Способ определения времени свёртывания крови и устройство для его осуществления


 


Владельцы патента RU 2559986:

Анисимов Андрей Николаевич (RU)
Мартюшов Геннадий Григорьевич (RU)

Изобретение относится к метрологии, а именно к средствам для клинических лабораторных исследований. Устройство для определения времени свертывания крови содержит средство для размещения пробы крови, два измерительных металлических электрода, расположенных в зоне размещения пробы крови с возможностью электрического контакта с пробой, и преобразователь сопротивления в электрический сигнал, подключенный к этим электродам. Также устройство содержит счетчик времени, выход которого соединен с дисплеем, логическое устройство, импульсный детектор и вычислитель второй производной электрического сигнала, поступающего с выхода преобразователя сопротивления в электрический сигнал, подаваемый на вход вычислителя и вход логического устройства. Выход вычислителя второй производной через импульсный детектор соединен со вторым входом логического устройства, выход которого соединен со счетчиком времени. Технический результат - повышение точности измерений. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к средствам для клинических лабораторных исследований, а именно к способам и устройствам для контроля и измерения параметров свертывания крови и в частности протромбинового времени и/или MHO (международного нормализованного отношения). Может быть использовано для персонального самостоятельного выполнения нуждающимися (больными) контроля и измерения данных показателей в домашних условиях.

Известен коагулограф для определения времени свертывания крови (Коблов Л.Ф. Методы и приборы для клинических лабораторных исследований. М.: Медицина. 1979. С. 51-57), содержащий специальную подвижную измерительную кювету, изготовленную из изоляционного материала (например, фторопласта), для размещения пробы крови, в дно которой вмонтированы два металлических электрода, выполненных с возможностью контакта с пробой крови при колебании кюветы, и измерительный преобразователь, подключенный к этим электродам.

Измерение времени свертывания крови с помощью коагулографа осуществляется путем регистрации момента возникновения непрерывного электрического тока в цепи электродов при замыкании зазора между ними нитями фибрина.

Недостатком коагулографа является необходимость использования специальной кюветы для пробы крови, что влечет за собой необходимость стерилизации этой кюветы в ходе массовых клинических анализов, большой объем анализируемой крови (до 0,2 мл) и сложность конструкции коагулографа.

Наиболее близким по технической сущности является устройство для определения времени свертывания крови (РСТ № 9406007, G01N 30/47, 1995). Устройство для определения скорости коагуляции жидкости, содержащее горизонтальную пластину, изготовленную из пористого изоляционного материала, для размещения пробы крови, два измерительных металлических электрода, расположенных в зоне размещения пробы крови с возможностью электрического контакта с этой пробой, и преобразователь сопротивления в электрический сигнал, подключенный к этим электродам. При прохождении пробы крови через поры горизонтальной пластины происходит коагуляция крови. Время свертывания определяют по электропроводности или полному электрическому сопротивлению между двумя электродами.

Недостатком описанного устройства является необходимость дополнительных исследований соответствия момента свертывания крови данным устройством и стандартным методом, а также отсутствие автоматизации лабораторных анализов времени свертывания крови.

Наиболее близким по технической сущности к предлагаемому является способ определения времени свертывания крови, при котором электрическое сопротивление электродов, расположенных в зоне размещения пробы крови, преобразуют в электрический сигнал, по времени затухания которого делается вывод о времени свертывания крови, и устройство для его осуществления, содержащее горизонтальную пластину, изготовленную из изоляционного материала, для размещения пробы крови, два измерительных металлических электрода, расположенных в зоне размещения пробы крови с возможностью электрического контакта с этой пробой, и преобразователь сопротивления в электрический сигнал, подключенный к этим электродам, отличающееся тем, что устройство снабжено дополнительным металлическим электродом, дополнительным преобразователем сопротивления в электрический сигнал, приводом возвратно-поступательного движения, подвижный шток которого выполнен с возможностью перемещения по вертикали, датчиком максимального вертикального положения штока, электронным устройством совпадения и электронным секундомером, при этом один из измерительных и дополнительный электроды выполнены в виде проволочек одинаковой длины, расположенных вертикально и укрепленных на фиксированном расстоянии друг от друга на изоляционной пластине, механически соединенной с концом штока привода, причем нижние свободные концы этих проволочек загнуты под прямым углом к вертикали, привод выполнен с возможностью погружения загнутых концов проволочек в пробу крови при движении штока, а вход дополнительного преобразователя сопротивления в электрический сигнал подключен к измерительному и дополнительному электродам, укрепленным на изоляционной пластине, при этом выход датчика вертикального положения штока и выходы обоих преобразователей сопротивления в электрический сигнал подключены ко входу электронного устройства совпадения, а его выход подключен к электронному секундомеру (см. Патент RU на изобретение №2187797, М.кл: G01N 27/02, опубл. 20.08.2002).

