Способ аспирационной оптической спектрометрии дисперсной среды



Способ аспирационной оптической спектрометрии дисперсной среды
Способ аспирационной оптической спектрометрии дисперсной среды
Способ аспирационной оптической спектрометрии дисперсной среды

 


Владельцы патента RU 2560142:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный гидрометеорологический университет" (RU)

Изобретение относится к области метеорологии, а более конкретно - к способам определения характеристик загрязнения атмосферы, и может использоваться, например, для измерения размеров частиц атмосферного аэрозоля. Поляризованное излучение направляют на область, не пропускающую направленное поляризованное излучение, фокусируют излучение в счетном объеме, находящемся перед этой областью, измеряют излучение за этой областью, пропускающей излучение, рассеянное в счетном объеме, и определяют размер частицы дисперсной среды в счетном объеме по измеренному излучению. Изобретение обеспечивает повышение точности определения за счет более полного исключения влияющих факторов. 1 ил.

 

Изобретение относится к области метеорологии, а более конкретно - к способам определения характеристик загрязнения атмосферы, и может использоваться, например, для измерения размеров частиц атмосферного аэрозоля.

Известен способ оптической спектрометрии дисперсной среды [1], при осуществлении которого используется малоугловое рассеяния света.

Этот известный способ обладает ограниченностью по углу рассеяния, поскольку он предполагает введение экрана. Таким образом отсутствует возможность выполнения измерений при углах рассеяния, меньших углового размера экрана.

Наиболее близким к предлагаемому изобретению является известный способ аспирационной оптической спектрометрии дисперсной среды [2], использующийся в счетчике частиц «AERO TRAK 9303», при котором фокусируют излучение лазера в счетном объеме, устраняют излучение лазера, применяя световую ловушку, и осуществляют прием рассеянного света.

В этом известном решении отсутствует возможность выполнения измерений при углах рассеяния, меньших углового размера световой ловушки.

Техническим результатом изобретения является повышение точности определения дисперсного состава среды за счет уменьшения углов рассеяния света. Известно, что с уменьшением угла рассеяния уменьшается зависимость результата определения размера частицы от ее свойств, особенно для частиц грубодисперсной фракции. Уменьшение углов рассеяния достигается благодаря использованию эффекта поляризации света, что позволяет отказаться от использования световой ловушки (экрана) или уменьшить их угловые размеры.

В предлагаемом способе используют некоторые существенные признаки прототипа, а именно в нем осуществляют процесс аспирации; фокусируют излучение лазера в счетном объеме; осуществляют прием рассеянного света.

Существенными отличительными признаками предлагаемого способа является то, что поляризованное излучение направляют на область, не пропускающую направленное поляризованное излучение, фокусируют излучение в счетном объеме, находящемся перед этой областью, измеряют излучение за этой областью, пропускающей излучение, рассеянное в счетном объеме, и определяют размер частицы дисперсной среды в счетном объеме по измеренному излучению.

Указанные существенные отличия позволяют повысить точность за счет более полного исключения засветки, вызванной лазерным излучением.

Физические принципы, на которых основаны измерения предлагаемым способом, состоят в том, что лазерное излучение является поляризованным, его можно не пропустить к приемнику. Рассеянное излучение содержит как составляющую, которая не пройдет к приемному устройству вместе с лазерным излучением, так и составляющую, которую удастся измерить.

Пример реализации способа.

Сущность изобретения пояснена на фиг. 1.

Для аспирационной оптической спектрометрии дисперсной среды используют прибор типа счетчика частиц «AERO TRAK 9303», в котором в качестве источника излучения используется лазер 1 с системой линз 2. Как и в счетчике частиц «AERO TRAK 9303», лазерное излучение фокусируют в счетном объеме 3. В отличие от счетчика частиц «AERO TRAK 9303» рассеянное излучение принимают, в том числе, под нулевым углом, где минимально влияние свойств частицы. Для устранения засветки от лазера между приемником и счетным объемом помещают поляроид 4, который не пропускает излучение от лазера. Излучение, рассеянное частицей, включает две составляющие:

причем лишь одну из этих составляющих не пропускает поляроид. Таким образом, засветка от лазера устраняется, а после прохождения системы линз 5 фотодетектором 6 принимается излучение, рассеянное частицей. По принятому излучению судят о размере частицы.

Обоснование существенности признаков. Как следует из описания, каждый из указанных признаков необходим, а вся их неразрывная совокупность достаточна для достижения технического результата - повышения точности измерений за счет более полного исключения влияющих факторов.

Обоснование изобретательского уровня. Заявляемый способ был проанализирован на соответствие критерию «изобретательский уровень». Для этого были исследованы близкие признаки известных решений как в данной, так и в смежных областях техники. Так, по источнику [3] был выявлен признак фокусировки излучения в счетном объеме. Однако в этом известном решении [3] до фокусировки часть излучения лазера отводится на дополнительное приемное устройство. Именно благодаря этому достигается технический результат способа [3]. Однако при этом имеет место снижение точности определения размеров частиц. В заявляемом же способе данный недостаток исключен.

