ реализуется выполнением следующих процедур:

1. Над продуктивным пластом устанавливается пакер и ствол скважины заполняется однородной водой с неизменной плотностью. Для этого до пакера спускают колонну труб малого ⌀ (62 или 73 мм) и организуют замещение жидкости в скважине на пресную или минерализованную воду. С помощью емкостей 4 и 5 скважина во время измерений остается с неизменным уровнем воды на устье.

2. Подъемником в скважину опускают спаренный глубинный прибор: манометр-термометр. О длине спущенного в скважину геофизического кабеля или скребковой проволоки судят по счетчику 8.

3. Запись давления и температуре ведется глубинным прибором в постоянном режиме. О величине давления и температуры в любой i-ой точке ствола скважины судят в режиме реального времени по счетчику 8 при наличии обратной связи с датчиками давления и температуры по геофизическому кабелю. Для автономного манометра-термометра необходимо на заданных длинах спущенной скребковой проволоки по показанию счетчика 8 делать остановки в движении проволоки на время в 5-10 минут для того, чтобы привязать показания давления и температуры к этой длине проволоки по полученным характерным «полочкам», то есть постоянным значениям давления и температуры в i-ой точке ствола скважины.

4. Глубинный прибор спускают до пакера 2 и точно также поднимают с фиксацией давления и температуры в тех же отметках спущенной длины кабеля или проволоки.

5. На устье скважины и над пакером отбирают пробы воды для того, чтобы убедиться в равенстве их плотностей, приведенных к одной температуре, например к стандартной.

6. По формуле 1 определяется удлинение ствола скважины относительно ее вертикальной составляющей.

Результаты измерений на скважине с кривизной и определенным удлинением ее ствола относительно вертикальной составляющей приведены в табличной форме.

Данные таблицы свидетельствуют о том, что первые 300 метров ствол скважины имеет практически вертикальную характеристику, а в интервале 300-800 скважина имеет определенный набор кривизны. Общая длина ствола скважины в 1000 м является суммой ее вертикальной составляющей в 856 м и удлинением ствола скважины в 144 м благодаря ее кривизне.

Предложенное к рассмотрению изобретение основано на известном законе физики - гидростатическое давление равно произведению плотности жидкости на ускорение свободного падения и на глубину погружения точки измерения (Элементарный учебник физики: Учеб. пособие / Под ред. Г.С. Ландсберга: Т. 1. - 11 изд. - М.: Наука, Физматлит, 1995. - С. 290). Это положение использовано в изобретении с обратной функцией - по известному давлению в конкретной точке ствола скважины (определяется по счетчику длины кабеля или скребковой проволоки) определяется ее вертикальная составляющая и удлинение относительно этого параметра. По изобретению предложено корректировать плотность воды в заданных точках по температуре, поэтому наряду с измерением давления необходимо одновременно фиксировать и температуру воды.

Совокупность технических решений: поддержание постоянного уровня воды в скважине, одновременное измерение давления и температуры с привязкой спускаемого спаренного прибора к длине кабеля (проволоки), а значит и к длине ствола скважины, не только положительно решает поставленную техническую задачу, но и выполняет это, на наш взгляд, с необходимой новизной и существенным отличием.

1. Способ тарировки скважины по удлинению ствола скважины относительно ее вертикальной составляющей, заключающийся в определении высоты гидростатического столба жидкости по давлению в его нижней точке, отличающийся тем, что скважину с обсадной колонной перекрывают пакером над продуктивным пластом или на необходимой глубине, заполняют пресной или минерализованной водой с известной плотностью, поддерживают уровень воды на устье скважины неизменным, замеряют давление и температуру в стволе скважины через равные промежутки длины спущенного кабеля или проволоки с манометром-термометром, а удлинение ствола скважины от ее вертикальной составляющей ΔLi определяется по формуле:

где: Li - длина ствола скважины в ее i-ой точке измерения;
Pi - давление в i-ой точке ствола скважины;
ρср - средняя плотность воды в интервале от устья до i-ой точки (находится в функциональной зависимости от температуры T);
g - ускорение свободного падения.

2. Способ по п. 1, отличающийся тем, что при применении скребковой проволоки через равные промежутки длины проволоки автономный манометр-термометр останавливают в движении на 5-10 минут для получения характерных «полок», то есть постоянных значений давления и температуры.



 

Похожие патенты:

Изобретение относится к области геофизики и может быть использовано при разведке нефти и природного газа. Электромагнитная расстановка содержит множество размещенных по оси электромагнитов, расположенных в немагнитном корпусе.

Изобретение относится к газодобывающей промышленности и может быть использована на газовом промысле для автоматического управления и регулирования технологическими процессами сбора и подготовки газа к дальнему транспорту.

