Полупроводниковый анализатор диоксида азота



Полупроводниковый анализатор диоксида азота
Полупроводниковый анализатор диоксида азота
Полупроводниковый анализатор диоксида азота

 


Владельцы патента RU 2561019:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (RU)

Использование: для регистрации и измерения содержания микропримесей диоксида азота. Сущность изобретения заключается в том, что датчик состоит из полупроводникового основания, выполненного в виде поликристаллической пленки твердого раствора (InSb)0,94(CdTe)0,06, нанесенной на электродную площадку пьезокварцевого резонатора. Технический результат: обеспечение возможности повышения чувствительности, селективности датчика и технологичности его изготовления. 3 ил., 1 табл.

 

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей диоксида азота. Изобретение может быть использовано для решения задач экологического контроля.

Известен датчик (детектор) по теплопроводности, действие которого основано на различии между теплопроводностью паров вещества и газа-носителя (Вяхирев Д.А., Шушукова А.Ф. Руководство по газовой хроматографии. М.: Высш. школа, 1987. - 287 с.).

Однако чувствительность такого датчика (детектора) ограничивается на вещества с теплопроводностью, близкой к теплопроводности газа-носителя. Например, при использовании этого датчика для анализа диоксида азота точность определения невысока.

Известен также датчик (сенсор) диоксида азота, состоящий из подложки, выполненной из поликристаллического Al2O3, чувствительного слоя в виде тонкой пленки из нанокристаллического диоксида олова, в который дополнительно введены наночастицы оксида никеля и золота, и платиновых электродов (Патент RU №2464554 М. кл. G01N 27/12, опубл. 2012), позволяющий определять содержание диоксида азота с большей чувствительностью, но имеющий ряд недостатков.

Недостатками известного устройства являются невысокая селективность по отношению к NO2, относительно высокая (по сравнению с комнатной) рабочая температура (125-200°C), использование драгоценных металлов (Au, Pt), сложность конструкции, длительность и трудоемкость (сложность) его изготовления: формирование пленки чувствительного элемента происходит в несколько стадий, включая получение геля оловянной кислоты, промывку и сушку, модификацию поверхности диоксида олова золотом и оксидом никеля, сушку и последующую прокалку в температурном режиме: 80°C - 24 ч, 120°C - 10 ч, 160°C - 10 ч, 200°C - 10 ч, 300°C - 10 ч и 350°C - 24 ч, нанесение платиновых электродов. Осуществление такого способа изготовления газового сенсора отличается многостадийностью технологических операций, сопряжено с большими временными затратами.

Ближайшим техническим решением к изобретению (прототипом) является датчик влажности газов, состоящий из полупроводникового основания, выполненного в виде поликристаллической пленки селенида цинка, легированного арсенидом галлия, с нанесенными на ее поверхность металлическими электродами и непроводящей подложки (Патент RU №2161794, М. кл. G01N 27/12, опубл. 2001).

Недостатками этого известного устройства являются его недостаточная чувствительность и селективность при контроле микропримесей диоксида азота, трудоемкость изготовления за счет того, что необходимо нанесение металлических электродов на полупроводниковое основание.

Технический результат изобретения - создание датчика, характеризующегося повышенной чувствительностью, селективностью, технологичностью его изготовления и позволяющего определять содержание микропримесей диоксида азота в газовых смесях.

Указанный технический результат достигается тем, что в известном газовом датчике, содержащем полупроводниковое основание и непроводящую подложку, согласно изобретению полупроводниковое основание выполнено в виде поликристаллической пленки твердого раствора (InSb)0,94(CdTe)0,06, а подложкой служит электродная площадка пьезокварцевого резонатора.

Сущность изобретения поясняется чертежами и таблицей, где представлены на фиг. 1 - конструкция заявляемого датчика, на фиг. 2 - кривые зависимости pH изоэлектрического состояния поверхности (pHизо) полупроводников системы InSb-CdTe, экспонированных в инертном газе (а) и в атмосфере диоксида азота (б), от их состава; на фиг. 3 - градуировочная кривая зависимости изменения электропроводности (Δσ) полупроводниковой пленки в процессе адсорбции при комнатной температуре от начальной концентрации NO2 (CNO2), а в таблице - данные, свидетельствующие о его селективности по отношению к другим газам (O2, SO2, CO).

Датчик состоит из полупроводникового основания 1, выполненного в виде поликристаллической пленки твердого раствора (InSb)0,94(CdTe)0,06, нанесенной на электродную площадку 2 пьезокварцевого резонатора 3.

Кривые а и б на фиг. 2 демонстрируют заметное влияние диоксида азота на pHизо поверхности полупроводникового основания - поликристаллической пленки твердого раствора (InSb)0,94(CdTe)0,06, градуировочная кривая на фиг. 3 и таблица наглядно указывают на высокую чувствительность и селективность полупроводникового основания к диоксиду азота.

