Мехатронно-модульный робот



Мехатронно-модульный робот
Мехатронно-модульный робот
Мехатронно-модульный робот
Мехатронно-модульный робот
Мехатронно-модульный робот
Мехатронно-модульный робот
Мехатронно-модульный робот
Мехатронно-модульный робот
Мехатронно-модульный робот
Мехатронно-модульный робот

 

G05B19/00 - Системы программного управления (специальное применение см. в соответствующих подклассах, например A47L 15/46; часы с присоединенными или встроенными приспособлениями, управляющими какими-либо устройствами в течение заданных интервалов времени G04C 23/00; маркировка или считывание носителей записи с цифровой информацией G06K; запоминающие устройства G11; реле времени или переключатели с программным управлением во времени и с автоматическим окончанием работы по завершению программы H01H 43/00)

Владельцы патента RU 2560829:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" (RU)

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в повышении эффективности ориентации в окружающей среде реконфигурируемых мехатронных устройств, преимущественно мехатронно-модульных роботов. Мехатронно-модульный робот состоит, как минимум, из двух сопряженных между собой модулей, предпочтительно двух и более, первичного и вновь с ним сопрягаемого/ых, при этом один из двух сопрягаемых между собой модулей, преимущественно первичный, является управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/им, причем указанная иерархия в структуре мехатронно-модульного робота соблюдается при последующем сопряжении модулей до формирования окончательной структуры мехатронно-модульного робота, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов.

Одним из важнейших и перспективных направлений развития современной робототехники связано с разработкой нового класса устройств - многозвенных мехатронно-модульных роботов с адаптивной структурой. Структурный синтез при проектировании реконфигурируемых мехатронно-модульных роботов рассматривается как одновременное автоматизированное решение двух задач выбора: порядка блочно-модульной сборки и варианта настройки априорно периодического закона изменения обобщенных координат (y, z), определяющего алгоритм управления движением.

Известен способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов, заключающийся в проведении синтеза структуры многоинвариантной модели мехатронно-модульных роботов, и последующей фиксации полученных оптимальных решений и робот, полученный при помощи указанного способа (И.М. Макаров, В.М. Лохин, С.В. Манько, М.П. Романов, М.В. Кадочников. ИТ, ″Технологии обработки знаний в задачах управления автономными мехатронно-модульными реконфигурируемыми роботами″, приложение к ″Информационные технологии″ №8, М.: Новые технологии, 2010, стр.3-7, рис.14 - прототип).

Указанный способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов заключается в создании конкретных модулей и запоминании конкретных положений отдельных модулей для решения целевых задач.

Недостатками данного технического решения является его значительная сложность, низкая эффективность ориентации в окружающей среде реконфигурируемых мехатронных устройств, преимущественно мехатронно-модульных роботов.

Задачей предложенного технического решения является устранение указанных недостатков и создание мехатронно-модульного робота, применение которого позволит ускорить процесс синтеза, а также повысит эффективность ориентации в окружающей среде и надежность работы создаваемых мехатронных устройств, преимущественно мехатронно-модульных роботов.

Решение поставленной задачи достигается тем, что предложенный мехатронно-модульный робот согласно изобретению состоит, как минимум, из двух сопряженных между собой тождественных модулей, предпочтительно двух и более, первичного и вновь с ним сопрягаемого/ых, имеющих интерфейсные площадки для стыковки, при этом первичный модуль является управляющим модулем по отношению к последующим, с ним стыкуемым, при этом стыкуемые с ним модули имеют возможность к самостоятельному осуществлению алгоритма сборки и синтеза структуры робота на более низком уровне, чем упомянутый управляющий модуль, причем количество модулей, объединяемых в упомянутый робот, определено из соотношения: n=1, N, где: n - количество модулей, объединяемых в один робот, определено из соотношения n=1+x1+2x2+4x3+8x4, где: x1,x4=1,0-количество интерфейсных площадок на модуле, N≤16 - предельное количество модулей, которые могут быть объединены в один робот, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполнены с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, при этом альтернативные переменные для алгоритмов управления синтезированной мехатронно-модульной конструкцией для описания параметров периодического закона движения выбраны из следующего соотношения:

Angle=А+В sin(ωt+φ),

где: A - значение обобщенной координаты, относительно которой происходит периодическое движение; B - амплитуда периодического колебания обобщенной координаты, причем суммарная величина не превышает максимально допустимого отклонения обобщенной координаты модуля; φ - смещение фазы периодического движения.

