Лазерный дальномер

Изобретение относится к измерительной технике и может быть использовано в любой области, где необходимо определить скорость движущегося объекта и расстояние до него, в частности для автоматического определения высоты и вертикальной скорости летательного аппарата. Лазерный дальномер содержит лазерный передатчик, приемник отраженного объектом излучения, последовательно включенные многоканальный накопитель, связанный с тактовым генератором, и измеритель дальности. При этом на выходе приемника введен коммутатор. Первый выход коммутатора соединен со входом многоканального накопителя, а на втором выходе коммутатора введены последовательно включенные блок временной фиксации и блок интерполяции, связанный с тактовым генератором. Между выходом измерителя дальности и управляющим входом коммутатора введен блок переключения режимов. Технический результат заключается в обеспечении измерений с борта летательного аппарата его высоты и вертикальной составляющей скорости как в стационарном полете, так и в при взлете и посадке в широком диапазоне высот и режимов подъема и снижения. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано в любой области, где необходимо определить скорость движущегося объекта и расстояние до него, в частности для контроля рельефа подстилающей поверхности и управления режимом посадки летательного аппарата (ЛА).

Известен лазерный дальномер, содержащий лазерный передатчик, приемник отраженного объектом излучения и измеритель дальности на основе измерителя временного интервала между зондирующим и отраженным целью импульсами [1].

Недостатком этого дальномера является недостаточная дальность действия при использовании в качестве передатчика полупроводникового лазера.

Наиболее близким по технической сущности к предлагаемому устройству является лазерный дальномер с некогерентным накоплением отраженного сигнала [2], содержащий лазерный передатчик, приемник отраженного объектом излучения, последовательно включенные многоканальный накопитель, связанный с тактовым генератором, и измеритель дальности.

Данное устройство позволяет проводить измерения значительных высот [4], но не обладает возможностью измерения вертикальной составляющей скорости ЛА в режимах его взлета и посадки.

Задачей изобретения является обеспечение измерений с борта летательного аппарата его высоты и вертикальной составляющей скорости как в стационарном полете, так и в при взлете и посадке в широком диапазоне высот и режимов подъема и снижения.

Указанная задача решается за счет того, что в известном лазерном дальномере, содержащем лазерный передатчик, приемник отраженного объектом излучения, последовательно включенные многоканальный накопитель, связанный с тактовым генератором, и измеритель дальности, на выходе приемника введен коммутатор, первый выход которого соединен со входом многоканального накопителя, а на втором выходе коммутатора введены последовательно включенные блок временной фиксации и блок интерполяции, связанный с тактовым генератором, а между управляющим входом коммутатора и выходами измерителя дальности и блока интерполяции введен блок переключения режимов.

На фиг. 1 представлена схема дальномера-скоростемера, реализующего предлагаемый способ.

Устройство содержит передатчик 1 и приемник 2, подключенный к коммутатору 3 с двумя выходами. На одном из выходов коммутатора включен многоканальный накопитель 4, связанный с измерителем дальности 5. Между выходом измерителя дальности и управляющим входом коммутатора включен блок переключения режимов 6, связанный также с блоком управления 7. На втором выходе коммутатора 3 включен блок временной фиксации 8, связанный с блоком интерполяции 9. Блок интерполяции и измеритель дальности синхронизируются времязадающим тактовым генератором 10.

В начале процесса измерений высоты и дальности летательного аппарата по команде с блока управления 7 коммутатор 3 переключает выход приемника 2 на вход блока временной фиксации 8, и блок интерполяции вычисляет вертикальную скорость и высоту ЛА. В моменты времени Тi производят серию измерений дальности в моноимпульсном режиме. Количество m зондирований определяется заданным периодом обновления информации и требованиями по точности. Оценки дальности до объекта R0 в начальный момент измерения и скорости объекта V формируются в блоке интерполяции 9 по формулам

где

R0 - оценка дальности до объекта в момент времени T1;

V - оценка скорости объекта;

Ri=с·ti/2 - результат измерения дальности до объекта в i-м зондировании;

Тi - моменты времени, в которые произведены замеры дальности Ri;

с - скорость света;

m - количество замеров дальности в серии;

ti - задержка между моментами излучения лазерного импульса и приема отраженного объектом излучения в i-м зондировании.