Такая конструкция устройства обеспечивает возможность абсолютных измерений времени свертывания крови и более точное определение момента образования фибринной нити при вытягивании электродов из пробы крови на фиксированную высоту за счет датчика максимального положения электродов и наличия дополнительного электрода. Однако это устройство конструктивно сложно, так как содержит подвижные механические части и их привод, так как четко не определен маркер, по которому заканчивается отсчет времени при увеличении сопротивления между электродами.

Техническим результатом предлагаемого изобретения является повышение точности измерения времени свертывания крови с одновременным упрощением устройства.

Поставленный технический результат достигается тем, что при определении времени свертывания крови, при котором электрическое сопротивление электродов, расположенных в зоне размещения пробы крови, преобразуют в электрический сигнал, по времени затухания которого делается вывод о времени свертывания крови, вывод о времени свертывания крови делается после образования скачка при вычислении второй производной изменения по времени электрического сигнала, при этом устройство для определения времени свертывания крови, содержащее средство для размещения пробы крови, два измерительных металлических электрода, расположенных в зоне размещения пробы крови с возможностью электрического контакта с этой пробой, и преобразователь сопротивления в электрический сигнал, подключенный к этим электродам, счетчик времени, выход которого соединен с дисплеем, дополнительно содержит логическое устройство, импульсный детектор и вычислитель второй производной электрического сигнала, поступающего с выхода преобразователя сопротивления в электрический сигнал на вход вычислителя и вход логического устройства, выход вычислителя второй производной через импульсный детектор соединен со вторым входом логического устройства, выход которого соединен со счетчиком времени, при этом электроды жестко размещены в средстве для размещения пробы крови, при этом средство для размещения пробы крови может быть выполнено с возможностью отделения от остальной части.

Предлагаемый способ определения времени свертывания крови осуществляется следующим образом.

Экспериментально установлено, что изменение сопротивления между электродами, расположенными в зоне размещения пробы крови является нелинейной функцией по времени. При этом момент свертывания определяется по характерному изменению сопротивления между электродами. Для этого измеренная функция изменения сопротивления образца дважды дифференцируется по времени, и момент скачкообразного изменения второй производной этой функции признается за момент свертывания крови.

Устройство для реализации предложенного способа реализуется с помощью устройства, схематично показанного на чертеже.

Устройство для определения времени свёртывания крови содержит средство 1 для размещения пробы крови, два измерительных металлических электрода 2 и 3, расположенных в зоне размещения пробы крови с возможностью электрического контакта с этой пробой, преобразователь 4 сопротивления в электрический сигнал. Входы преобразователя 4 сопротивления в электрический сигнал подключены к электродам 2 и 3. Устройство также содержит счётчик 5 времени, выход которого соединён с дисплеем 6, логическое устройство 7, роль которого может выполнять например RS-триггер, импульсный детектор 8 и вычислитель 9 второй производной электрического сигнала, поступающего с выхода преобразователя 4 сопротивления в электрический сигнал на вход вычислителя 9 и вход логического устройства 7. Выход вычислителя 9 второй производной через импульсный детектор 8 соединён со вторым входом логического устройства 7. Выход логического устройства 7 соединен со счётчиком 5 времени. Электроды 2 и 3 жёстко размещены в средстве для размещения пробы крови. Средство 1 для размещения пробы крови может быть выполнено с возможностью отделения от остальной части, как это показано на чертеже. Средство 1 для размещения пробы крови может быть выполнено в виде пластикового корпуса. Внутренняя полость корпуса может содержать активатор свертываемости (например, белок протромбин) в виде высушенного слоя, наносимого при сборке сенсора. Для исключения ложных показаний корпус средства 1 выполнен в виде замкнутой емкости (сосуда) с отверстием (горловиной) для заполнения кровью. Внутренняя поверхность корпуса средства 1 может иметь гидрофильный характер для надежного заполнения кровью без образования пузырей воздуха.