В варианте исполнения для оптимизационного структурного синтеза, выбраны значения альтернативных переменных, обеспечивающих максимальное значение функции:

= [ y ( x 1 , x 41 n ¯ ) ] 2 + [ z ( x 1 , x 41 n ¯ ) ] 2 N ( x 1 , x 4 n ¯ ) N c ( x 10 , x 41 n ¯ ) max

при ограничениях n=1, N

| A 1 ( x 10 , x 12 n ¯ ) + B 1 ( x 14 n , x 17 n ¯ ) | y max , | A 2 ( x 26 , x 29 n ¯ ) + B 2 ( x 30 n , x 33 n ¯ ) | z max x 1 , x 41 n ¯ = { 1, 0.

где: ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.

Сущность изобретения иллюстрируется чертежами, где на фиг.1 показаны отдельные мехатронно-модульные роботы со свободными интерфейсными площадками, на фиг.2 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам, и образующий фигуру в виде многоугольника, на фиг.3 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам, и образующий фигуру в виде квадрата, на фиг.4 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам, и образующий фигуру в виде прямоугольника.

Мехатронно-модульный робот 1 состоит, как минимум, из двух сопряженных между собой модулей, первичного 2 и вторичного 3. Один из двух сопрягаемых между собой модулей, преимущественно первичный 2, является управляющим по отношению к другому, вторичному 3, с ним стыкуемым, при этом стыкуемые с модулем 2 вторичные модули 3 имеют возможность к самостоятельному осуществлению алгоритма сборки и синтеза структуры робота на более низком уровне, чем упомянутый управляющий модуль 1, причем указанная иерархия в структуре мехатронно-модульного робота соблюдается при последующем сопряжении модулей до формирования окончательной структуры мехатронно-модульного робота. Сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой свободной интерфейсной площадки 4 с одной из свободных аналогичных площадок 4 на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду. Несвободная интерфейсная площадка 5 образована за счет стыковки между собой двух свободных интерфейсных площадок 4.

Предложенный мехатронно-модульный робот может быть создан следующим образом.

Рассматривают множество проектных элементов и вводят соответствующие альтернативные переменные путем представления дискретных чисел, соответствующих этим элементам, в двоичном исчислении.

Обозначают количество модулей 2 и 3, объединяемых в один мехатронно-модульный робот 1, без четко выраженной структуры, n = 1, N ¯ Тогда в двоичном исчислении получают при N≤16, где: N - количество сторон, n - количество возможный итераций.

n = 1 + x 1 + 2 x 2 + 4 x 3 + 8 x 4 , г д е x 1 , x 4 ¯ = { 1, 0.

При блочно-модульной сборке робота 1 полагают, что сопряжение каждого нового модуля с ранее собранными осуществляется вдоль выбранного направления и обеспечивается стыковкой его первой свободной интерфейсной площадки 4 с одной из свободных аналогичных интерфейсных площадок 4 на любых других модулях 2 и 3, как элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду.

Выделяют этот алгоритм преимущественно как Асб. Описание порядка сборки приводят к указанию направления и места крепления очередного элемента с использованием алгоритма Асб.

В направлении для стыковки n-го модуля пет принимают четыре значения ncm=1 - север, ncm=2 - восток, ncm=3 - юг, ncm - 4 - запад и представляют через альтернативные переменные:

n c m . n = 1 + x 5 n + 2 x 6 n , г д е n = 1, N , ¯ x 5 n , x 6 n = { 1, 0.

Номер площадки, выбираемой для стыковки n-го модуля в двоичном исчислении, записывают в следующем виде:

n c m . n = 1 + x 7 n + 2 x 8 n + 4 x 9 n , г д е n = 2, n , ¯ x 7 n , x 9 n ¯ = { 1, 0.