Дальность до объекта R и его относительная скорость V определяются в блоке интерполяции 9 путем линейной интерполяции результатов измерений в виде R(t)=Vt+R0, где R(t) - текущая дальность до объекта; t - текущее время, отсчитываемое от начала серии зондирований; V - оценка скорости; R0 - оценка дальности до объекта при t=0. Оценка дальности может быть определена для любого момента времени t, в том числе для момента окончания серии зондирований t=Tm. Эта оценка подается на вход блока переключения режимов 6.

Если в какой-то момент измеренное значение R начинает превышать заданную величину Rmax, то блок переключения режимов 6 переключает выход коммутатора 3 на вход многоканального накопителя 4, синхронизируемого тактовым генератором 10, и производится серия зондирований цели по методу некогерентного накопления [2]. По окончании процесса накопления, то есть по достижении накопленной суммой необходимого уровня хотя бы в одной ячейке дальности, измеритель дальности анализирует массив накопленных данных, определяя положение накопленного массива относительно временной шкалы по установленному критерию [2], например по максимуму корреляционной функции W ( p ) = j = 1 P max S 0 j S j + p , где j - порядковый номер ячейки дальности; Рmax - максимальное число ячеек дальности, соответствующее диапазону измерения дальности; {S0j} - массив выборочных значений зондирующего импульса; {Sj} - массив накопленных значений принятых реализаций; р - текущее количество шагов при пошаговом сдвиге {Sj}. Затем измеритель дальности 5 определяет дальность R по формуле R=сРΔt/2, где с - скорость света; Р - номер ячейки дальности, соответствующий положению накопленного массива; Δt - длительность тактового интервала. Вертикальная составляющая скорости V в этом случае может быть определена как относительное приращение высоты R за период Т между j-м и (j-1)-м измерениями V=(Rj-Rj-1)/T.

Если измеренная дальность R больше предварительно заданного значения Rmax, определяемого полетным заданием летательного аппарата, то измерения продолжаются в описанном режиме. При посадке летательного аппарата, то есть когда R<R0, блок переключения режимов переключает коммутатор на выход, связанный с блоком временной фиксации, и измерения проводятся в описанном выше моноимпульсном режиме.

Данное изобретение позволяет:

- увеличить измеряемую высоту летательного аппарата до 1000-2000 м;

- уменьшить минимальную измеряемую высоту до 2 м;

- обеспечить минимальный период обновления информации порядка 1 с на больших высотах и до 0,1 с - на малых;

- обеспечить минимальную ошибку измерения скорости 0,01-0,1 м/с в зависимости от длительности серии зондирований и количества замеров в серии;

- интерполировать результаты к любому моменту периода измерений или экстраполировать их на заданное время вперед.

Эти выводы подтверждены испытаниями макетных образцов высотомера-скоростемера [4, 5]. Тем самым подтверждено решение поставленной задачи - обеспечение измерений с борта летательного аппарата его высоты и вертикальной составляющей скорости как в стационарном полете, так и при взлете и посадке в широком диапазоне высот и режимов подъема и снижения.

Источники информации

1. В.А. Смирнов. Введение в оптическую радиоэлектронику. М.: Советское радио, 1973, с. 189.

2. В.Г. Вильнер и др. Оценка возможностей светолокационного измерителя дальности с накоплением // Фотоника, 2007, №6, с. 22-26 - прототип.

3. Способ определения дальности и/или скорости удаленного объекта. Патент РФ №2378705.

4. Малогабаритный лазерный высотомер ДЛ-5М // Фотоника, №3, 2013, с. 55.

5. В.Г. Вильнер и др. Пути достижения предельной точности лазерного скоростемера // Мир измерений, №7, 2010, с. 17-21.

