Способ изготовления проходного вакуумного изолятора высокого напряжения


 


Владельцы патента RU 2560965:

Федеральное Государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники" (RU)

Изобретение относится к электротехнике, а именно к электрическим изоляторам, предназначенным для использования в конструкциях генераторов высокого напряжения, в ускорителях заряженных частиц и в других вакуумных высоковольтных установках. Способ изготовления проходных вакуумных изоляторов высокого напряжения заключается в том, что изолятор собирают в виде расположенных между крышкой и фланцем изолятора из одинаковых по конструкции и геометрическим размерам кольцеобразных диэлектрических секций и чередующихся с ними идентичных между собой электропроводящих прокладок и уплотнительных эластичных манжет, а напряжение между упомянутыми секциями равномерно распределяют при помощи делителя напряжения, в одном из торцов кольцеобразной диэлектрической секции делают углубление в виде цилиндрического стакана, на боковой внутренней стенке которого нарезают резьбу. В дне стакана делают проточку под эластичную манжету. Способ существенно упрощает технологию сборки и конструкцию изолятора, так как в нем отсутствуют элементы, усложняющие конструкцию и сборку, что в значительной мере позволяет снизить габариты изолятора. 1 ил.

 

Изобретение относится к электротехнике, а именно к электрическим изоляторам, предназначенным для использования в конструкциях генераторов высокого напряжения, в ускорителях заряженных частиц и в других вакуумных высоковольтных установках.

Известно, что пробивная напряженность поверхности диэлектрика в вакууме возрастает с уменьшением толщины испытуемого на электрическую прочность образца. Указанное положение находит свое отражение в способах изготовления высоковольтных проходных изоляторов, применяемых в высоковольтных трансформаторах, ускорительной технике и т.д.

Известны способы изготовления высоковольтных проходных изоляторов, в которых для обеспечения равномерного распределения потенциала по поверхности изолятора, его выполняют в виде секций, состоящих из изоляционных и электропроводящих слоев, чередующихся между собой по высоте изолятора, скрепление элементов секций между собой выполняют холодной запрессовкой изоляционных слоев в металлические упругие кольца электродов, покрытых тонким слоем пластического металла, или путем склеивания изоляционных и электропроводящих слоев, или посредством пайки металлических прокладок с керамическими или стеклянными элементами секций [1].

За счет выполнения изолятора в виде секций уменьшается эффект полного напряжения и осуществляется ограничение пути распространения частичных разрядов.

Конструкции изоляторов подобного исполнения являются неразборными, и поэтому они неремонтопригодны. При потере работоспособности одной или нескольких секций изолятора, их невозможно заменить на исправные, и вышедший из строя изолятор приходится заменять новым изолятором.

Известен способ изготовления проходных вакуумных изоляторов высокого напряжения, заключающийся в том, что изолятор собирают в виде расположенных между крышкой и фланцем изолятора, чередующихся друг с другом одинаковых по форме и размерам диэлектрических колец с одинаковыми по конструкции и форме проводящими прокладками и установленными между ними уплотняющими манжетами из эластичного материала, а соединение упомянутых элементов изолятора в единую герметичную конструкцию осуществляют за счет диэлектрических шпилек, на концах которых выполняют резьбу, с помощью которой один конец каждой шпильки закрепляют к крышке изолятора, а другой конец каждой шпильки прикрепляют к фланцу изолятора [2].

К недостаткам указанной конструкции следует отнести неравномерное распределение потенциала по изоляционным слоям, что снижает электрическую прочность изолятора.

Известен способ изготовления проходных вакуумных изоляторов высокого напряжения, по которому изолятор собирают в виде расположенных между крышкой и фланцем изолятора из одинаковых по конструкции и геометрическим размерам кольцеобразных диэлектрических секций, с чередующимися с ними идентичными между собой электропроводящими прокладками и установленными между упомянутыми диэлектрическими секциями и электропроводящими прокладками, уплотняющих манжет из эластичного материала, а напряжение между упомянутыми секциями равномерно распределяют при помощи делителя напряжения, который размещают в теле изолятора, путем создания в изоляционных слоях сквозных полостей, параллельных оси изолятора, которые заполняют электропроводящей жидкостью, при этом скрепление упомянутых элементов изолятора в единую герметичную конструкцию осуществляют за счет диэлектрических стяжных шпилек [3].

