Одноволновый радиолокационный способ измерения размера градовых частиц в облаках в зоне их роста



Одноволновый радиолокационный способ измерения размера градовых частиц в облаках в зоне их роста
Одноволновый радиолокационный способ измерения размера градовых частиц в облаках в зоне их роста
Одноволновый радиолокационный способ измерения размера градовых частиц в облаках в зоне их роста
Одноволновый радиолокационный способ измерения размера градовых частиц в облаках в зоне их роста
Одноволновый радиолокационный способ измерения размера градовых частиц в облаках в зоне их роста
Одноволновый радиолокационный способ измерения размера градовых частиц в облаках в зоне их роста
Одноволновый радиолокационный способ измерения размера градовых частиц в облаках в зоне их роста
Одноволновый радиолокационный способ измерения размера градовых частиц в облаках в зоне их роста

 


Владельцы патента RU 2561008:

Федеральное государственное бюджетное учреждение "ВЫСОКОГОРНЫЙ ГЕОФИЗИЧЕСКИЙ ИНСТИТУТ" (ФГБУ ВГИ) (RU)

Изобретение относится к области радиолокационной метеорологии и может быть использовано для измерения размера градовых частиц в зоне их роста. Сущность: по данным аэрологического зондирования атмосферы строят график изменения температуры и скорости восходящих воздушных потоков по высоте облака. По данному графику определяют значение максимальной скорости восходящих потоков в слое облачной среды, находящемся в зоне отрицательных температур. Затем осуществляют радиолокационное зондирование облака на одной длине волны. По данным радиолокационного зондирования проводят горизонтальные сечения изоконтуров радиолокационной отражаемости облачной среды вблизи уровня максимальной скорости восходящих потоков. Определяют значение максимальной отражаемости облачной среды, с учетом которого вычисляют максимальный размер градовых частиц в зоне их роста. Технический результат: упрощение измерения размера градовых частиц в зоне их роста. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к области радиолокационной метеорологии и может быть использовано для определения размера градовых частиц с использованием одноволнового метеорадиолокатора.

Известны различные способы определения размера градовых частиц методом прямого инструментального измерения градин после падения их на землю, либо методом измерения реплик, оставляемых градинами на поверхности специальных градовых подушек, называемых иначе наземными градовыми индикаторами (Тлисов М.И., Хучунаев Б.М. Исследование физических характеристик градобитий при помощи наземных индикаторов. - Труды ВГИ, 1986, вып.69, с.81-86).

Наземные градовые индикаторы представляют собой пенополистироловую пластину, покрытую тонкой алюминиевой фольгой толщиной 100 мкм. Град, падая на поверхность индикатора, оставляет отпечатки (реплики), по которым определяют размеры градовых частиц.

К существенным недостаткам известного способа можно отнести необходимость калибровки индикаторов, которая производится с помощью стальных, пластиковых либо ледяных ядер, сталкивающихся с чувствительной поверхностью подушки.

Кроме того, реализация способа требует значительного ручного труда при подсчетах и измерении отпечаток градин, а также требует создания мощной градомерной сети на обширных территориях, что практически невозможно из-за значительных трудозатрат.

Наиболее близким по технической сущности к заявляемому объекту является способ определения размера градовых частиц путем радиолокационного зондирования градового облака с последующим определением радиолокационной отражаемости на двух длинах волн и нахождения среднекубического размера градовых частиц по формуле

где d3 - среднекубический диаметр градин, см;

η3,2 и η10 - значения отражаемости на длинах волн 3,2 см и 10 см;

4,54 и 0,502 - эмпирические коэффициенты

(Руководство по применению радиолокаторов МРЛ-4, МРЛ-5 и МРЛ-6. / М.Т. Абшаев, И.И. Бурцев, С.И. Ваксенбург, Г.Ф. Шевела. - Л.: Гидрометеоиздат, 1980, с.66-67. ПРОТОТИП).

