Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии. Пар из отборов паровой турбины поступает в паровое пространство верхнего и нижнего сетевых подогревателей, а сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в теплообменник-охладитель сетевой воды. Отработавший пар поступает из паровой турбины в паровое пространство конденсатора и конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации. В паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем. Используют конденсационную установку с конденсатором паровой турбины с производственным отбором пара. Осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизацию высокопотенциальной теплоты пара производственного отбора. Все указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. Рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в маслоохладителе, нагревают в теплообменнике-охладителе сетевой воды, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии.

Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а также в конденсаторе теплонасосной установки теплотой, отведенной от обратной сетевой воды в испарителе теплонасосной установки, после чего направляют потребителям, при этом весь поток сетевой воды последовательно нагревают в нижнем сетевом подогревателе, конденсаторе теплонасосной установки и верхнем сетевом подогревателе (патент RU №2275512, МПК F01K 17/02, 27.04.2006).

Прототипом является способ работы тепловой электрической станции, содержащей теплофикационную турбину с отопительными отборами пара, подающий и обратный трубопроводы теплосети, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами теплосети и подключенные по греющей среде к отопительным отборам, теплонасосную установку с испарителем, включенным в обратный трубопровод теплосети, и конденсатором, при этом конденсатор теплонасосной установки включен в подающий трубопровод теплосети после сетевых подогревателей, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом (патент RU №2269014, МПК F01K 17/02, 27.01.2006).

В известном способе возвращаемая от потребителей по обратному трубопроводу теплосети сетевая вода подается сетевым насосом в испаритель теплонасосной установки, где отдает часть теплоты хладагенту теплонасосной установки и охлаждается, затем сетевая вода поступает в сетевые подогреватели, где нагревается паром отопительных отборов турбины. Перед подачей потребителям сетевая вода дополнительно нагревается в конденсаторе теплонасосной установки за счет теплоты хладагента, циркулирующего в контуре теплонасосной установки. Благодаря последовательному включению испарителя теплонасосной установки в обратный трубопровод теплосети до сетевых подогревателей, а конденсатора - в подающий трубопровод теплосети после сетевых подогревателей достигается максимальное охлаждение обратной сетевой воды. В паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем.

Таким образом, в известном способе работы тепловой электрической станции пар отопительных параметров из отборов паровой турбины поступает в паровое пространство верхнего и нижнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в испаритель, выполняющий функцию теплообменника-охладителя сетевой воды, нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, а конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, при этом в испарителе, выполняющем функцию теплообменника-охладителя сетевой воды, осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды при помощи охлаждающей жидкости, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем.

Основным недостатком аналога и прототипа является то, что утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды осуществляют в целях выработки дополнительной тепловой энергии, а не для дополнительной выработки электрической энергии.

Кроме этого, недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии, обусловленный затратами электрической мощности на привод теплонасосной установки, а также из-за отсутствия утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электроэнергии.

Задачей изобретения является разработка способа утилизации теплоты ТЭС, в котором устранены указанные недостатки аналога и прототипа.

Техническим результатом является повышение коэффициента полезного действия ТЭС за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии.

Технический результат достигается тем, что в способе утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающем направление отбора пара отопительных параметров в паровое пространство нижнего и верхнего сетевых подогревателей, связанных с подающим и обратным трубопроводами сетевой воды, а отработавший пар из паровой турбины направляют в паровое пространство конденсатора, в котором пар конденсируют на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, и полученный конденсат с помощью конденсатного насоса направляют в систему регенерации, при этом в теплообменнике-охладителе сетевой воды осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды при помощи охлаждающей жидкости, согласно настоящему изобретению дополнительно используют систему маслоснабжения подшипников паровой турбины с маслоохладителем и конденсационную установку, состоящую из последовательно соединенных паровой турбины с производственным отбором пара с электрогенератором, конденсатора и конденсатного насоса, и дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизацию высокопотенциальной теплоты пара производственного отбора, причем указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, и который состоит из последовательно соединенных турбодетандера с электрогенератором, теплообменника-конденсатора и конденсатного насоса, при этом низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в маслоохладителе, нагревают в теплообменнике-охладителе сетевой воды, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.

В качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.