Недостатками указанного способа является сложность реализации, связанная с тем, что сквозные полости делителя, наполненные электропроводящей жидкостью, необходимо герметизировать, путем введения дополнительных герметизирующих манжет, чтобы предотвратить утечку жидкости на наружную поверхность и внутреннюю полости изолятора, необходимо также поддерживать неизменным сопротивление в каждой полости делителя.

Наиболее близким по технической сущности к предлагаемому изобретению является способ изготовления проходных вакуумных изоляторов высокого напряжения, по которому изолятор собирают в виде расположенных между крышкой и фланцем изолятора одинаковых по конструкции и геометрическим размерам кольцеобразных диэлектрических секций и чередующихся с ними идентичных между собой электропроводящих прокладок, которые выполняют из эластичного материала, а напряжение между упомянутыми секциями равномерно распределяют при помощи делителя напряжения, который выполняют в виде распределительных сопротивлений, которые располагают с наружной стороны диэлектрических секций и электрически присоединяют к электропроводящим прокладкам, при этом скрепление упомянутых элементов изолятора в единую герметичную конструкцию осуществляют за счет диэлектрических стяжных шпилек, на концах которых выполняют резьбу, с помощью которой один конец каждой шпильки закрепляют к крышке изолятора, а другой конец каждой шпильки закрепляют к фланцу изолятора, при этом электропроводящие прокладки выполнены из эластичного материала [4].

Достоинством способа-прототипа является то, что конструкция изолятора разборная, что позволяет заменять вышедшие из строя при эксплуатации секции, а также изменять при необходимости (уменьшать или увеличивать) габариты изолятора, приспосабливая его к тому или иному уровню рабочего напряжения высоковольтной установки, в которой он используется. Еще одним достоинством способа-прототипа является то, что жидкостной делитель напряжения, указанный в предыдущем аналоге, заменен на делитель из обычных безиндуктивных омических сопротивлений. Кроме того, электропроводящие прокладки, выполненные в вышеуказанных аналогах в виде металлических колец, в способе-прототипе заменены на электропроводящие прокладки из эластичного материала, что позволяет совместить в этом конструктивном элементе двойную функцию: уплотнительной манжеты и градиентного кольца. Это дает возможность исключить уплотняющие манжеты, имеющие место в вышеприведенном аналоге.

Недостатками способа-прототипа, является то, что для скрепления изолятора по способу-прототипу в единую герметичную конструкцию используют диэлектрические шпильки с резьбой на конце, что усложняет сборку и конструкцию изолятора. Дополнительным недостатком способа-прототипа является то, что делитель напряжения выполнен из совокупности омических сопротивлений, которые необходимо после каждой очередной переборки изолятора электрически присоединять к электропроводящим прокладкам. Эта дополнительная операция также усложняет способ-прототип. Еще одним недостатком способа-прототипа является то, что все электропроводящие прокладки изолятора имеют конечную толщину, иногда соразмерную с толщиной диэлектрических секций, что приводит к неоправданному увеличению габаритов (высоты) изолятора.

Техническая задача, стоящая в рамках настоящего изобретения, состоит в упрощении способа изготовления и конструкции проходных вакуумных изоляторов высокого напряжения.