Альтернативные переменные для описания параметров периодического закона вводят следующим образом:

Angle=А+В sm(cjt+(р),

где: A - значение обобщенной координаты, относительно которой происходит периодическое движение;

B - амплитуда периодического колебания обобщенной координаты; суммарная величина | A | + | B | не должна превышать максимально допустимого отклонения обобщенной координаты модуля;

φ - смещение фазы периодического движения.

Настройкой параметров этого закона определяют алгоритмы управления, синтезируемой мехатронно-модульной конструкции. Указанные параметры характеризуются дискретными значениями, имеющими соответствующие численные номера в пределах N≤16.

Затем для оптимизационного структурного синтеза выбирают значения альтернативных переменных , обеспечивающих максимальное значение функции.

= [ y ( x 1 , x 41 n ¯ ) ] 2 + [ z ( x 1 , x 41 n ¯ ) ] 2 N ( x 1 , x 4 n ¯ ) N c ( x 10 , x 41 n ¯ ) max

при ограничениях n=1, N

| A 1 ( x 10 , x 12 n ¯ ) + B 1 ( x 14 n , x 17 n ¯ ) | y max , | A 2 ( x 26 , x 29 n ¯ ) + B 2 ( x 30 n , x 33 n ¯ ) | z max x 1 , x 41 n ¯ = { 1, 0.

где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.

Для нахождения максимального значения функции fдачи используют рандомизированной алгоритм многоальтернативной оптимизации, который дополняют еще одним уровнем в рамках управляемого роя частиц.

Для синхронизации процедуры метода роя частиц и вариационной процедуры многоальтернативной оптимизации на каждом шаге управляют выбором частицы для обновления скорости изменения координат, которую осуществляют с использованием рандомизированной схемы. С этой целью вводят случайную дискретную величину m, которая принимает значение m=1, М с вероятностью pn. На первом шаге получают:

p n 1 = 1 N n = 1, N ¯

Далее изменение значений p n k при условии n = 1 M p n ν k = 1 осуществляют следующим образом. Определяют значение случайной величины n ˜ . Пусть n ˜ = ν . Тогда скорости изменения координат на (k+1)-м шаге вычисляются:

ν m n r + 1 = { ν m n r , n = 1, N , ¯ n ν , p B m n r + 1 [ q z m n r æ ( 1 m F ) p z m n r æ ( Δ 1 m n F ) n = ν ,

а значение вероятностей p n :

p n k + 1 = { p n k 1 + ε k + 1 n = 1, N ¯ , n ν , p n k + ε k + 1 1 + ε k + 1 , n = ν .

При этом величина ε>0 определяет степень рекордности движения ν-й частицы в направлении к экстремуму оптимизируемой функции.

Предложенный мехатронно-модульный робот функционирует следующим образом.

Произвольно выбирается управляющий первичный модуль 2 со свободной интерфейсной площадкой 4 и стыкуется с любым произвольно выбранным вторичным модулем 3 с аналогичной свободной интерфейсной площадкой 4. При стыковке между собой двух свободных интерфейсных площадок 4 образуется несвободная интерфейсная площадка 5. Дальнейшее присоединение свободных модулей 3 к образованному модулю, состоящему из двух первоначально соединенных между собой управляющего модуля 2 и вторичного 3, происходит вдоль выбранного направления с образованием требуемой конечной структуры мехатронно-модульного робота.

Использование предложенного технического решения позволит проводить синтез структуры многоинвариантной модели мехатронно-модульных роботов с последующим фиксированием полученных оптимальных решений с последующим повышением количества возможных итераций мехатронно-модульного робота при значительном сокращении времени синтеза.