Лазерный дальномер, содержащий лазерный передатчик, приемник отраженного объектом излучения, последовательно включенные многоканальный накопитель, связанный с тактовым генератором, и измеритель дальности, отличающийся тем, что на выходе приемника введен коммутатор, первый выход которого соединен со входом многоканального накопителя, а на втором выходе коммутатора введены последовательно включенные блок временной фиксации и блок интерполяции, связанный с тактовым генератором, а между управляющим входом коммутатора и выходами измерителя дальности и блока интерполяции введен блок переключения режимов.



 

Похожие патенты:

Изобретение относится к способу определения высоты летательного аппарата. При реализации способа осуществляется N-кратное зондирование подстилающей поверхности импульсами лазерного излучения и его некогерентное накопление принятого отражённого от объекта сигнала.

Изобретение относится к оптическим устройствам для бесконтактного измерения дальности и может использоваться при производстве лазерных дальномеров или тахеометров.

Изобретение относится к области формирования и обработки изображений, предназначено для измерения расстояний до наблюдаемых предметов и определения оптических передаточных функций устройства, при помощи которых сформированы обрабатываемые изображения, дополнительно позволяет оценивать погрешность измерений.

Изобретение относится к измерительной технике, для измерения расстояния до различных предметов на местности, с использованием излучения лазеров. Дальномер содержит импульсный полупроводниковый лазер с оптической системой, схему накачки лазера, лавинный фотодиод с оптической системой, последовательно соединенный с усилителем фотодетектированных сигналов, управляемый источник питания (УИП) для лавинного фотодиода, умножитель, фильтр нижних частот (ФНЧ), аналого-цифровой преобразователь (АЦП), микроконтроллер (МК), цифроаналоговый преобразователь (ЦАП), инвертирующий усилитель, два компаратора, трехвходовой мультиплексор, сумматор, два двухвходовых мультиплексора, оперативное запоминающее устройство (ОЗУ), генератор тактовых импульсов, счетчик адреса, счетчик количества накоплений, три схемы сравнения, триггер, индикатор дальности.

Устройство может быть использовано для контроля лазерного дальномера с концентричным расположением передающего и приемного каналов. Устройство содержит входную собирающую и выходную коллимирующую оптические системы, связанные между собой волоконно-оптической линией задержки, выполненной в виде световода.

Изобретение относится к способам дистанционного определения толщины снежного покрова и может быть использовано с целью прогнозирования лавинной опасности. Сущность: последовательно проводят летние и зимние зондирования склона с использованием лазерного дальномера.

Изобретение относится к области лазерной техники, а именно к лазерной дальнометрии. Способ лазерного дальнометрирования включает в себя посыл на цель серий лазерных импульсов, прием отраженных сигналов с последующим вычислением дальности до цели.

Изобретение относится к устройствам для оптического измерения расстояния до целевого объекта. Измерительное устройство содержит излучатель для испускания измерительного оптического излучения в направлении целевого объекта, приемник, имеющий регистрирующую поверхность для регистрации измерительного оптического излучения, возвращающегося от целевого объекта, и блок обработки данных.

Устройство калибровки принимает входные данные двух опорных изображений и множественных элементов данных параллакса. Два опорных изображения захватываются одним из устройств формирования изображения в двух местоположениях.

Изобретение относится к области оптического приборостроения, а именно к приемной линзовой системе для оптического дальномера, а также к оптическому дальномеру с такой приемной линзовой системой.

В способе определения расстояния до объекта используется видеоизмерительное устройство, включающее первый излучатель света и второй излучатель света, при этом первый излучатель света может испускать свет через отверстие по меньшей мере с одним тенеобразующим элементом. Способ включает захват по меньшей мере одного первого изображения при включенном первом излучателе света и отключенном втором излучателе света, захват по меньшей мере одного второго изображения при включенном втором излучателе света и отключенном первом излучателе света, определение первого множества значений яркости пикселей в упомянутом по меньшей мере одном первом изображении, определение второго множества значений яркости пикселей в упомянутом по меньшей мере одном втором изображении, определение отношений яркостей второго множества значений яркости к первому множеству значений яркости и определение расстояния до объекта с использованием упомянутых отношений яркости. Технический результат - повышение точности измерения. 2 н. и 18 з.п. ф-лы, 11 ил.