Поставленная задача решается тем, что в способе изготовления проходных вакуумных изоляторов высокого напряжения, заключающемся в том, что изолятор собирают в виде расположенных между крышкой и фланцем изолятора одинаковых по конструкции и геометрическим размерам кольцеобразных диэлектрических секций, чередующихся с ними идентичных между собой электропроводящих прокладок и уплотнительных эластичных манжет, а напряжение между упомянутыми секциями равномерно распределяют при помощи делителя напряжения, при этом в одном из торцов кольцеобразной диэлектрической секции делают углубление в виде цилиндрического стакана, на боковой внутренней стенке которого нарезают резьбу, а в дне стакана делают проточку под эластичную манжету, на другом торце кольцеобразной диэлектрической секции изготавливают цилиндрический выступ, высота которого равна глубине углубления, выполненного на противоположном торце упомянутой секции, а диаметр выступа рассчитан под резьбу, нарезанную на боковой стенке упомянутого стакана, нарезают резьбу на наружной цилиндрической части выступа, идентичную резьбе, нарезанной на внутренней стенке упомянутого стакана, изготавливают электропроводящие прокладки путем нанесения на торцевые поверхности электропроводного слоя, а делитель напряжения выполняют в виде резистивного слоя, который равномерно наносят на боковые поверхности кольцеобразных диэлектрических секций, добиваясь равных значений сопротивления боковых поверхностей различных секций между собой, изготавливают уплотнительные манжеты из электропроводящей резины, после чего осуществляют сборку изолятора, при которой закрепляют упомянутые манжеты в проточки под эластичную манжету, соединяют между собой диэлектрические секции при помощи нарезанной на их соответствующих поверхностях упомянутых углублениях и выступах резьбы, причем нижнюю кольцеобразную диэлектрическую секцию присоединяют при помощи резьбы к фланцу изолятора, имеющему цилиндрическое углубление с нарезанной на его боковой поверхности резьбой, соответствующей размеру резьбы выполненной на цилиндрическом выступе каждой диэлектрическое секции, а верхнюю кольцеобразную диэлектрическую секцию соединяют при помощи резьбы с крышкой проходного изолятора, в которой выполнен цилиндрический выступ с нарезанной на его боковой поверхности резьбой, соответствующей размеру резьбы, выполненной на боковой поверхности цилиндрического углубления каждой диэлектрической секции.

На фиг.1 представлены отдельные элементы конструкции проходного изолятора, позволяющие пояснить сущность заявляемого способа. На фиг.1 введены следующие обозначения: 1 - кольцеобразная диэлектрическая секция; 2 - углубление в виде цилиндрического стакана; 3 - проточка для эластичной манжеты; 4 и 6 - электропроводящие слои; 5 - выступ в виде цилиндрического тела; 7 - резистивный слой; 8 - уплотняющая манжета; 9 - заземленный фланец изолятора, 10 - высоковольтная крышка изолятора.

Пример конкретного выполнения.

По заявляемому способу изготавливали высоковольтный проходной изолятор на напряжение 1 мВ. Изолятор собирали в виде расположенных между высоковольтной крышкой изолятора и заземленным фланцем изолятора одинаковых по конструкции и геометрическим размерам кольцеобразных диэлектрических секций, чередующихся с ними идентичных между собой электропроводящих прокладок и уплотнительных эластичных манжет. Каждая диэлектрическая секция 1 (фиг.1) была выполнена из полиэтилена в виде кольца, толщиной 30 мм. Наружный диаметр упомянутого кольца был равен 300 мм, а внутренний - 200 мм. На одном торце каждой диэлектрической секции 1 было выполнено углубление 2 в виде цилиндрического стакана. Диаметр стакана был равен 260 мм. Глубина стакана была равна 10 мм. В дне стакана была выточена по окружности средней линии диаметром 230 мм проточка 3 для эластичной манжеты. Глубина проточки была равна 3 мм, а ее ширина 5 мм. На боковой поверхности стакана была нарезана резьба. На другом торце каждой диэлектрической секции 1 было выполнен выступ 5 в виде цилиндрического тела. Высота выступа равнялась 10 мм, а его диаметр 262,5 мм. На его боковой поверхности нарезалась резьба, идентичная резьбе боковой поверхности стакана. Крышка изолятора 10 была выполнена в виде цилиндрического диска, диаметром 320 мм и толщиной 20 мм из нержавеющей стали. На одном торце крышки был изготовлен цилиндрический выступ высотой 10 мм, с резьбой, полностью идентичной резьбе, нарезанной на выступе каждой диэлектрической секции. Фланец изолятора 9 был выполнен из листовой нержавеющей стали в виде цилиндрического кольца толщиной 25 мм. Внешний диаметр кольца был равен 350 мм, а внутренний - 200 мм. На торце фланца, со стороны, обращенной к проходному изолятору, было выполнено углубление в виде цилиндрического стакана. Размеры и конфигурация стакана были полностью идентичны углублению, выполненному в одном из торцов каждой диэлектрической секции изолятора. На боковой стенке углубления была также нарезана резьба, а на дне стакана выполнена проточка для эластичной манжеты. Резьба и проточка в заземленном фланце изолятора были полностью идентичны резьбе и проточке в одном из торцов каждой диэлектрической секции изолятора. Электропроводящие слои 4 и 6 изготавливали путем нанесения на торцевые поверхности слоя электропроводной краски, которая после высыхания создавала пленочное покрытие с высокой механической прочностью и низким значением удельного объемного сопротивления от 10-3 до 10-4 Ом×см.