В сравнении с наземной градомерной сетью радиолокационный способ имеет ряд существенных преимуществ, поскольку обеспечивает измерение размеров градовых частиц на значительных площадях, ограниченных радиусом действия локатора 130÷150 км. Вместе с тем известный способ обладает рядом существенных недостатков, что обусловлено тем, что сам метеорадиолокатор МРЛ-5 представляет собой довольно сложное устройство, где каждый канал по существу является самостоятельной станцией и вносит свои аппаратурные погрешности при измерениях. В настоящее время на смену двухволновых радиолокационных станций типа МРЛ приходят более совершенные одноволновые станции типа ДМРЛ. В этой связи становится актуальным разработка новых одноволновых методов измерения микроструктурных параметров облака, каковыми являются спектр размеров и концентрация облачных частиц.

Техническим результатом от использования заявленного технического решения является разработка одноволнового радиолокационного способа измерения размера градовых частиц в облаках в зоне их роста и упрощение процедуры измерения данным методом.

Технический результат достигается тем, что в известном способе измерения размера градовых частиц в облаках в зоне их роста, включающем радиолокационное зондирование облака на заданной длине волны, прием отраженного сигнала от облака с последующей обработкой сигнала и определением отражаемости в заданных пространственных точках облачной среды и нахождением по данным радиолокационного зондирования размера градовых частиц расчетным путем, согласно способу зондирование облака осуществляют на одной длине волны, при этом, предварительно, по данным аэрологического зондирования атмосферы строят график изменения температуры и скорости восходящих воздушных потоков по высоте облака, затем по данному графику определяют значение максимальной скорости восходящих потоков в слое облачной среды, находящемся в зоне отрицательных температур, после этого, используя данные радиолокационного зондирования, проводят горизонтальные сечения изоконтуров радиолокационной отражаемости облачной среды вблизи уровня максимальной скорости восходящих потоков и по ним определяют значение максимальной отражаемости облачной среды, затем вычисляют максимальный размер градовых частиц в зоне их роста по формуле

где dmax - максимальный размер градовых частиц, см;

ηmax - максимальная отражаемость облачной среды, см-1;

A и B - эмпирические коэффициенты.

Технический результат достигается и тем, что максимальную отражаемость облачной среды в зоне их роста града определяют по нескольким горизонтальным сечениям изоконтуров радиолокационной отражаемости, при этом первое сечение проходит по уровню максимальной скорости восходящих потоков, а остальные сечения проходят выше этого уровня, при этом расстояние между сечениями составляет, преимущественно, 500 м.

Технический результат достигается и тем, что зондирование облачной среды осуществляют на длине волны 10 см, при этом эмпирические коэффициенты расчетной формулы, при зондировании облака на данной длине волны, составляют A=2,43·106 и B=0,79.

Коэффициенты «А» и «В» найдены методом анализа статистических данных измерений размера градовых частиц в облаках, полученных в результате многолетних исследований процесса роста града в градовых облаках дистанционными и контактными методами. При этом учитывались наиболее типичные значения толщины пленки воды на поверхности градин, характеристики спектра градовых частиц и соотношения сухих и мокрых градин в спектре. Полученная расчетная формула наиболее оптимально выражает конечный результат проведенных исследований.

На фиг.1 представлен график изменения температуры и скорости восходящих потоков по высоте развивающегося градового облака.

На фиг.2-фиг.4 представлены сечения радиолокационной отражаемости облачной среды вблизи уровня максимальной скорости восходящих потоков.

Предлагаемый способ реализуется следующим образом:

- по данным аэрологического зондирования атмосферы строят график изменения температуры и скорости восходящих воздушных потоков по высоте облака;

- по данному графику определяют значение максимальной скорости восходящих потоков в слое облачной среды, находящемся в зоне отрицательных температур;

- затем проводят горизонтальные сечения изоконтуров радиолокационной отражаемости облачной среды в зоне, примыкающей сверху к уровню максимальной скорости восходящих потоков;

- по данным сечениям определяют значение максимальной отражаемости облачной среды вблизи уровня максимальной скорости восходящих потоков;

- по значению максимальной отражаемости облачной среды определяют максимальный размер градовых частиц в зоне их роста по формуле.