Изобретение относится к измерительной технике определения высоты и вертикальной скорости летательного аппарата. Устройство обеспечивает возможность работы в двух режимах. Сигнал от источника направляется на объект, и приемник излучения фиксирует отраженный от объекта сигнал. От приемника излучения посредством коммутатора сигнал передается на многоканальный цифровой накопитель. При этом отслеживается достижение накопленным сигналом установленного уровня. Если сигнал не достигает установленного уровня, то работа устройства производится по методу некогерентного многоканального накопления. Если будет отмечено превышение порога, то работа устройства производится в моноимпульсном режиме. Технический результат изобретения заключается в обеспечении измерений с борта летательного аппарата его высоты и вертикальной составляющей скорости как в стационарном полете, так и при взлете и посадке в широком диапазоне высот и режимов подъема и снижения. 2 ил.

Изобретение относится к способу определения высоты и вертикальной скорости летательного аппарата. Способ включает в себя многократное зондирование объекта импульсами лазерного излучения, прием и регистрацию отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты, образующим ячейки дальности, и статистическую обработку зарегистрированных данных. При этом производят серию зондирований способом некогерентного накопления, если принятый сигнал меньше порогового значения, которое определяется заданной вероятностью F ложного срабатывания. И если принятый сигал больше порогового значения, то зондирование производят в моноимпульсном режиме измерения дальности и скорости. Технический результат - обеспечение измерений с борта летательного аппарата его высоты и вертикальной составляющей скорости как в стационарном полете, так и при взлете и посадке в широком диапазоне высот и режимов подъема и снижения. 2 з.п. ф-лы, 3 ил.

Изобретение относится к устройству для автоматического определения высоты и вертикальной скорости летательного аппарата. Устройство содержит лазерный передатчик, приемник отраженного объектом излучения, последовательно включенные многоканальный накопитель, связанный с тактовым генератором, и измеритель дальности. На выходе приемника введен коммутатор, первый выход которого соединен со входом многоканального накопителя, а на втором выходе коммутатора введены последовательно включенные блок временной фиксации и блок интерполяции, связанный с тактовым генератором, а управляющий вход коммутатора связан с бортовой системой управления полетом ЛА. Технический результат изобретения заключается в обеспечении измерений с борта летательного аппарата его высоты и вертикальной составляющей скорости как в стационарном полете, так и при взлете и посадке в широком диапазоне высот и режимов подъема и снижения. 2 з.п. ф-лы, 2 ил.

Способ определения дальности и скорости удаленного объекта заключается в многократном зондировании объекта импульсами лазерного излучения, приеме и регистрации отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты и статистической обработке зарегистрированных данных. При этом производят первую серию зондирований способом некогерентного накопления и определяют дальность R до объекта, после чего, если измеренная дальность R превышает заданную величину Rmin, то продолжают проводить измерения в указанном режиме некогерентного накопления, а если R не превышает Rmin, то включают моноимпульсный режим измерения дальности и скорости. Технический результат изобретения заключается в обеспечении измерений с борта летательного аппарата его высоты и вертикальной составляющей скорости как в стационарном полете, так и при взлете и посадке в широком диапазоне высот и режимов подъема и снижения. 2 з.п. ф-лы, 1 ил., 1 табл.

Изобретение касается прецизионного датчика расстояния. Особенностью указанного датчика является то, что приемная схема выполнена двухканальной и состоит из оптической системы, включающей две ромб-призмы и два отклоняющих клина, и приемной проекционной системы, включающей цилиндрическую линзу и сферический объектив, а в качестве фотодетектора использована двухкоординатная ПЗС-матрица, выход которой подключен к персональному компьютеру или контроллеру. Технический результат заключается в повышении абсолютной и относительной точности измерений. 2 ил.