Таким образом, технический результат достигается за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара для дополнительной выработки электрической энергии, которые осуществляют путем последовательного нагрева, соответственно, в маслоохладителе системы маслоснабжения подшипников паровой турбины, теплообменнике-охладителе сетевой воды и конденсаторе паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана С3Н8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Сущность изобретения поясняется фиг. 1, на которой представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором, теплообменник-охладитель сетевой воды и конденсационную установку.

На чертеже цифрами обозначены:

1 - паровая турбина,

2 - конденсатор паровой турбины,

3 - конденсатный насос конденсатора паровой турбины,

4 - основной электрогенератор,

5 - тепловой двигатель с замкнутым контуром циркуляции,

6 - турбодетандер,

7 - электрогенератор,

8 - теплообменник-конденсатор,

9 - конденсатный насос,

10 - верхний сетевой подогреватель,

11 - нижний сетевой подогреватель,

12 - подающий трубопровод сетевой воды,

13 - обратный трубопровод сетевой воды,

14 - теплообменник-охладитель сетевой воды,

15 - система маслоснабжения подшипников паровой турбины,

16 - сливной трубопровод,

17 - маслобак,

18 - маслонасос,

19 - маслоохладитель.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер 6 с электрогенератором 7, теплообменник-конденсатор 8 и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом маслоохладителя 19, выход маслоохладителя 19 соединен по нагреваемой среде с входом теплообменника-охладителя 14 сетевой воды, а выход теплообменника-охладителя 14 сетевой воды по нагреваемой среде соединен с входом конденсатора 24 паровой турбины с производственным отбором пара, выход конденсатора 24 паровой турбины с производственным отбором пара соединен по нагреваемой среде с входом турбодетандера 6, образуя замкнутый контур охлаждения.

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, осуществляют следующим образом.

Способ включает в себя направление отбора пара отопительных параметров в паровое пространство нижнего 11 и верхнего 10 сетевых подогревателей, связанных с подающим 12 и обратным 13 трубопроводами сетевой воды, а отработавший пар из паровой турбины 1 направляют в паровое пространство конденсатора 2, в котором пар конденсируют на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, и полученный конденсат с помощью конденсатного насоса 3 направляют в систему регенерации, при этом в теплообменнике-охладителе 14 сетевой воды осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды при помощи охлаждающей жидкости.

Отличием предлагаемого способа является то, что дополнительно используют систему 15 маслоснабжения подшипников паровой турбины 1 с маслоохладителем 19 и конденсационную установку 21, состоящую из последовательно соединенных паровой турбины 22 с производственным отбором пара с электрогенератором 23, конденсатора 24 и конденсатного насоса 25, и дополнительно осуществляют утилизацию низкопотенциальной теплоты системы 15 маслоснабжения подшипников паровой турбины 1 и утилизацию высокопотенциальной теплоты пара производственного отбора, причем указанные утилизации осуществляют при помощи теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, и который состоит из последовательно соединенных турбодетандера 6 с электрогенератором 7, теплообменника-конденсатора 8 и конденсатного насоса 9, при этом низкокипящее рабочее тело сжимают в конденсатном насосе 9 теплового двигателя 5, нагревают в маслоохладителе 19, нагревают в теплообменнике-охладителе 14 сетевой воды, испаряют и перегревают в конденсаторе 24 паровой турбины 22 с производственным отбором пара, расширяют в турбодетандере 6 теплового двигателя и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.

В качестве теплообменника-конденсатора 8 теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.

Пример конкретного выполнения

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок. При этом образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации. Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.

Преобразование низкопотенциальной тепловой энергии системы 15 маслоснабжения подшипников паровой турбины 1, а также избыточной низкопотенциальной тепловой энергии обратной сетевой воды и высокопотенциальной тепловой энергии пара производственного отбора из паровой турбины 22 в механическую и далее в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.

Таким образом, утилизацию низкопотенциальной теплоты системы 15 маслоснабжения подшипников паровой турбины 1, утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора из паровой турбины 22 с производственным отбором пара осуществляют путем последовательного нагрева, соответственно, в маслоохладителе 19 системы маслоснабжения подшипников паровой турбины, теплообменнике-охладителе 14 сетевой воды и конденсаторе 24 паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана С3Н8) теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана С3Н8, который последовательно направляют на нагрев в начале в маслоохладитель 19, куда поступает нагретое масло системы 15 маслоснабжения подшипников паровой турбины 1, а затем в теплообменник-охладитель 14 сетевой воды, куда поступает обратная сетевая вода из обратного трубопровода 13. При этом температура нагретого масла и обратной сетевой воды может варьироваться в интервале от 313,15 К до 343,15 К.