Принцип работы такого датчика основан на адсорбционно-десорбционных процессах, протекающих на полупроводниковой пленке, нанесенной на электродную площадку пьезокварцевого резонатора, и вызывающих изменение его электропроводности.

Работа датчика осуществляется следующим образом. Датчик помещают в находящуюся при комнатной температуре камеру (ею может быть обычная стеклянная трубка), через которую пропускают анализируемый газ на содержание диоксида азота. При контакте пропускаемого газа с поверхностью полупроводниковой пленки (InSb)0,94(CdTe)0,06 происходит избирательная адсорбция молекул NO2 и изменение электропроводности. По величине изменения электропроводности с помощью градуировочных кривых можно определить содержание NO2 в исследуемой среде.

Из анализа приведенной на фиг. 3. типичной градуировочной кривой, полученной с помощью заявляемого датчика и выражающей зависимость изменения электропроводности (Δσ) от содержания диоксида азота (CNO2), а также из таблицы следует: заявляемый датчик при существенном упрощении состава чувствительного слоя, исключении из него драгоценных металлов (Au, Pt), существенном упрощении всей конструкции в целом и технологии изготовления позволяет определять содержание диоксида азота, с чувствительностью, не уступающей чувствительности известных датчиков, и при этом с высокой селективностью.

Существенное упрощение технологии изготовления датчика обусловлено существенным упрощением состава чувствительного слоя и конструкции датчика в целом (устранением многостадийности технологических операций и соответственно временных затрат), а также исключением операции нанесения на полупроводниковое основание металлических электродов.

Малые габариты устройства (рабочий объем менее 0,3 см3) в сочетании с малой массой пленки-адсорбента позволяют снизить постоянную датчика по времени до 10-20 мс.

Конструкция заявляемого датчика позволяет также улучшить и другие его характеристики: быстродействие, регенерируемость, способность работать не только в статическом, но и динамическом режиме.

Таблица
Избирательная чувствительность тонкой пленки твердого раствора (InSb)0,94(CdTe)0,06 при 20°C
Газ Содержание газа, C·104 об. % Изменение электропроводности, Δσ·103, Ом-1·см-1
NO2 2 6
SO2 6 0
CO 10 0
O2 6 0,1
NO2 + SO2 2:6 5,9
NO2 + CO 2:6 5,9

Газовый датчик, содержащий полупроводниковое основание и подложку, отличающийся тем, что полупроводниковое основание выполнено из поликристаллической пленки твердого раствора (InSb)0,94(CdTe)0,06, a подложкой служит электродная площадка пьезокварцевого резонатора.



 

Похожие патенты:

Изобретение относится к аналитической химии, а может быть использовано для оценки безопасности изделий из фенолформальдегидных пластмасс. Для этого используют многоканальный анализатор газов (МАГ-8) с 8-мью пьезокварцевыми резонаторами, электроды которых модифицируют нанесением растворов полидиэтиленгликольсукцината, полиэтиленгликольсебацината, полиэтиленгликольфталата, полифенилового эфира, триоктилфосфиноксида, пчелиного клея, пчелиного воска и комбинированного сорбента - пчелиного клея с хлоридом железа (III).

Использование: для регистрации и измерения содержания оксида углерода. Сущность изобретения заключается в том, что полупроводниковый газоанализатор угарного газа содержит полупроводниковое основание, нанесенное на непроводящую подложку, при этом полупроводниковое основание выполнено из поликристаллической пленки твердого раствора (ZnTe)0,26(CdSe)0,74.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания кислорода. Газовый датчик согласно изобретению содержит диэлектрическую подложку с нанесенным слоем полупроводникового материала толщиной от 0,07 мкм до 0.2 мкм.
Использование: для определения содержания паров воды в воздушной среде. Сущность изобретения заключается в том, что при формировании пленок для определения содержания паров воды в воздушной среде выполняют последовательное нанесение на поверхность оксидного стекла поли-N,N-диметил-3,4-диметиленпирролидиний хлорида аэрозольным распылением и гексацианоферрата(III) калия ультразвуковым распылением в соотношении 3:1 с образованием поли-N,N-диметил-3,4-диметиленпирролидиний цианидной пленки, селективной по отношению к парам воды.
Изобретение относится к области нанотехнологии сенсорных материалов и может быть использовано для создания полупроводниковых газовых сенсоров, селективных к содержанию в воздухе сероводорода и его производных.

Изобретение относится к изготовлению газовых сенсоров, предназначенных для детектирования различных газов. Предложен способ изготовления газового сенсора, в котором образуют гетероструктуру из различных материалов, в ней формируют газочувствительный слой, после чего ее закрепляют в корпусе сенсора, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей аммиака.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей аммиака.

Изобретение относится к газовому анализу и может быть использовано для контроля токсичных и взрывоопасных газов и в тех областях науки и техники, где необходим анализ газовых сред.