1. Мехатронно-модульный робот, характеризующийся тем, что он состоит, как минимум, из двух сопряженных между собой тождественных модулей, первичного и вновь с ним сопрягаемого/ых, имеющих интерфейсные площадки для стыковки, при этом первичный модуль является управляющим модулем по отношению к последующим, с ним стыкуемым, при этом стыкуемые с ним модули имеют возможность к самостоятельному осуществлению алгоритма сборки и синтеза структуры робота на более низком уровне, чем упомянутый управляющий модуль, причем количество модулей, объединяемых в упомянутый робот, определено из соотношения: n=1,N, где: n - количество модулей, объединяемых в один робот, определено из соотношения n=1+x1+2x2+4x3+8x4, где: x1,x4=1,0 - количество интерфейсных площадок на модуле, N≤16 - предельное количество модулей, которые могут быть объединены в один робот, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполнены с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, при этом альтернативные переменные для алгоритмов управления синтезированной мехатронно-модульной конструкцией для описания параметров периодического закона движения выбраны из следующего соотношения:

где: А - значение обобщенной координаты, относительно которой происходит периодическое движение; В - амплитуда периодического колебания обобщенной координаты, причем суммарная величина |А|+|В| не превышает максимально допустимого отклонения обобщенной координаты модуля; φ - смещение фазы периодического движения.

2. Мехатронно-модульный робот по п. 1, отличающийся тем, что для оптимизации структурного синтеза используют функцию f - рандомизированного алгоритма многоальтернативной оптимизации с выбором значений альтернативных переменных обеспечивающих максимальное значение функции:

при ограничениях n=1,N

где: ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.



 

Похожие патенты:

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в повышении эффективности ориентации в окружающей среде реконфигурируемых мехатронных устройств, преимущественно мехатронно-модульных роботов.

Изобретение относится к способу и устройству управления модулем, выполненным, в частности, в виде прибора автоматизированной системы с интерфейсом связи на стороне модуля.

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в создании способа многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов.

Изобретение относится к способам управления шаговыми двигателями с персонального компьютера по USB-каналу, использующим микроконтроллер с USB-интерфейсом. Технический результат заключается в обеспечении возможности квазиодновременного управления шестнадцатью шаговыми двигателями с персонального компьютера по шине USB.

Изобретение относится к технологиям управления устройствами отображения. Техническим результатом является обеспечение управления контентом, просматриваемым множеством пользователей с использованием одного устройства дистанционного управления.

Группа изобретений относится к области обнаружения протечек. Технический результат заключается в создании средств обнаружения протечки с использованием четырехпроводных кабелей.

Группа изобретений относится к управлению нефтедобычей. Технический результат заключается в создании надежного способа информационного обеспечения и управления нефтедобычей в реальном масштабе времени и автоматизированной системы для осуществления этого способа, обеспечивающих непрерывный мониторинг с получением достоверной информации в реальном масштабе времени в любой заданный момент времени, с возможностью своевременного обнаружения отклонений от заданных режимов работы любого из «n» подключенных к заявленной автоматизированной системе исполнительных механизмов, а также с возможностью выбора оптимальных режимов работы исполнительных механизмов как в месте расположения этих исполнительных механизмов и устройств обработки и преобразования информации, а также в любой географической точке, где может быть обеспечена мобильная связь на устройствах, которые могут быть подключены на основании заявляемого изобретения как мобильные устройства связи, устройства визуализации данных, и возможностью управления работой исполнительных механизмов.

Изобретение относится к области телемеханики и автоматизированных систем измерения, контроля, регулирования, диагностики и управления удаленными объектами, а именно к системам коррозионного мониторинга объектов электрохимической защиты магистральных газопроводов, в частности установок катодной защиты.

Изобретение относится к автоматике и может быть использовано при создании систем управления авиационными объектами, изделиями ракетно-космической техники и робототехническими комплексами, работающими в экстремальных условиях (широкий диапазон изменения температур от -60 до +125°C, механические воздействия в виде ударов и широкополосной вибрации) в полях ионизирующего излучения.

Изобретение относится к горнодобывающей, обогатительно-металлургической и химической областям промышленности и может быть использовано в автоматических системах аналитического контроля при измерении жидких проб в виде суспензий, фильтратов и растворов.