Пример конкретного выполнения способа

На фиг.1 приведен график изменения скорости вертикальных потоков воздушной среды и температуры в облаке, построенный по результатам зондирования в пункте Минеральные воды 07.06.2012. По данному графику нашли максимальную скорость восходящих потоков в слое облачной среды, которая составляет 34,1 м/с на высоте 9,5 км. Очевидно, что такое расположение уровня максимальной вертикальной скорости в облаке способствует росту крупного града. Далее, путем радиолокационного зондирования облака на длине волны 10 см были определены значения отражаемости в заданных пространственных точках облачной среды и получены их горизонтальные сечения вблизи уровня максимальной скорости восходящих потоков. Максимальную отражаемость облачной среды в зоне интенсивного роста града определяли по трем горизонтальным сечениям изоконтуров радиолокационной отражаемости. Первое горизонтальное сечение (фиг.2) было получено для уровня максимальной скорости восходящих потоков, а остальные сечения (фиг.3 и фиг.4) были получены для уровней, расположенных выше первого сечения, при этом расстояние между данными сечениями составляло 500 м. Из полученных сечений нашли значение максимальной отражаемости облачной среды ηmax=5,0·10-8 см-1. Далее, подставив значение ηmax в расчетную формулу, нашли максимальный диаметр градовых частиц в зоне их роста

Таким образом, используя данные стратификации атмосферы и радиолокационного зондирования облака, легко определяется размер градовых частиц в зоне их роста одноволновым методом. При этом в сравнении с двухволновым методом значительно упрощается сама процедура измерения размера градовых частиц.

1. Одноволновый радиолокационный способ измерения размера градовых частиц в облаках в зоне их роста, включающий радиолокационное зондирование облака на заданной длине волны, прием отраженного сигнала от облака с последующей обработкой сигнала и определением отражаемости в заданных пространственных точках облачной среды и нахождение по данным радиолокационного зондирования размера градовых частиц расчетным путем, отличающийся тем, что зондирование облака осуществляют на одной длине волны, при этом предварительно по данным аэрологического зондирования атмосферы строят график изменения температуры и скорости восходящих воздушных потоков по высоте облака, затем по данному графику определяют значение максимальной скорости восходящих потоков в слое облачной среды, находящемся в зоне отрицательных температур, после этого, используя данные радиолокационного зондирования, проводят горизонтальные сечения изоконтуров радиолокационной отражаемости облачной среды вблизи уровня максимальной скорости восходящих потоков и по ним определяют значение максимальной отражаемости облачной среды, затем вычисляют максимальный размер градовых частиц в зоне их роста по формуле

где dmax - максимальный размер градовых частиц, см;
ηmax - максимальная отражаемость облачной среды, см-1;
A и B - эмпирические коэффициенты.

2. Способ измерения размера градовых частиц в облаке по п.1, отличающийся тем, что максимальную отражаемость облачной среды в зоне роста града определяют по нескольким горизонтальным сечениям изоконтуров радиолокационной отражаемости, при этом первое сечение проходит по уровню максимальной скорости восходящих потоков, а остальные сечения проходят выше этого уровня, при этом расстояние между сечениями составляет преимущественно 500 м.

3. Способ измерения размера градовых частиц в облаке по п.1, отличающийся тем, что зондирование облачной среды осуществляют на длине волны 10 см, при этом эмпирические коэффициенты расчетной формулы при зондировании облака на данной длине волны составляют: A=2,43·106 и B=0,79.