Вce элементы устройства запитаны от одного блока питания (на чертеже не показан).

Устройство работает следующим образом.

Пользователь перед измерением приводит прибор в рабочее состояние, включает прибор (элементы включения приборы на чертеже не показаны), предварительно подключив средство 1 для размещения пробы крови к средствам измерения. Далее прокалывает кожу пальца ланцетом и вносит 1-2 капли крови в отверстие средства 1 для размещения пробы крови (при этом вне зависимости от того, сколько капель, одна или две крови внесено в средство 1 электроды 2 и 3 должны полностью быть покрыты кровью). При этом резко уменьшается сопротивление между электродами 2 и 3. С преобразователя 4 сопротивления в электрический сигнал подаётся сигнал на вычислитель 9 и на логическое устройство 7, с выхода которого подаётся сигнал на начало работы счётчика 5 времени с выводом результата измерения на дисплей 6. В процессе измерения происходит измерение модуля полного электрического сопротивления образца крови и анализ его изменения во времени. Момент свертывания крови определяется по характерному изменению характера изменения сопротивления. Для этого измеренная функция изменения сопротивления образца крови дважды дифференцируется по времени и в момент скачкообразного изменения второй производной этой функции подаётся импульс на детектор 8, с которого сигнал подаётся на логическое устройство 7, сигналом с выхода которого отключается счётчик 5 времени с сохранением информации на дисплее 6, а значит, с показанием времени свертывания крови.

Высокая точность измерения с одновременной простотой устройства является достоинством и преимуществом предлагаемого технического решения по сравнению с прототипом.

1. Устройство для определения времени свертывания крови, содержащее средство для размещения пробы крови, два измерительных металлических электрода, расположенных в зоне размещения пробы крови с возможностью электрического контакта с пробой, и преобразователь сопротивления в электрический сигнал, подключенный к этим электродам, счетчик времени, выход которого соединен с дисплеем, отличающееся тем, что дополнительно содержит логическое устройство, импульсный детектор и вычислитель второй производной электрического сигнала, поступающего с выхода преобразователя сопротивления в электрический сигнал на вход вычислителя и вход логического устройства, выход вычислителя второй производной через импульсный детектор соединен со вторым входом логического устройства, выход которого соединен со счетчиком времени.

2. Устройство по п. 1, отличающееся тем, что электроды жестко размещены в среде для размещения пробы крови.

3. Устройство по п. 1, отличающееся тем, что средство для размещения крови выполнено с возможностью отделения от остальной части.



 

Похожие патенты:

Изобретение относится к способу прогнозирования конечной фактической прочности бетона, включающего кондуктометрическое измерение удельного электрического сопротивления и температуры в процессе твердения образцов бетонных смесей в режиме реального времени с последующей оценкой фактической механической прочности на сжатие образцов бетона заданного класса.

Изобретение относится к блоку управления для двигателя внутреннего сгорания. Устройство управления для двигателя внутреннего сгорания содержит: датчик твердых частиц, установленный в выхлопном патрубке двигателя внутреннего сгорания, захватывающий частицы фильтр, выполненный с возможностью захватывать твердые частицы, содержащиеся в выхлопном газе, и расположенный в выхлопном патрубке в месте выше по потоку относительно датчика твердых частиц; электронный блок управления, выполненный с возможностью обнаруживать количество частиц в выхлопном газе через выхлопной патрубок в ответ на выходной сигнал датчика твердых частиц; электронный блок управления, выполненный с возможностью подавать напряжение захвата частиц между электродами датчика твердых частиц во время первого периода с тем, чтобы формировать слой частиц на поверхностях электродов датчика твердых частиц; и электронный блок управления, выполненный с возможностью останавливать подачу напряжения захвата частиц во время второго периода для того, чтобы поддерживать слой частиц, и электронный блок управления, выполненный с возможностью исполнять управление обнаружением отказа для того, чтобы определять, имеет место отказ захватывающего частицы фильтра или нет.