Изобретение относится к робототехнике. Технический результат заключается в устранении указанных недостатков и создании мехатронно-модульного робота и способа многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов для его создания, применение которых позволит ускорить процесс синтеза, а также повысить эффективность ориентации в окружающей среде и надежность работы создаваемых мехатронных устройств, преимущественно мехатронно-модульных роботов. Мехатронно-модульный робот состоит, как минимум, из двух сопряженных между собой модулей, при этом один из двух сопрягаемых между собой модулей является управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/им, причем указанная иерархия в структуре мехатронно-модульного робота соблюдается при последующем сопряжении модулей до формирования окончательной структуры мехатронно-модульного робота, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к робототехнике и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в повышении надежности и работы создаваемых мехатронно-модульных роботов. Мехатронно-модульный робот состоит из совокупностей сопряженных между собой тождественных модулей, каждая из которых состоит из сопряженных между собой модулей, имеющих интерфейсные площадки для стыковки, при этом один из двух сопрягаемых между собой модулей является управляющим по отношению к другому/им, с ним стыкуемому/им, причем указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота. 1 з.п. ф-лы, 4 ил.

Группа изобретений относится к области электротехники. Технический результат заключается в увеличении производительности и надежности грузовых платформ за счет локализации объектов в режиме реального времени внутри складских сооружений и за счет увеличения количества одновременно отслеживаемых на складе грузовых платформ. Для этого предложены способ и устройство автоматического контроля перемещения складских грузовых платформ, в которых суть сводится к обработке информации результатов контроля в N контрольных точках, при этом разбивают складское помещение на зоны размещения складских грузовых платформ, в этих зонах задают контрольные точки присутствия складских грузовых платформ, которые последовательно нумеруют, масштабируют токи от каждой контрольной точки, масштабированные токи от каждой контрольной точки суммируют в точке суммирования и передают через канал связи в орган обработки информации, где преобразуют данный ток в пропорциональное напряжение, из которого вычитается напряжение, пропорциональное суммарным координатам уже размещенных в помещении склада складских грузовых платформ, и по величине напряжения идентифицируют координаты i положения складских грузовых платформ. 2 н.п. ф-лы, 3 ил.

Изобретение относится к средствам управления различными процессами технологического комплекса с обеспечением наилучших критериев качества при регулировании. Техническим результатом является обеспечение более точного и гибкого процесса регулирования. Предложен способ моделирования технологических процессов на газовом промысле, заключающийся в том, что в технологической системе инициируют переходный процесс путем изменения положения исполнительного механизма, фиксируют параметры технологической системы в момент начала переходного процесса, в середине периода переходного процесса, в конце переходного процесса и на основе зафиксированных параметров осуществляют построение модели зависимости периода переходного процесса от положения исполнительного механизма с использованием аппроксимации полиномом третьего порядка, а также построение модели зависимости изменения технологического параметра от времени с использованием аппроксимации полиномом второго порядка, повторяют цикл для нескольких последовательных положений исполнительного механизма, рассчитывают на основании получившегося набора полиномов коэффициенты ПИД-регулятора. 3 ил.

Изобретение относится к робототехнике и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в обеспечении многоальтернативной оптимизации моделей за счет автоматизации структурного синтеза мехатронно-модульных роботов. Синтез осуществляют как минимум из двух совокупностей сопряженных между собой тождественных модулей и фиксировании оптимальных решений, вводят соответствующие альтернативные переменные путем представления дискретных чисел, соответствующих этим элементам, в двоичном исчислении, после чего обозначают количество модулей, объединяемых в один робот, преимущественно без четко выраженной структуры, и сопрягают и стыкуют каждый новый модуль с ранее собранными вдоль выбранного направления его первой интерфейсной площадки с одной из свободных площадок элементов конструкции, занимающих ближайшее крайнее положение. Для нахождения максимального значения функции используют рандомизированный алгоритм многоальтернативной оптимизации. 4 ил.

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в создании мехатронно-модульного робота, применение которого позволит ускорить процесс синтеза, а также повысить эффективность ориентации в окружающей среде и надежность работы создаваемых мехатронных устройств, преимущественно мехатронно-модульных роботов. Мехатронно-модульный робот состоит как минимум из двух сопряженных между собой модулей, предпочтительно двух и более, первичного и вновь с ним сопрягаемого/ых, при этом один из двух сопрягаемых между собой модулей, преимущественно первичный, является управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/им, причем указанная иерархия в структуре мехатронно-модульного робота соблюдается при последующем сопряжении модулей до формирования окончательной структуры мехатронно-модульного робота, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду. 1 з.п. ф-лы, 4 ил.