Электропроводящая краска включала в себя эпоксидное связующее, углесодержащий наполнитель, отвердитель и органический растворитель, содержала в качестве углеродсодержащего наполнителя смесь графита с сажей при массовом соотношении графита к саже 0,1-1,0. Краска готовилась при следующем соотношении компонентов, масс:

Эпоксидное связующее - 8-20

Углеродсодержащий наполнитель - 11-39

Отвердитель - 0,5-1,5

Органический растворитель - остальное.

Технология получения электропроводного лакокрасочного состава (краски) осуществлялась следующим образом.

Все компоненты (т.е. пленкообразующее связующее, мелкодисперсный электропроводный наполнитель и органический растворитель) в соответствующем рецептурном соотношении загружали в диспергирующее устройство и проводили диспергирование в соответствии с технологически заданным регламентом. Затем содержимое разгружали и непосредственно перед нанесением на диэлектрическую секцию изолятора в полученную композицию вводили раствор отвердителя в количестве от 0,5% до 1,5% от массы пленкообразующего связующего композиции (краски).

В качестве диспергирующего устройства использовали шаровую мельницу. На диэлектрическую секцию изолятора состав наносили аэрозольным способом.

Для получения электропроводного лакокрасочного состава (краски) в качестве связующего наиболее предпочтительны двухкомпонентные системы, в которых используются в качестве связующего эпоксидные олигомеры диановой группы, с молекулярной массой 400-1000, в частности, марку ЭД-20 (ГОСТ 10587-93). В качестве растворителя использовали ацетон (ГОСТ 2768-84). В качестве отвердителя использовали полиэтиленполиамид марки ПЭПА (ТУ 6-17-12742-74).

В качестве электропроводящего углеродсодержащего наполнителя использовали углерод (сажу) марки П 268-Э (ТУ 38.41579-83) и графит. Наиболее предпочтительно использовать, например, углерод марки П 268-Э (ТУ 38.41579-83) или углерод марки П 803 (ГОСТ 7885-86), или графит малозольный (ГОСТ 18191-78Е), или графит порошковый особой чистоты (ГОСТ 23463-79).

Углерод получают термоокислительной деструкцией жидкого углеводородного сырья, такого как, например, бензин, толуол, нафталин при температуре, равной или более 1000°C.

Допускается замена жидкого сырья газообразными углеводородами, такими как, например, этилен, пропилен, пропан, метан или окись углерода СО. Желательно, чтобы содержание чистого углерода в электропроводном углеродсодержащем наполнителе было бы не менее 97 мае, а удельная адсорбционная поверхность более 230 м3/г.

Частицы графита имеют разветвленную форму (структуру), их преимущественные размеры 0,3-30 нм, что повышает эластичность пленочного покрытия на основе приведенной композиции (краски).

Делитель напряжения выполняли в виде резистивных слоев 7, которые равномерно наносят на боковые наружные поверхности каждой кольцеобразной диэлектрической секции, добиваясь одинаковых значений сопротивления боковых поверхностей каждой секции. В заявляемом способе резистивные слои 7 наносились аэрозольным способом той же электропроводящей краской, что и электропроводящие слои 4 и 6.

При нанесении электропроводящей краски добивались одинаковых значений сопротивления боковой поверхности, равного 150 кОм. Уплотнительные манжеты выполняли из электропроводящей резины, шнуровой резины круглого сечения с диаметром 5 мм. При помощи клея закрепляли упомянутые манжеты ко дну проточки под эластичную манжету. После проведения вышеописанных операций приступали к сборке изолятора. Нижнюю кольцеобразную диэлектрическую секцию ввинчивали в резьбу фланца изолятора. В верхнее углубление упомянутой нижней кольцеобразной диэлектрической секции с нарезанной на его боковой поверхности резьбой вкручивали следующую секцию при помощи резьбы, выполненной на ее цилиндрическом выступе. Такую процедуру продолжали до полной сборки изолятора. Завершали сборку ввинчиванием крышки изолятора в резьбу последней кольцеобразной диэлектрическую секции. Весь изолятор был собран из 25 диэлектрических секций.