Изобретение относится к нефтедобывающей промышленности, в частности к добыче нефти из скважин механизированным способом, и может быть использовано в любых типах электроприводов насосов. Технический результат - поддержание дебита на заданном уровне при снижении затрат на электроэнергию.

Изобретение относится к измерению перфорационных каналов в нефтяных скважинах. Техническим результатом является уменьшение реверберационного шума.

Изобретение относится к области геофизики и может быть использовано при разведке месторождений нефти и природного газа. Заявлена электромагнитная расстановка, сконфигурированная для использования в подземной буровой скважине.

Изобретение относится к механизированной добыче жидкости из нефтяных скважин и может быть использовано для оптимизации технологии периодической эксплуатации скважин, дебит которых меньше минимальной допустимой подачи электроцентробежного насоса.

Изобретение относится к области приборов, перемещающихся в стволах скважин, пробуренных через подземные пласты горных пород. Техническим результатом является передача данных рабочего состояния прибора и/или данных, запомненных в приборе, и/или передача сигналов управления и рабочих инструкций на такие приборы во время нахождения приборов на земной поверхности.

Изобретение относится к нефтегазодобывающей промышленности, а именно к способу контроля герметичности обсаженной нагнетательной скважины. Техническим результатом является сокращение количества исследований на герметичность системы на скважинах, эксплуатируемых по технологии одновременно-раздельная закачка (ОРЗ).

Изобретение относится к оборудованию для контроля рабочих параметров при бурении и может быть использовано для выполнения электрокаротажных работ как в горизонтально, так и в вертикально направленном бурении, а также в наклонно-направленных и разветвленно-горизонтальных скважинах в процессе бурения.

Изобретение относится к нефтегазовой промышленности и касается определения тепловых свойств пород, слагающих разрез скважины и пласт в целом. Техническим результатом является повышение точности измерения среднеинтегрального значения теплопроводности горных пород по разрезу скважины и определение коэффициентов теплопередачи через НКТ и через обсадную колонну, а также длины циркуляционной системы скважины.

Группа изобретений относится к нефтегазовой промышленности и предназначено для теплового воздействия на призабойную зону, снижения вязкости скважинной жидкости перед приемом погружного насоса и для предупреждения образования асфальтено-парафино-гидратных отложений. Способ прогрева призабойной зоны скважины характеризуется тем, что в призабойную зону скважины в интервал перфорации на хвостовике из НКТ ниже скважинного погружного оборудования в зависимости от необходимой длины и мощности нагрева опускают один или несколько соединенных между собой скважинных электрических резистивных нагревателей. Производят управляемый прогрев околоскважинного пространства призабойной зоны и поступающей в скважину пластовой жидкости. Устройство для осуществления способа составлено из взаимосвязанных между собой скважинного нагревателя в виде регулируемых с поверхности нагревательных элементов и воздушной компрессионной камеры или узла гидрозащиты, с возможностью компенсации компрессионного воздействия нагретого теплоносителя. В устройство включены также внутренний датчик температуры и регулятор мощности, подаваемой на скважинный нагреватель, выполненный в виде тиристорного выпрямительного блока, управляемого соединенным с ним программируемым контроллером станции управления нагревом с основным показателем в виде температурных характеристик работы устройства. Техническим результатом является повышение эффективности теплового воздействия на околоскважинное пространство в районе установки скважинного нагревателя, увеличения притока жидкости из пласта и снижения вязкости скважинной жидкости перед приемным фильтром скважинного насоса. 2 н. и 2 з.п. ф-лы, 5 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения динамического или статического уровня жидкости в нефтедобывающей или водозаборной скважинах. Техническим результатом является повышение точности определения динамического или статического уровня жидкости в нефтедобывающей или водозаборной скважинах. Предложено разместить в скважине от устья до глубинного насоса или до продуктивного пласта бронированный многожильный кабель с датчиками давления, равномерно расположенными друг от друга по вертикальной составляющей скважины. Информация по давлению с этих датчиков постоянно подается на контроллер станции управления скважиной и интерпретируется в следующем порядке: определяется по первым двум датчикам коэффициент корреляции прямолинейной зависимости давления от вертикальной глубины скважины. В эту базу добавляется информация по третьему и далее датчику до тех пор, пока не понизится коэффициент корреляции. На конечной стадии расчетов контроллер находит уравнения зависимости давления от вертикальной глубины скважины для двух разных фаз: газовой и жидкостной. Уровень жидкости в скважине определяется как точка пересечения этих двух полученных прямых зависимостей. 1 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к нефтегазодобывающей промышленности, в частности к области эксплуатации и ремонта скважин и изоляции притока пластовых вод в горизонтальные скважины. Способ изоляции притока вод в необсаженном горизонтальном участке ствола добывающей скважины включает извлечение из скважины насосного оборудования, спуск колонны насосно-компрессорных труб (НКТ) в скважину и закачку водоизоляционного материала. После извлечения насосного оборудования из необсаженного ствола с горизонтальным участком добывающей скважины ниже необсаженного ствола с горизонтальным участком из добывающей скважины бурят дополнительный ствол с горизонтальным участком, вскрывающим вдоль водопроявляющий пласт. Причем забой горизонтального участка дополнительного ствола бурят длиннее - на расстоянии 50 м от забоя необсаженного ствола с горизонтальным участком добывающей скважины. Затем до забоя дополнительного ствола спускают колонну гибких труб (ГТ), осевым перемещением колонны ГТ от забоя к устью с одновременной подачей в колонну ГТ водоизоляционного материала производят изоляцию водопроявляющего пласта и дополнительного ствола до интервала его зарезки из добывающей скважины. Причем в качестве водоизоляционного материала используют смесь из высоковязкой и угленосной нефти в отношении 70% на 30%, а в качестве закрепляющего материала используют высоковязкую нефть с температурой 60-70°C. Затем извлекают из дополнительной скважины колонну ГТ, спускают в необсаженный ствол с горизонтальным участком добывающей скважины насосное оборудование и запускают добывающую скважину в эксплуатацию. В процессе эксплуатации добывающей скважины производят периодический отбор проб добываемой продукции. При повышении обводненности добываемой продукции выше допустимой величины производят извлечение из скважины насосного оборудования, выполняют геофизические исследования горизонтального участка ствола добывающей скважины и определяют интервал притока водопроявляющего пласта. После чего спускают в скважину колонну НКТ, оснащенную пакерами, отсекают изолируемый интервал пакерами с двух сторон и производят изоляцию интервала необсаженного ствола горизонтального участка добывающей скважины закачкой высоковязкой эмульсии, в качестве которой используется смесь из высоковязкой и товарной угленосной нефти в отношении 70% на 30%. При этом образующийся в скважине гидроизолирующий экран непроницаем для воды и пропускает нефть, так как вязкость эмульсии резко уменьшается при разбавлении нефтью. Затем вновь спускают насосное оборудование в необсаженный ствол горизонтального участка добывающей скважины и продолжают ее эксплуатацию. Техническим результатом является повышение качества и технологичности проведения водоизоляционных работ. 3 ил., 1табл.