 

Похожие патенты:

Изобретение относится к геофизике и может использоваться в системе мониторинга окружающей среды, сейсмического и инфразвукового мониторинга, МЧС России, контроля околоземного космического пространства для диагностики положения эпицентральной зоны потенциальных источников протяженных перемещающихся ионосферных возмущений (ПИВ).

Изобретение относится к области радиофизики и может быть использовано для контроля за солнечной, геомагнитной и сейсмической активностью, за предвестниками землетрясения, извержения вулканов, цунами, процессами грозовой активности, динамикой мощных штормовых циклонов, а также для обнаружения ядерных и иных крупных взрывов и пожаров, больших аварийных выбросов на атомных электростанциях, запусков космических аппаратов и ракет, излучений мощных радиопередающих комплексов радиолокационного и связного назначения, средств специального воздействия на ионосферу с целью управления ее параметрами.

Изобретение относится к области метеорологии и может быть использовано для определения прозрачности атмосферы. Сущность: осуществляют посылку в неоднородную атмосферу световых импульсов малой длительности.

Изобретение относится к радиотехнике, электросвязи, радиолокации и может быть использовано в системах диагностики плазменных явлений в ионосфере Земли. Достигаемый технический результат - получение ионограммы за интервал времени значительно меньше 1 секунды.

Изобретение предназначено для измерения толщины льда и основано на принципе радиолокации с периодической дискретной частотной модуляцией зондирующих радиоволн.

Изобретение относится к области георадиолокационных исследований и может быть использовано для прогнозирования гидрологической обстановки на затороопасных участках реки.

Изобретение относится к области океанографических измерений и преимущественно предназначено для определения уровня морской поверхности вдоль трассы космического аппарата. Технический результат - повышение точности определения уровня морской поверхности за счет увеличения числа определяемых параметров, характеризующих состояние водной поверхности. Сущность: на расположенном на космическом аппарате радиолокаторе формируют короткие радиоимпульсы постоянной длительности, облучают морскую поверхность в надир и регистрируют отраженный радиоимпульс.

Изобретение относится к области океанографических измерений и преимущественно предназначено для определения скорости ветра над морской поверхностью. Технический результат - обеспечение возможности учитывать вклад поверхностного течения в уровень отраженных водной поверхностью радиосигналов, что повышает точность определения скорости ветра. Сущность: установленным на космическом аппарате радиоальтиметром облучают водную поверхность, регистрируют отражённый назад сигнал, по фронту радиоимпульса определяют значимую высоту поверхностных волн, по времени прохождения сигнала до поверхности и обратно определяют крупномасштабный рельеф поверхности, по нему рассчитывают поле поверхностного течения, и определяют скорость ветра по величине отраженного назад сигнала с учётом значимой высоты волн и влияния поля течения на величину отражённого назад сигнала. .

Изобретение относится к области метеорологии и может быть использовано для определения прозрачности атмосферы. Сущность: осуществляют посылку в неоднородную атмосферу световых импульсов малой длительности.

Изобретение относится к радиофизическим методам исследования ионосферы и предназначено для определения пространственного распределения ионосферных неоднородностей радарным методом с помощью ЛЧМ ионозонда-радиопеленгатора.

Изобретение относится к области радиотехники и может быть использовано в навигационных и метеорологических системах. Достигаемый технический результат - увеличение дальности определения молниевого разряда. Указанный результат достигается благодаря тому, что используются амплитудный селектор, параллельный анализатор спектров электромагнитного излучения, блок определения количества спектров, преобразователь десятичного кода в двоичный и постоянное запоминающее устройство, при этом выход грозопеленгатора через амплитудный селектор соединен с входом параллельного анализатора спектров электромагнитного излучения, имеющего группу выходов, соединенную через блок определения количества спектров, через преобразователь двоичного кода в десятичный с первой группы входов постоянного запоминающего устройства, имеющего группу выходов, соединенную с третьей группой входов блока вторичной обработки, имеющего вторую и первую группы входов и группу выходов, соответственно соединенные с группой выходов радиолокатора, группой выходов грозопеленгатора и группой входов индикатора. 1 ил.