Изобретение относится к робототехнике. Технический результат заключается в создании мехатронно-модульного робота с многоальтернативной оптимизацией моделей их структурного синтеза для ориентации в окружающей среде. Мехатронно-модульный робот состоит из совокупностей сопряженных между собой тождественных модулей, при этом каждая совокупность состоит из сопряженных между собой модулей, имеющих интерфейсные площадки для стыковки, при этом один из двух модулей является управляющим по отношению к другому/им, причем указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к робототехнике. Технический результат заключается в обеспечении многоальтернативной оптимизации моделей за счет автоматизации структурного синтеза мехатронно-модульных роботов, повышении эффективности ориентации в окружающей среде и надежности работы создаваемых мехатронных устройств. Синтез осуществляют, как минимум, из двух совокупностей сопряженных между собой тождественных модулей, с последующим фиксированием полученных оптимальных решений, рассматривают множество проектных элементов и вводят соответствующие альтернативные переменные путем представления дискретных чисел, соответствующих этим элементам, в двоичном исчислении, после чего обозначают количество модулей, объединяемых в один робот, преимущественно, без четко выраженной структуры, и обеспечивают сопряжение каждого нового модуля с ранее собранными вдоль выбранного направления и стыковку его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, после чего вводят альтернативные переменные, причем для нахождения максимального значения функции используют рандомизированный алгоритм многоальтернативной оптимизации, который дополняют еще одним уровнем в рамках управляемого роя частиц. 4 ил.

Изобретение относится к области автоматических устройств, а именно к цифровому оборудованию систем контроля и управления технологическими процессами. Техническим результатом является повышение надежности. Система логического управления (СЛУ) содержит модуль входов, логический модуль, модуль диагностики, модуль выходов, модуль оптической связи, соединенные между собой с помощью линий связи LVDS. СЛУ содержит оптические линии связи. СЛУ базируется на базовом шасси в двух комплектациях: простая - в шасси размещаются один логический модуль и один модуль диагностики; дублированная - в шасси размещаются два логических модуля (основной и резервный). Система логического управления основана на совместной работе модулей образуя: локальное ядро, разделенное ядро, гибридное ядро. 2 н. и 61 з.п. ф-лы, 41 ил.

Изобретение относится к системам аналитического контроля пульповых продуктов, растворов или суспензий в потоке, применяемых в горно-обогатительной и других отраслях промышленности. Автоматическая система включает автоматический пробоотборный комплекс 1, автоматический комплекс 10 циркуляционной пробоподачи и транспортные магистрали 30. Система дополнительно снабжена автоматическим комплексом 5 пробоподготовки, автоматическим комплексом 14 подготовки и подачи порошковых проб, аналитическим комплексом 20, комплексом 24 сетевого оборудования, центральной станцией 27 управления системой, серверами 28 системы, информационными магистралями 31. Выход пробоотборного комплекса 1 соединен с входом комплекса 5 пробоподготовки, который имеет два выхода, соединенные с комплексом 10 циркуляционной пробоподачи и комплексом 14 подготовки и подачи порошковых проб. Выходы комплекса 10 циркуляционной пробоподачи и комплекса 14 подготовки и подачи порошковых проб соединены с входами комплекса 20. Система управления каждого комплекса объединена в единую информационную сеть с центральной станцией 27 управления автоматической системой аналитического контроля и серверами 28 данной системы через комплекс сетевого оборудования. Комплекс 14 подготовки и подачи порошковых проб состоит из оборудования 15 подготовки порошковых проб, оборудования 16 шифровки/дешифровки порошковых проб, оборудования 17 перемещения порошковых проб, оборудования 18 хранения порошковых проб и устройства 19 управления комплексом. Комплекс 20 состоит из многокюветных поточных пульповых и порошковых анализаторов 22 и 21 физико-химических свойств проб и устройства 23 управления комплексом. Обеспечивается повышение эффективности системы путем повышения достоверности получаемой аналитической информации и расширения функциональных возможностей системы аналитического контроля пульповых продуктов. 2 з.п. ф-лы, 1 ил.
Наверх