Изобретение относится к средствам питания скважинной аппаратуры. Техническим результатом является повышение надежности и ресурса работы устройства, а также упрощение конструкции и его эксплуатации. Предложен турбогенератор, содержащий внутренний статор с обмоткой и внешний ротор с корпусом и рабочими лопатками турбины, установленный на подшипниках скольжения. При этом внутренние и внешние рабочие поверхности подшипников скольжения выполнены из твердого износостойкого материала с высокой теплопроводностью. Кроме того, турбогенератор содержит герметизирующий элемент, предотвращающий сквозной проток промывочной жидкости через зазор между статором и ротором. При этом герметизирующий элемент может быть выполнен в виде контактного уплотнения, установленного ниже верхнего подшипника. При этом на корпусе ротора выполнен один ряд окон, вход в которые расположен между верхним подшипником и контактным уплотнением на внутренней стороне корпуса ротора, а выход из которых расположен ниже рабочего колеса на внешней стороне ротора. Герметизирующий элемент может быть также выполнен в виде установленной на верхнем торце ротора крышки. 2 ил.

Предложены способ и инструментальный узел для контроля положения рабочего инструмента в стволе скважины. Техническим результатом является повышение точности позиционирования рабочего инструмента в скважине. Предложенный способ содержит следующие этапы: позиционируют рабочий инструмент, имеющий узел датчика, соединенный с ним, в пределах ствола скважины; перемещают рабочий инструмент в пределах ствола скважины; измеряют расстояние, пройденное рабочим инструментом в стволе скважины с узлом датчика путем обнаружения изменений магнитного поля, создаваемого магнитом, адаптированным для поворота на тот же угол, на какой поворачивается колесо, при этом магнит расположен на оси или в оси, которая проходит через колесо; и определяют положение рабочего инструмента в стволе скважины посредством сравнения пройденного расстояния относительно неподвижной точки отсчета. При этом рабочий инструмент содержит: рычаг, пружину, расположенную рядом с первым концом рычага, и колесо, расположенное рядом со вторым концом рычага, причем колесо выполнено с возможностью качения по стенке ствола скважины при перемещении рабочего инструмента в пределах ствола скважины. 4 н. и 14 з.п. ф-лы, 13 ил.