Таким образом, заявляемый способ, по сравнению со способом-прототипом, существенно упрощает технологию сборки и конструкцию изолятора, так как в нем отсутствуют такие элементы, усложняющие конструкцию и сборку, как диэлектрические стяжки, навесные сопротивления делителя, а электропроводящие прокладки выполнены в виде тонких слоев, нанесенных на торцевые части диэлектрических секций. Последнее обстоятельство в значительной мере позволяет снизить габариты изолятора.

Источники информации

1. Патент США №2082474, кл. 174-9, опубл. 1937 г.

2. Авторское свидетельство СССР №547845, кл. Н01В 17/26, 1975.

3. Авторское свидетельство СССР №803017, кл. Н01В 17/26, 1978.

4. Авторское свидетельство СССР №636687. Проходной секционированный изолятор / Г.М. Кассиров, Г.В. Смирнов, Ю.В. Планкин/кл. Н01В 17/32. Опубл. 05.12.78. Бюл. №45. - Прототип.

Способ изготовления проходных вакуумных изоляторов высокого напряжения, заключающийся в том, что изолятор собирают в виде расположенных между крышкой и фланцем изолятора из одинаковых по конструкции и геометрическим размерам кольцеобразных диэлектрических секций и чередующихся с ними идентичных между собой электропроводящих прокладок и уплотнительных эластичных манжет, а напряжение между упомянутыми секциями равномерно распределяют при помощи делителя напряжения, отличающийся тем, что в одном из торцов кольцеобразной диэлектрической секции делают углубление в виде цилиндрического стакана, на боковой внутренней стенки которого нарезают резьбу, а в дне стакана делают проточку под эластичную манжету, на другом торце кольцеобразной диэлектрической секции изготавливают цилиндрический выступ, высота которого равна глубине углубления выполненного на противоположном торце упомянутой секции, а диаметр выступа рассчитан под резьбу, нарезанную на боковой стенке упомянутого стакана, нарезают резьбу на наружной цилиндрической части выступа, идентичную резьбе, нарезанной на внутренней стенке упомянутого стакана, изготавливают электропроводящие прокладки путем нанесения на торцевые поверхности электропроводного слоя, а делитель напряжения выполняют в виде резистивного слоя, который равномерно наносят на боковые поверхности кольцеобразных диэлектрических секций, добиваясь одинаковых значений сопротивления боковых поверхностей различных секций между собой, изготавливают уплотнительные манжеты из электропроводящей резины, после чего осуществляют сборку изолятора, при которой закрепляют упомянутые манжеты в проточки под эластичную манжету, соединяют между собой диэлектрические секции при помощи нарезанной на их соответствующих поверхностях упомянутых углублениях и выступах резьбы, причем нижнюю кольцеобразную диэлектрическую секцию присоединяют при помощи резьбы к фланцу изолятора, имеющему цилиндрическое углубление с нарезанной на его боковой поверхности резьбой, соответствующей размеру резьбы, выполненной на цилиндрическом выступе каждой диэлектрическое секции, а верхнюю кольцеобразную диэлектрическую секцию соединяют при помощи резьбы с крышкой проходного изолятора, в которой выполнен цилиндрический выступ с нарезанной на его боковой поверхности резьбой, соответствующей размеру резьбы, выполненной на боковой поверхности цилиндрического углубления каждой диэлектрической секции.



 

Похожие патенты:

Изобретение относится к электротехнике, а именно к электрическим изоляторам, предназначенным для использования в конструкциях генераторов высокого напряжения, в ускорителях заряженных частиц и в других вакуумных высоковольтных установках.

Изобретение относится к электротехнике, а именно к электрическим изоляторам, предназначенным для использования в конструкциях генераторов высокого напряжения, в ускорителях заряженных частиц и в других вакуумных высоковольтных установках.

Гермоввод // 2538093
Изобретение относится к области изготовления миниатюрных гермовводов и может быть использовано во всех изделиях электровакуумного приборостроения. Гермоввод состоит из наружного корпуса, в котором установлено не менее одного неметаллизированного изолятора, внутри которого размещен один или несколько токовводов, при этом между каждым токовводом и каждым изолятором, каждым изолятором и наружным корпусом образованы зазоры, заполненные путем капиллярного течения активным медно-титановым припоем, посредством которого соединены все элементы гермоввода.

Изобретение относится к устройству высокого напряжения для обеспечения электрической изоляции проводника, проходящего через устройство. Устройство содержит полый изолятор; проводник, проходящий через полый изолятор; компоновку для уменьшения градиента поля, включающую в себя сердечник конденсатора и экран выравнивания напряжения.