В процессе теплообмена нагретого масла с сжиженным пропаном С3Н8 в маслоохладителе 19, а также в процессе теплообмена обратной сетевой воды с сжиженным пропаном С3Н8 в теплообменнике-охладителе 14 сетевой воды происходит нагрев сжиженного пропана С3Н8 в пределах критической температуры в интервале от 308,15 К до 338,15 К при сверхкритическом давлении от 4,2512 МПа до 13 МПа, и далее его направляют на испарение и перегрев в конденсатор 24 паровой турбины с производственным отбором пара, куда поступает пар производственного отбора из паровой турбины 22 при температуре около 573 К.

Пар, поступающий из производственного отбора паровой турбины 22 в паровое пространство конденсатора 24, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан С3Н8). Мощность паровой турбины 22 передается соединенному на одном валу основному электрогенератору 23.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 25 конденсатора паровой турбины с производственным отбором пара направляют в систему регенерации.

В процессе конденсации пара производственного отбора в конденсаторе 24 паровой турбины происходит нагрев сжиженного пропана С3Н8 до критической температуры 369,89 К, с последующим его испарением и перегревом до сверхкритической температуры от 369,89 К до 420 К при сверхкритическом давлении от 4,2512 МПа до 13 МПа, который направляют в турбодетандер 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана С3Н8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан С3Н8 имеет температуру около 288 К с влажностью, не превышающей 12%.

Далее, при снижении температуры газообразного пропана С3Н8 происходит его сжижение в теплообменнике-конденсаторе 8, выполненном, например, в виде конденсатора воздушного охлаждения, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.

После теплообменника-конденсатора 8 в сжиженном состоянии пропан С3Н8 направляют для сжатия в конденсатный насос 9 теплового двигателя.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.

Использование в работе тепловой электрической станции конденсационной установки 21 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя 5 с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6.

Использование предлагаемого способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии.

1. Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающий направление отбора пара отопительных параметров в паровое пространство нижнего и верхнего сетевых подогревателей, связанных с подающим и обратным трубопроводами сетевой воды, а отработавший пар из паровой турбины направляют в паровое пространство конденсатора, в котором пар конденсируют на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, и полученный конденсат с помощью конденсатного насоса направляют в систему регенерации, при этом в теплообменнике-охладителе сетевой воды осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды при помощи охлаждающей жидкости, отличающийся тем, что дополнительно используют систему маслоснабжения подшипников паровой турбины с маслоохладителем и конденсационную установку, состоящую из последовательно соединенных паровой турбины с производственным отбором пара с электрогенератором, конденсатора и конденсатного насоса, и дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизацию высокопотенциальной теплоты пара производственного отбора, причем указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, и который состоит из последовательно соединенных турбодетандера с электрогенератором, теплообменника-конденсатора и конденсатного насоса, при этом низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в маслоохладителе, нагревают в теплообменнике-охладителе сетевой воды, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.

2. Способ по п. 1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

3. Способ по п. 1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.



 

Похожие патенты:

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины.

Изобретение относится к способу утилизации тепловой энергии, вырабатываемой электрической станцией. Используют систему маслоснабжения подшипников паровой турбины, состоящую из охладителя, бака и насоса, теплообменник-охладитель сетевой воды, который устанавливают на обратном трубопроводе сетевой воды, конденсационную установку, состоящую из конденсатора паровой турбины с производственным отбором пара и системы маслоснабжения ее подшипников с маслоохладителем.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и избыточной низкопотенциальной теплоты обратной сетевой воды.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной и избыточной теплоты. Способ утилизации тепловой энергии, вырабатываемой ТЭС, включает направление пара отопительных параметров из отборов паровой турбины в паровое пространство нижнего и верхнего сетевых подогревателей, направление сетевой воды от потребителей в нижний и верхний сетевые подогреватели, при этом сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар направляют в паровое пространство конденсатора, а конденсат - в систему регенерации.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды, и утилизации высокопотенциальной теплоты пара производственного отбора.