Таким образом, по мнению заявителя и авторов, предлагаемое техническое решение способа аспирационной оптической спектрометрии дисперсной среды в своей неразрывной совокупности признаков является новым, явным образом не следует из уровня техники и позволяет получить важный технический результат - повышение точности определений за счет более полного исключения влияющих факторов.

Источники информации

1. Патент №2321840. Способ определения параметров частиц, взвешенных в жидкости, по спектрам малоуглового рассеяния света и устройство для его осуществления / Левин А.Д. Бюллетень изобретений №10, 2008.

2. Челибанов В., Исаев Л. Приборы для контроля чистых помещений / ЭЛЕКТРОНИКА: Наука, Технология, Бизнес №7, 2009, с. 48-50 (прототип).

3. Патент №2356028. Устройство для экспресс-анализа промышленной чистоты жидкостей / Бухалов В.А., Лесников Е.В., Стуканов Ф.Ф. Бюллетень изобретений №14, 2009.

Способ аспирационной оптической спектрометрии дисперсной среды, при котором фокусируют излучение в счетном объеме, отличающийся тем, что поляризованное излучение направляют на область, не пропускающую направленное поляризованное излучение, фокусируют излучение в счетном объеме, находящемся перед этой областью, а измеряют излучение за этой областью, пропускающей излучение, рассеянное в счетном объеме, и определяют размер частицы дисперсной среды в счетном объеме по измеренному излучению.



 

Похожие патенты:

Изобретение относится к измерительной технике и касается способа оценки световозвращающей способности стеклянных микрошариков для горизонтальной дорожной разметки.

Изобретение относится к измерительной технике, а именно к оптическим методам измерения параметров несферических дисперсных частиц, взвешенных в жидкости. Способ заключается в измерении зависимостей интенсивности рассеянного излучения от времени при нескольких положениях поляризационного анализатора, промежуточных между положением, в котором пропускается излучение с линейной поляризацией, совпадающей с поляризацией возбуждающего излучения (VV), и положением, в котором пропускается излучение с поляризацией, перпендикулярной поляризации возбуждающего излучения (VH).

Изобретение относится к измерительной технике и касается устройства для определения коэффициента световозвращения стеклянных микрошариков. Устройство содержит источник света, фотоприемник, стеклянные микрошарики и открытую сверху емкость.

Изобретение относится к медицине, а именно к диагностике, и может быть использовано для неинвазивной лазерной нанодиагностики онкологических заболеваний. Для этого проводят исследование биологической жидкости пациента методом лазерной корреляционной спектроскопии, определяют диагностический показатель и диагностируют заболевание по значению диагностического показателя.

Изобретение относится к области измерения оптических характеристик материалов, определяющих световые потери в них, связанные как с поглощением, так и рассеянием. Способ состоит в том, что измерения коэффициента пропускания света производят для двух образцов с различной толщиной, изготовленных из одного и того же исследуемого материала.

Группа изобретений относится к коневодству и может быть использовано для определения блеска лошади. Для этого используют устройство включающее, по меньшей мере, а) монохроматический или интегральный излучатель, кремниевый фотоприемник с синей чувствительностью в 0,45 микрон (0,12 А/Вт), зелёной чувствительностью в 0,55 микрон (0,23 - 0,3 А/Вт), красной чувствительностью 0,65 микрон (0,4 А/Вт) и возможностью регулировки угла падения или отражения светового сигнала, б) элемент питания, в) индикатор напряжения, снимаемого с фотоприемника, или шкалу пересчета принятого на фотоприемник светового сигнала, г) корпус.

Изобретение относится к области медицины и может быть использовано для диагностики опухолевых заболеваний. Устройство для определения концентрации гемоглобина и степени оксигенации крови в слизистых оболочках включает источник излучения, выполненный из набора излучателей на разных длинах волн или на основе широкополосного излучателя, освещающее оптическое волокно, эластичный зонд, блок регистрации изображения в виде ПЗС-матрицы с установленной перед ней собирающей линзой и блок обработки изображения.

Изобретение относится к медицинской технике, а именно к оптическим исследовательским устройствам. Устройство выполнено с возможностью, по меньшей мере, частичного помещения в мутную среду и содержит участок ствола, выполненный с возможностью помещения в мутную среду, содержащий участок наконечника, в котором, по меньшей мере, одно устройство источника света выполнено с возможностью излучения пучка широкополосного света, причем пучок широкополосного света содержит различные полосы длин волн, которые модулируются по-разному, и, по меньшей мере, один фотодетектор для обнаружения широкополосного света в области, выполненной с возможностью помещения в мутную среду участка ствола.

Изобретение относится к области оптической диагностики физических сред и может быть использовано в приборах, предназначенных для измерения распределения концентрации и размеров микро- и наночастиц в жидкостях и газах.