Изобретение относится к области оптического приборостроения, а именно, к устройствам наблюдения объектов и прицеливания, а также к устройствам для наведения управляемых ракет на цель по лазерному лучу, и может быть использовано в системах управления огнем объектов бронетанковой техники. Прицел системы управления огнем содержит визирный канал с системой наблюдения, систему стабилизации оси визирного канала, включающую электрически связанные блок зеркала и блок управления, систему баллистического вычислителя, включающую электрически связанные один или более датчиков и блок вычислителя, электрически связанный с блоком управления. При этом блок вычислителя содержит модуль первичной обработки сигналов, двухканальный модуль вычисления баллистических поправок и модуль коммутации режимов. Блок управления содержит электрически связанные модуль управления и модуль коммутации, который включает электрически связанные первый цифроаналоговый преобразователь, первый сумматор и первый ключ, а также электрически связанные второй цифроаналоговый преобразователь, второй сумматор и второй ключ, при этом модуль первичной обработки сигналов электрически связан как с модулем вычисления баллистических поправок, так и электрически связан с одним или более датчиками. Модуль коммутации режимов электрически связан с системой управления огнем и с двухканальным модулем вычисления баллистических поправок, который электрически связан с визирным каналом. Техническим результатом является расширение функциональных возможностей прицела системы управления огнем и повышение точности стрельбы. 3 з.п. ф-лы, 1 ил.

Способ измерение расстояния до объектов, их угловых координат и взаимного расположения включает в себя облучение во множестве направлений, перекрывающих в совокупности поле обзора и образующих матрицу смежных оптических каналов, каждому оптическому каналу ставится в соответствие определенное угловое направление, а дальность до точки объекта вычисляется в оптических каналах поочередно в соответствии с заданной последовательностью. При этом в устройстве, которое реализует способ, оси излучения лазерных излучателей, формирующих матрицу лазеров, последовательно развернуты по азимуту и высоте на угол расходимости лазерного излучения. Технический результат заключается в увеличении быстродействия лазерных сканеров за счет исключения оптико-механического сканирования. 2 н.п. ф-лы, 1 ил.

Способ определения пространственного положения объектов обеспечивает облучение объекта через двумерную дифракционную решетку, что обеспечивает образование матрицы смежных оптических каналов. При этом каждому оптическому каналу задают определенное угловое направление. Сигнал в каждом оптическом канале поступает на соответствующий элемент матрицы приемников излучения, а дальность до точки объекта вычисляется в каждом из оптических каналов. При этом в устройстве, реализующем способ, лазерный излучатель снабжен расширителем пучка, за которым установлена двумерная дифракционная решетка. Приемник излучения выполнен в виде матрицы элементов, оптически сопряженных через приемный объектив с дифракционной картиной, а блок управления излучением лазера выполнен в виде модулятора и генератора опорного сигнала, подключенного одновременно к модулятору и процессору. Изобретение обеспечивает повышение быстродействия при формировании облака точек, определяющих угловые координаты и дальность каждой отражающей площадки объекта. 2 н.п. ф-лы, 1 ил.

Лазерный дальномер содержит импульсный полупроводниковый лазер, оптическую систему, генератор тактовых импульсов, счетчик импульсов, устройство с индикатором, ключевую схему, фотоприемник, линию задержки, схему совпадения. Также дальномер содержит сумматор и устройство поворота изображения, обеспечивающее поворот изображения - призма Дове - излучающей площадки импульсного полупроводникового лазера таким образом, что в плоскости, перпендикулярной линии визирования, поочередно будут сформированы две плоские фигуры, симметричные относительно центра, причем границы каждой фигуры образованы овалом, большие оси симметрии двух фигур перпендикулярны. Технический результат заключается в повышении точности измерений. 3 ил.
Наверх