Изобретение относится к электротехнике, в частности к проходным изоляторам, предназначенным для ввода электрического тока или напряжения внутрь зданий или корпусов электрических устройств.

Электрический проводник (S) предназначен для пропускания номинального тока в сильноточном проходном изоляторе трансформатора электростанций, расположенном в токовой цепи между генератором и первичными обмотками трансформатора в прерывателе генератора.

Изобретение относится к герметичным кабельным вводам электрических проводников в электрооборудование глубоководных аппаратов. Кабельный ввод содержит металлический цилиндрический корпус с отверстиями для электрических проводников, снабжен токопроводящими контактными стержнями и фиксирующими их гайками, изолирующими втулками и центрующими втулками.

Изобретение относится к устройствам измерения высокого напряжения. Газонепроницаемый измерительный ввод имеет пронизанное измерительной жилой (8, 8а) в направлении основной оси (3) изоляционное тело (7, 7а).

Изобретение относится к электротехническим изделиям, а именно, к изоляторам высоковольтным опорным, предназначенным для закрепления токопровода высокого напряжения на силовых опорах электрических (электрошоковых) заграждений.

Изобретение относится к герметичным кабельным вводам электрических проводников в электрооборудовании глубоководных аппаратов, при изготовлении объектов аэрокосмической техники, для ввода электрической энергии в герметичные помещения, например, в атомных электростанциях, для этого кабельный ввод содержит металлический цилиндрический корпус, который выполнен единой конструкцией с внутренней упорной пластиной, в которой имеются отверстия для электрических проводников, а токопроводящие контакты между собой и корпусом изолируются путем заполнения полимерным компаундом. 1 ил.

Изобретение относится области электротехники, а именно к конструкции кабельного ввода, использующегося в ракетной технике при строительстве специальных фортификационных сооружений и предназначенного для обеспечения связи в диапазоне частот от 0,5 до 10 ГГц. Кабельный ввод содержит полый корпус с размещенной внутри коаксиальной линией с соосно расположенными центральным внутренним и внешним токонесущими элементами. Полый корпус состоит из фланца и трубы, соединенных резьбой. Коаксиальная линия содержит цилиндрический волновод и силовой огнестойкий коаксиальный узел, соединенные с коаксиальными радиочастотными (РЧ) разъемами, закрепленными на торцах полого корпуса и состоящими из корпусов, изоляторов и контактов. Силовой огнестойкий коаксиальный узел размещен в передней части полого корпуса со стороны внешнего воздействия и состоит из опорной муфты, имеющей резьбовое соединение с фланцем полого корпуса, керамического изолятора, проводника, проходника и заглушки в виде стержня с конической головкой с углом конусности 45°, сопрягающейся с коническим входом отверстия в керамическом изоляторе под заглушку. Опорная муфта со стороны внешнего воздействия выполнена с внутренней проточкой для фиксации керамического изолятора и с наружной проточкой для резьбового соединения с корпусом РЧ разъема, а с противоположной стороны имеет внутреннюю проточку для резьбового соединения с цилиндрическим волноводом, противоположный конец которого имеет резьбовое соединение с корпусом второго РЧ разъема. В качестве внешнего токонесущего элемента использована последовательная цепочка элементов, состоящая из корпусов РЧ разъемов, опорной муфты и цилиндрического волновода, а в качестве центрального токонесущего элемента использована цепочка элементов, состоящая из контактов РЧ разъемов, заглушки, проходника и проводника, скрепленных между собой пайкой припоем ПОС-61М с предварительной подготовкой мест под пайку покрытием олово-висмут О-Ви (99,8)9. Стержень заглушки выполнен диаметром в пределах от 1,5 до 1,7 мм, а проходник и проводник выполнены диаметром 4,34 мм. Обеспечивается прохождение радиосигнала требуемого диапазона частот, повышается стойкость к внешним поражающим факторам и сохраняется герметичность специального фортификационного сооружения. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к электроэнергетическим устройствам и может быть использовано для передачи электрической энергии посредством кабелей, проводов, жгутов различных конструкций в герметичных системах. В способе герметичного ввода электрических проводников через защитную оболочку перед сборкой гермоввода проводят объемное, трехмерное моделирование деталей, узлов и всей конструкции гермоввода в соответствии с установленными требованиями к геометрии и качеству используемых материалов, а в начале сборки соединяют керамические изоляционные модули с металлической арматурой посредством спекания с использованием припоя из серебра Ср999,9, при этом изоляционные модули и арматура подвергаются высокотемпературному нагреву и последующему ступенчатому охлаждению в нейтральной среде до полного прохождения релаксационных процессов в месте соединения и в объеме керамики. При осуществлении изобретения достигается высокая стабильность и качество электромеханических характеристик при сейсмических, термических и др. аварийных воздействиях и токах короткого замыкания, обеспечивается постоянный контроль герметичности в процессе эксплуатации гермоввода. 7 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к изготовлению секционированных проходных изоляторов. В способе определения оптимального числа секций N секционированного изолятора заданной высоты H, выполненного в виде чередующихся кольцевых, дисковых или цилиндрических элементов из изоляционного материала и прокладок из проводящего материала заданной толщины b, предварительно снимают зависимость пробивного напряжения U по поверхности диэлектрика, помещенного в вакуум, от толщины диэлектрика d, аналитическое описание которой представляют в виде степенной функции U=kdα, и, используя полученные при снятии зависимости пробивного напряжения по поверхности диэлектрика от его толщины экспериментальные данные, определяют коэффициенты k и α в упомянутой функции. Заявляемый способ имеет более высокую точность определения оптимального числа секций в изоляторе, что позволяет при заданной высоте изолятора H и заданной толщине градиентной прокладки b получить максимально возможное пробивное напряжение для указанных габаритов изолятора. 1 ил., 3 табл.