Изобретение относится к медицинской технике, а именно к средствам оптического детектирования суставов. Устройство содержит измерительный блок для облучения светом части тела субъекта и одновременно локального детектирования ослаблений света, при этом частота выборки для локального детектирования является более высокой, чем частота сокращений сердца субъекта.

Изобретение относится к области техники автоматизации измерений, при анализе взвешенных наночастиц. Способ определения спектра размеров взвешенных наночастиц состоит в пропускании газа (смеси газов), содержащего анализируемые частицы, через диффузионные батареи сетчатого типа и введении их в перенасыщенные пары низколетучего укрупняющего вещества.

Изобретение относится области, связанной с анализом взвешенных частиц. При реализации заявленного способа происходит освещение потока частиц пучком когерентного излучения, который разделяется на два пучка опорный и объектный и регистрации голограммы изображений частиц, по которым и судят о размерах последних.

Изобретение относится к измерительной технике. Способ определения геометрических размеров частиц окомкованного и/или гранулированного материала в насыпном слое заключается в том, что формируют видимую область каждой частицы, путем выделения ее на растре видеоизображения от соответствующего ей максимума интенсивности отраженного излучения до ближайших к нему минимумов.

Изобретение относится к измерительной технике, а именно к оптическим методам измерения параметров несферических дисперсных частиц, взвешенных в жидкости. Способ заключается в измерении зависимостей интенсивности рассеянного излучения от времени при нескольких положениях поляризационного анализатора, промежуточных между положением, в котором пропускается излучение с линейной поляризацией, совпадающей с поляризацией возбуждающего излучения (VV), и положением, в котором пропускается излучение с поляризацией, перпендикулярной поляризации возбуждающего излучения (VH).

Изобретение относится к области техники, а именно автоматизации измерений при анализе взвешенных наночастиц в газах. Для этого используют устройство для определения спектра размеров взвешенных наночастиц в газах, содержащее размещенные по ходу анализируемого потока газа входное сопло с каналами подачи; диффузионные батареи сетчатого типа для пропускания аэрозольных частиц определенного размера; укрупняющее устройство конденсаторного роста; счетный объем; вакуумный насос; температурные датчики, нагреватель, охладитель и микроконтроллер для управления процессами нагревания и охлаждения в укрупняющем устройстве конденсаторного роста; оптическую систему, включающую импульсный источник излучения, осветитель и объективы для фокусировки оптического излучения в области счетного объема потока частиц и формирования изображений на матрице ПЗС; аналогово-цифровой преобразователь и ЭВМ для управления микроконтроллером термостатирования, ваккумным насосом и обработки шести изображений укрупненных частиц для анализа спектра их размеров.

Изобретение относится к способу и устройству для определения локальной величины зерна минерала для минерала ценного материала в породе месторождения или залежи, причем порода включает в себя по меньшей мере один другой минерал, и при этом минерал ценного материала имеет более высокую плотность, чем по меньшей мере один другой минерал.

Изобретение относится к способам автоматического контроля крупности частиц в потоке пульпы в процессе измельчения материала и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности.

Изобретение относится к технике автоматизации измерений и может быть использовано при анализе взвешенных частиц произвольной формы. Согласно способу производят освещение потока частиц световым пучком и регистрацию параметров световых сигналов, формируемых частицами при их пролете через выделенную область потока частиц.

Изобретение относится к способам автоматического контроля крупности дробленой руды в потоке и может быть использовано в области обогащения руд полезных ископаемых, в горно-металлургической, строительной и других областях промышленности.

Изобретение относится к области оптической диагностики физических сред и может быть использовано в приборах, предназначенных для измерения распределения концентрации и размеров микро- и наночастиц в жидкостях и газах.

Изобретение относится к области полупроводниковых технологий и более конкретно к способу мультиспектральной визуализации для измерения критического размера (КР) наноструктурированных объектов и к устройству, в котором осуществляется данный способ. В способе согласно изобретению получают эталонные распределения интенсивности в нескольких спектральных интервалах при различных положениях образца вдоль оптической оси, формируют библиотеку эталонных матриц; позиционируют исследуемый образец, освещают образец светом с широким частотным спектром, соответствующим видимому диапазону длин волн, собирают рассеянный образцом свет; получают распределения интенсивности рассеянного света для нескольких спектральных интервалов при различных положениях образца вдоль оптической оси, формируют матрицу распределений интенсивности для исследуемого образца и получают информацию о величине КР путем сравнения полученной матрицы распределений интенсивности с библиотекой эталонных матриц. Устройство содержит источник оптического излучения, освещающую оптическую систему, собирающую оптическую систему, блок спектральной селекции, детектор изображения, устройство позиционирования образца и вычислительный блок. Изобретение обеспечивает более эффективное и точное определение критического размера при существенно меньших затратах. 2 н. и 7 з.п. ф-лы, 4 ил.
Наверх