Изобретение относится к радиотехнике и может быть использовано при модернизации и разработке новых систем радиозондирования (CP) с повышенной точностью, надежностью и ускоренной передачей телеметрической информации с борта аэрологического радиозонда (АРЗ) на наземную радиолокационную станцию (РЛС). Достигаемый технический результат - повышение достоверности и надежности передаваемой метеоинформации. Указанный результат достигается тем, что радиолокационная система зондирования атмосферы содержит аэрологический радиозонд - АРЗ и наземную базовую станцию - РЛС, при этом в состав АРЗ введены блок контроля параметров рабочих режимов и блок контроля параметров источника питания со следующими соединениями: выходы этих блоков соединены с блоком сопряжения микроконтроллера АРЗ, выход которого через выходные блоки АРЗ соединен с антенной АРЗ, которая через радиоканал соединена с антенной РЛС. 1 ил.

Изобретение относится к радиотехническим метеорологическим комплексам, а более конкретно оно касается доплеровских метеорологических радиолокационных станций. Достигаемый технический результат - устранение проблемы длительного времени анализа сигналов, повышение быстродействия и надежности при эксплуатации. Сущность изобретения заключается в том, что в радиолокационной станции с одновременной двойной поляризацией используется радиочастотный делитель мощности, заменяющий быстродействующие переключатели двух поляризаций, при этом критические компоненты приемника в основании радиолокатора перенесены выше вращающегося угломестного соединителя, используется также обходной переключатель для переключения режимов радиолокационной станции и специальная конструкция для приема сигналов с двумя поляризациями, позволяющая осуществлять экономичный сбор данных о коэффициентах деполяризации для выбранных атмосферных областей, при этом дополнительно введены СВЧ-радиометр, определитель радиальных доплеровских скоростей при различных углах места антенны, определитель ширины спектра радиальных скоростей ветра, формирователь метеорологических карт, спутниковая линия связи, спутниковый канал связи, устройство позиционирования, пульт управления. 1 ил.

Изобретение относится к радиотехнике и может быть использовано при модернизации и разработке новых систем радиозондирования (CP) с повышенной точностью, надежностью и ускоренной передачей телеметрической информации с борта аэрологического радиозонда (АРЗ) на наземную радиолокационную станцию (РЛС). Достигаемый технический результат - повышение надежности и достоверности передаваемой телеметрической информации о метеорологических параметрах атмосферы ΜΠΑ. Для достижения указанного результата предлагается унифицированная система радиозондирования атмосферы, позволяющая работать в трех режимах: радиолокационном, радиопеленгационном, радионавигационном. 3 ил.

Изобретение относится к области радиотехники и может быть использовано в составе комплексов радиоэлектронных средств диапазона декаметровых волн и верхней части диапазона гектометровых волн (многоканальных узлов радиосвязи, систем загоризонтной радиолокации) для оперативного определения значений оптимальных рабочих частот в диапазоне 1,5…30,0 МГц ионосферных радиотрасс различных протяженностей. Достигаемый технический результат - снижение напряженности электромагнитной обстановки при использовании линейно-частотно-модулированного (ЛЧМ)-ионозонда в составе комплексов радиоэлектронных средств и повышение точности оценки параметров ионосферы по результатам зондирования. Указанный результат достигается тем, что ЛЧМ-ионозонд содержит тракт передачи, тракт приема, контроллер, автоматизированное рабочее место оператора и блок синхронизации (БС). Перечисленные средства выполнены и соединены между собой определенным образом. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области метеорологии и касается способа определения профиля ветра в атмосфере. Способ включает в себя излучение приемопередатчиком длинных когерентных импульсов, регистрацию отраженного сигнала, получение доплеровского сигнала на различных высотах в различных направлениях зондирования. Уточнение профиля скорости ветра в пределах длинного участка проводят с учетом полной формы доплеровских спектров по двум или нескольким направлениям зондирования, в которых ширина спектра максимальна и с учетом закона ослабления принимаемой мощности от расстояния до приемопередатчика. Технический результат заключается в повышении чувствительности измерительной системы. 1 ил.