Проходной элемент для прохода функционального элемента через отверстие электрически изолированным образом, при этом проходной элемент пригоден для использования в условиях окружающей среды с температурами выше 260°С и/или давлением выше 289,6 МПа (42000 фунтов/дюйм2), при этом проходной элемент включает в себя опорный корпус, по меньшей мере, с одним отверстием для прохода, в котором расположен, по меньшей мере, один функциональный элемент в электрически изолирующем фиксирующем материале; электрически изолирующий материал электрически изолирует функциональный элемент от опорного корпуса, при этом электрически изолирующий материал содержит стекло или стеклокерамику с удельным объемным сопротивлением более 1,0·1010 Ом.см при температуре 350°C. Указанное стекло или стеклокерамика имеет определенный диапазон составов в системе SiO2-B2O3-MO. Изобретение обеспечивает высокие электроизоляционные свойства проводника.. 6 н. и 18 з.п. ф-лы, 10 ил.

Изобретение относится к электротехнике, а именно к изготовлению секционированных проходных изоляторов. В способе определения оптимального числа секций в проходном высоковольтном вакуумном изоляторе, выполненном в виде чередующихся кольцевых, дисковых или цилиндрических элементов из изоляционного материала и прокладок из проводящего материала заданной толщины b, предварительно снимают зависимость пробивного напряжения по поверхности элемента из изоляционного материала, помещенного в вакуум, от толщины d указанного элемента, строят график снятой зависимости, аппроксимируют построенный график степенной функцией вида U=kdα, определяют коэффициенты k и α в упомянутой зависимости, используя экспериментальные данные, полученные при снятии зависимости пробивного напряжения по поверхности элемента из изоляционного материала от его толщины, затем рассчитывают оптимальную толщину и количество секций по определенным зависимостям. При заданном рабочем напряжении изолятора выбором оптимального количества его секций можно добиться сокращения габаритов и уменьшения стоимости изолятора. 4 ил., 2 табл.

Изобретение относится к электротехнике, в частности к высоковольтной импульсной технике, и может быть использовано при проектировании высоковольтных секционированных изоляторов для вакуумных камер. Новым является то, что в проходной секционированный изолятор, содержащий два плоских электрода, один из которых имеет по оси отверстие, расположенные между ними чередующиеся между собой изоляционные слои в виде колец и электропроводящие прокладки, и электропроводящие экраны в виде цилиндров, соединенных с внутренней поверхностью прокладок и направленных в сторону другого электрода, экраны выполнены из электропроводной тонкостенной ленты в виде сильфонов с двойными стенками. Изобретение обеспечивает возможность изменять электрическую прочность в широких пределах, добиваясь ее оптимального значения. 2 ил.
Наверх