Изобретение относится к медицине, а именно к лабораторной диагностике, и может быть использовано для определения концентрации С-реактивного протеина в сыворотке крови в лунках иммунологического планшета.

Изобретение относится к области определения электрофизических параметров порошковых материалов, а также к области определения значений параметров, характеризующих физико-химические свойства материалов, по величине электрического сопротивления.

Использование: для обнаружения утечки гексафторида урана и/или фтористого водорода. Сущность изобретения заключается в том, что детектор состоит из цилиндрической диэлектрической подложки, слоя электропроводного лакокрасочного материала с диспергированным порошкообразным графитовым наполнителем, нанесенного на диэлектрическую подложку, электрических контактов и электропроводов для подключения источника постоянного тока к слою электропроводного лакокрасочного покрытия.

Способ неинвазивного контроля содержания метаболитов в крови, включающий многократное измерение с помощью матрицы датчиков показаний электромагнитного импеданса в эпидермальном слое пациента и в одном из слоев, включающих кожный слой или подкожный слой пациента, пока разность между показаниями не превысит пороговую величину; вычисление величины импеданса, отображающей указанную разность, с использованием модели эквивалентной схемы и данных индивидуального поправочного коэффициента, характерных для физиологической характеристики пациента; и определение уровня содержания метаболитов в крови пациента на основании величины импеданса и алгоритма определения уровня содержания метаболитов в крови, в котором данные уровня содержания метаболитов в крови сопоставляются с соответствующим значением данных электромагнитного импеданса пациента.

Изобретение относится к способу и системе автоматизированного контроля процессов в первичных и вторичных отстойниках или отстойниках-илоуплотнителях очистных сооружений объектов водоотведения жилищно-коммунального хозяйства.

Изобретение может быть использовано в системах контроля водно-химического режима для тепловой, атомной и промышленной энергетики. Cпособ определения концентрации компонентов смеси высокоразбавленных сильных электролитов включает одновременное измерение удельной электропроводности и температуры анализируемого раствора при разных температурах в количестве, равном количеству компонентов раствора, решение системы уравнений электропроводности в количестве, равном числу измерений, каждое из которых имеет определенный вид, с определением при решении уравнений значений удельной электропроводности при температуре 18°С для каждого из компонентов смеси и нахождение по известным (справочным) данным соответствующей им концентрации.

Изобретение относится к контрольно-измерительной технике и предназначено для использования в нефтедобывающей промышленности для исследования пластов, определения их остаточной водонасыщенности, для оперативного контроля влажности на нефтепромысловых скважинах.

Изобретение относится к измерительной технике, в частности к устройствам определения электрических свойств материалов, и может быть использовано для создания веществ, обладающих требуемыми зависимостями удельной электропроводности от давления, которые применяются, например, при оценке изменения во времени горного давления в породных массивах.
Изобретение относится к области материаловедения, в частности к способам определения критической концентрации одной из фаз в многофазной системе. Способ определения типа матрицы композитов металл-диэлектрик основан на том, что для определения типа матрицы предварительно измеряют электрическое сопротивление образца композита металл-диэлектрик при комнатной температуре, после чего указанный образец подвергают вакуумному изотермическому отжигу при температурах 300-400°C в течение 30 минут, после чего определяют электрическое сопротивление отожженного материала и сравнивают его с исходным значением. По увеличению значения электрического сопротивления образца устанавливают, что концентрация металлической фазы композита ниже значения, соответствующего порогу перколяции, и матрицей является диэлектрическая фаза со всеми соответствующими характеристиками, а при уменьшении значения электрического сопротивления композитного материала после термообработки определяют, что сплошной средой испытуемого композита является металлическая фаза.
Наверх