Изобретение относится к способу утилизации тепловой энергии, вырабатываемой электрической станцией. Используют систему маслоснабжения подшипников паровой турбины, состоящую из охладителя, бака и насоса, теплообменник-охладитель сетевой воды, который устанавливают на обратном трубопроводе сетевой воды, конденсационную установку, состоящую из конденсатора паровой турбины с производственным отбором пара и системы маслоснабжения ее подшипников с маслоохладителем.

Изобретение относится к способу утилизации тепловой энергии, вырабатываемой тепловой электрической станцией (ТЭС). Отработавший пар направляют из паровой турбины в паровое пространство конденсатора и полученный конденсат с помощью его конденсатного насоса направляют в систему регенерации.

Изобретение относится к способу утилизации тепловой энергии, вырабатываемой тепловой электростанцией (ТЭС). Отработавший пар поступает из паровой турбины в паровое пространство конденсатора и полученный конденсат с помощью насоса направляют в систему регенерации.

Изобретение относится к машиностроению. Двигатель внутреннего сгорания состоит, по меньшей мере, из одной роторной секции, механизм которой состоит из силовой цевочной муфты и размещен внутри ротора.

Изобретение относится к области энергетического машиностроения, а именно к тепловым двигателям. Роторная расширительная машина содержит корпус, имеющий внутреннюю цилиндрическую полость с подводящим и отводящим рабочее тело каналами, заслонку, разобщающую подводящий и отводящий рабочее тело каналы и шарнирно установленную в корпусе, ротор.

Изобретение относится к машиностроению, в частности к роторно-лопастным двигателям внутреннего сгорания с неравномерным движением лопастных рабочих органов в кольцевом рабочем пространстве корпуса.

Изобретение относится к роторному двигателю внутреннего сгорания. Двигатель выполнен с внешней камерой сгорания, с возможностью применения паровой фазы и работы на углеводородном топливе или на водородно-кислородной смеси.

Группа изобретений относится к двигателестроению, конкретно к двигателям внешнего нагрева, работающим на подогретом рабочем теле, например водяном паре. Способ преобразования тепловой энергии пара в механическую включает впуск пара рабочего тела в двигатель, расширение пара, совершающего механическую работу, в рабочих камерах, выпуск отработавшего рабочего тела из двигателя, сжатие оставшегося отработавшего пара, циклическое повторение указанных процессов.

Способ преобразования тепловой энергии в полезную работу. В двух роторных двигателях применяемые в качестве рабочего тела жидкости не замерзают в земных климатических условиях, имеют низкую температуру кипения и под воздействием источников тепла или нагревателей, работающих за счет теплообмена с требующими охлаждения промышленными технологиями, позволяют осуществлять последовательно чередующийся переход рабочего тела из одного фазового состояния в другое.

Изобретение относится к роторным установкам, в том числе к роторным двигателям, насосам, компрессорам. Роторная установка содержит статор, образующий камеру по существу овальной формы, и ротор, установленный с возможностью вращения в камере на центральном валу и вместе со статором ограничивающий две полости, расположенные на противоположных концах камеры.

Двигатель // 2560641
Изобретение относится к области двигателестроения, а именно к двигателям внутреннего сгорания с вращающимися рабочими органами, и может быть использовано на сухопутных, морских и воздушных транспортных средствах. Двигатель содержит ротор 5, рабочие камеры в виде гармошек, расположенных между стенками 6 камер, выполненными с возможностью вращения по окружности вокруг оси вращения ротора 5 и обеспечения увеличения и уменьшения объема рабочих камер. Двигатель снабжен шарнирами 8, закрепленными на стенках 6 камер или на роторе 5. Оси вращения ротора 5 и стенок 6 камер соединены коленом. Стенки 6 камер установлены на подшипниках 7, обеспечивающих независимое друг от друга вращение стенок 6. Внутри ротора 5 выполнены зоны приложения для шарниров 8, обеспечивающие вращение стенок 6 камер с переменной угловой скоростью. Стенки 6 камер соединены пружинистыми механизмами, которые совместно с камерами в виде гармошек выполнены с возможностью аккумулирования усилий торможения и передачи этих усилий при разгоне. Изобретение направлено на обеспечение сбалансированности механизмов, уравновешивание угловых моментов вращения и обеспечение более эффективной работы. 1 з.п. ф-лы, 7 ил.
Наверх