Изобретение относится к областям радионавигации и радиолокации и может быть использовано для создания приемника многопозиционной неизлучающей радиолокационной системы, использующей в качестве сигнала подсвета воздушных целей навигационные сигналы космической системы навигации. Достигаемым техническим результатом является повышение вероятности правильного обнаружения навигационного сигнала, рассеянного воздушной целью. Сущность изобретения заключается в том, что при приеме слабого рассеянного навигационного сигнала осуществляется компенсация мощного навигационного сигнала прямого распространения, играющего в этом случае роль структурно-детерминированной помехи. Для этого при приеме входной реализации в виде смеси мощного прямого навигационного сигнала, слабого навигационного сигнала, рассеянного воздушной целью, и собственного шума приемника осуществляется сначала стандартная процедура обнаружения мощного прямого сигнала и определение его точных параметров, при этом входная реализация записывается в память. Далее формируется точная копия прямого сигнала и вычитается из записанной входной реализации. Полученный результат содержит только собственные шумы приемника и слабый рассеянный сигнал, обнаружение которого осуществляется традиционным способом. Исключение влияния основного лепестка корреляционной функции не полностью скомпенсированного навигационного сигнала прямого распространения осуществляется путем ограничения области возможных значений задержки при поиске слабого рассеянного сигнала, поскольку, исходя из геометрии распространения прямого и рассеянного сигналов, задержка рассеянного сигнала будет всегда больше задержки прямого сигнала. 2 н.п. ф-лы, 1 ил.

Изобретение относится к способам обработки сигналов в радиолокационных станциях. Достигаемый технический результат - однозначное измерение дальности до метеорологического объекта (МО). Способ заключается в излучении первой последовательности импульсов с частотой повторения Fи1, в которой период повторения Tи1 в несколько раз меньше базового периода Т0, выбираемого из условия однозначного измерения расстояний в пределах всего возможного диапазона дальностей до наблюдаемых МО, излучении в последующий интервал Т0 второй последовательности импульсов с частотой повторения Fи2, причем Fи1=z1F0 и Fи2=z2F0, где F0=1/Т0; величины z1 и z2 некратные друг другу и не имеют общего делителя, определении совокупности наблюдаемых задержек tдн1i, где ; I - общее количество наблюдаемых задержек отраженных от МО импульсов относительно каждого k-го, ; K - количество излученных импульсов в первой пачке, излученного импульса в их первой пачке, вычислении величины средней наблюдаемой задержки t1 ср отраженных импульсов от МО относительно каждого излученного k-го импульса в их первой пачке, определении совокупности наблюдаемых задержек tдн2j, где ; J - общее количество наблюдаемых задержек отраженных от МО импульсов относительно каждого p-го, ; P - количество излученных импульсов во второй пачке, излученного импульса в их второй пачке, вычислении величины средней наблюдаемой задержки отраженных импульсов от МО t2 ср относительно каждого излученного p-го импульса в их второй пачке, сравнении временных задержек tдц1=mTи1+t1 cp и tдц2=nТи2+t2 ср, где m и n - количество целых периодов Ти1 и Ти2, попадающих в пределы интервала истинной задержки tдц, варьировании численных значений m и n до тех пор, пока не будет выполнено условие tдц1=tдц2 с фиксацией, при которых будет выполнено данное условие, и вычислении дальности до МО по формуле Дц=c(mфТи1+t1 ср)/2 или Дц=с(nфТи2+t2 ср)/2, где c - скорость света. 2 ил.
Наверх