Изобретение относится к эксплуатации нефтедобывающих скважин с помощью глубинно-насосного оборудования и может использоваться в нефтедобывающей промышленности. Техническим результатом является повышение точности измерения уровня жидкости в скважине. Способ основан на известном законе Бойля-Мариотта, при котором произведение давления газа на его объем является величиной постоянной при изотермических процессах изменения давления и объема газа. По изобретению небольшой объем нефтяного газа, выпущенного из скважины, измеряется счетчиком газа и переводится в скважинные условия. Изменение объема газа ведет к изменению его давления в скважине, которое предложено оценивать как среднеарифметическое между устьевым давлением и давлением в зоне динамического уровня жидкости P(hдин). Последний параметр определяется по известной экспоненциальной формуле Лапласа-Бабинэ, в которой неизвестной величиной является динамический уровень жидкости в скважине (hдин). Динамический уровень жидкости в скважине определяется делением выпущенного объема газа в скважинных условиях на площадь межтрубного пространства скважины, в которой находится попутный нефтяной газ. Предложено техническую задачу решать в режиме итерации, для этого в первом приближении за hдин принимают максимально возможную ее величину при действующей насосной установке, а именно глубину насосной установки. Во втором цикле расчетов в расчетах P(hдин) используют величину динамического уровня, полученного в первом цикле итерации. Расчеты ведут до тех пор, пока величина динамического уровня жидкости не станет постоянной величиной. 1 ил.

Изобретение относится к способу бурения ствола скважины. Способ включает бурение ствола скважины посредством непрерывной бурильной колонны насосно-компрессорных труб, измерение по меньшей мере одного параметра посредством оптического волновода в бурильной колонне, причем измерение включает в себя этап, на котором определяют оптическое обратное рассеяние вдоль оптического волновода, и регулирование штуцера, тем самым вызывая приток флюида в ствол скважины или потерю флюида из ствола скважины, при этом измерение по меньшей мере одного параметра дополнительно включает в себя этап, на котором определяют приток или потерю флюида. 2 н. и 24 з.п. ф-лы, 8 ил.

Изобретение относится к области исследования состава и свойств многокомпонентных углеводородных систем в процессе разработки нефтегазоконденсатных месторождений методами ИК-спектрометрии. Содержание нефти и газового конденсата в продукции нефтегазоконденсатных скважин определяют ИК-спектрометрическим методом, включающим измерение спектра исследуемой пробы с помощью ИК Фурье-спектрометра и определение методом PLS массовых долей нефти и газового конденсата в соответствии с предварительно построенной калибровочной моделью, созданной по стандартам, представляющим собой образцы нефтегазоконденсатных смесей с известной концентрацией измеряемых компонентов. Изобретение позволяет оперативно, с высокой точностью и без пробоподготовки определять содержание нефти и газового конденсата в продукции нефтегазоконденсатных скважин, что позволяет своевременно корректировать режимы эксплуатации добывающих скважин. 5 ил., 1 табл.

Изобретение относится к нефтегазодобывающей отрасли промышленности, а именно к области технического обустройства нефтедобычи, и может быть использовано для обеспечения необходимых условий оперативного определения содержания основных фаз и компонентов в нефтегазовом флюиде, поступающем из скважины, при поточных измерениях количества и показателей качества. Технический результат заключается в обеспечении эффективного поддержания уровня раздела сред в емкости сепаратора при одновременном поддержании в заданных пределах превышения давления в емкости сепаратора над давлением в камере смешивания жидкости и газа. Согласно способу регулируют отвод жидкой и газообразной фаз из емкости сепаратора скважинного флюида по двум отдельным измерительным каналам, с обеспечением поточных измерений количественных показателей по жидкости и газу, с последующим объединением этих потоков в один для дальнейшего транспортирования. Регулятором расхода, установленным в газовой линии, поддерживают в заданных пределах превышение давления в емкости сепаратора над давлением в камере смешивания фаз, исходя из данных об изменении разности давлений сред, содержащихся в емкости сепаратора и в камере смешивания фаз, в то время как уровень жидкости в емкости сепаратора поддерживают регулятором расхода в жидкостной линии, исходя из данных об изменениях уровня жидкости в емкости сепаратора. 1 ил.

Изобретение относится к бурению нефтяных и газовых скважин и может быть использовано при автоматическом непрерывном контроле параметров буровых растворов в процессе разбуривания горных пород. При осуществлении способа при разбуривании продуктивного пласта с момента начала подхода к нему породоразрушающего инструмента в циркуляционной системе скважины одновременно и непрерывно осуществляют измерение влажности и плотности промывочной жидкости, по показаниям которых вычисляют текущее объемное содержание свободной воды в указанной жидкости по приведенной формуле, а водоотдачу определяют по мере углубления скважины по разности объемного содержания воды в промывочной жидкости на входе в разбуриваемый пласт и на выходе из него. Повышаются информативность и достоверность контроля, снижаются временные и трудовые затраты на проведение вспомогательных операций.
Наверх