Изобретение относится к области газового анализа и может быть использовано в экологии. Датчик согласно изобретению содержит полупроводниковое основание и подложку, причем основание выполнено из поликристаллической пленки теллурида кадмия, легированного сульфидом цинка, нанесенной на непроводящую подложку.

Изобретение относится к области измерительной техники и может быть использовано для определения коэффициентов диффузии водорода в различных конструкционных материалах, используемых в космической и атомной технике, в изделиях, подвергаемых наводороживанию и облучению в процессе эксплуатации. Для управления электронным пучком в вакуумной камере расположены отклоняющие пластины, проходя которые, электронный пучок облучает с определенной частотой различные места поверхности металлической мембраны-образца. одна сторона которого, находящаяся в электролитической ячейке, насыщается водородом, диффундирующим к противоположной стороне образца-мембраны, встроенной герметично в торец вакуумной камеры и одновременно облучаемой отклоняемым пучком электронов от электронной пушки. Технический результат - повышение точности измерения. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам для регистрации и измерения содержания оксида углерода. Датчик состоит из полупроводникового основания, выполненного в виде поликристаллической пленки твердого раствора (ZnTe)0,68(CdSe)0,32, и непроводящей подложки. Датчик согласно изобретению при существенном упрощении технологии его изготовления позволяет определять содержание оксида углерода с чувствительностью, в несколько раз превышающей чувствительность известных датчиков. 3 ил.

Использование: для непрерывного контроля утечек взрывоопасных жидкостей (в том числе органических растворителей, аммиака, керосина, бензина) и выдачи звукового или светового сигнала при повышении концентраций паров жидкостей в воздухе помещений, замкнутых объемах (подземных сооружениях и коммуникациях) и наружных установок. Сущность изобретения заключается в том, что устройство с открытым входом для контроля утечек взрывоопасных жидкостей на основе пьезосенсоров содержит частотомер с функцией непрерывного измерения скорости изменения аналитического сигнала с шагом τ=10 с (ΔF/Δτ, Гц/с) одного пьезосенсора с устойчивым и чувствительным покрытием электродов; сигнальным световым или звуковым устройством, срабатывающим при скачкообразном повышении скорости изменения аналитического сигнала вследствие быстрого повышения концентрации паров жидкостей в околосенсорном пространстве относительно фонового значения; устройством для крепления сигнализатора в местах контроля утечек жидкостей; дополнительной перфорированной крышкой, крепящейся ко дну ячейки детектирования, которая не препятствует самопроизвольной диффузии паров взрывоопасных жидкостей в околосенсороное пространство и предохраняет пьезосенсор от механических повреждений. Технический результат: обеспечение возможности непрерывного контролирования утечки взрывоопасных жидкостей (в том числе органических растворителей, аммиака, керосина, бензина) и оповещения с помощью светового или звукового сигнала о быстром повышении концентрации паров в околосенсорном пространстве относительно фонового значения. 2 ил., 2 табл.

Изобретение относится к проведению экспресс-анализа воздуха или смесей газов. Портативный анализатор газов с массивом пьезосенсоров включает высокопрочный полимерный корпус с насадкой-нагнетателем и защитной крышкой из фторопласта, на верхней панели корпуса расположена ячейка с массивом из трех пьезосенсоров с чувствительными пленочными покрытиями для определения компонентов воздуха и равновесной газовой фазы над полимерными изделиями, продуктами питания, топливом по совокупности их легколетучих соединений, внутри корпуса расположены миниатюрная схема возбуждения, соединенная с тремя микроконтроллерами, запрограммированными в сумме на 150 ячеек памяти для регистрации и преобразования сигналов пьезосенсоров и передачи их на моно- или полихромный дисплей для отображения аналитического сигнала в виде «визуальных отпечатков» максимумов трех сенсоров и для сохранения информации на съемном носителе памяти, приводящимися в действие автономно от встроенного компактного источника питания, на панели корпуса размещены кнопка включения прибора, кнопка работы нагнетателя и переключатель на отдельные режимы измерения: анализ топлива, полимерных материалов, пищевых продуктов и индикаторы работы пьезосенсоров и моно-/полихромный дисплей для отображения аналитического сигнала. Достигается повышение мобильности, компактности и надежности работы анализатора, а также - упрощение эксплуатации. 2 ил.

Изобретение может быть использовано в газоанализаторах, газосигнализаторах и газовых пожарных извещателях для контроля довзрывных концентраций взрыво-пожароопасных газов и газовых смесей. Полупроводниковый газовый сенсор содержит корпус реакционной камеры, выполненный из коррозионно-стойкой стали и с торца закрытый сеткой из нержавеющей стали проволокой диаметром 0,02…0,05 мм шагом 0,05…0,07 мм. В корпусе по центру реакционной камеры на контактных проводниках (4) установлен шарообразный полупроводниковый газочувствительный элемент (5) сенсора при помощи проводов нагревателя (6) и измерительного проводника (7). Внутри полупроводникового газочувствительного элемента (5) размещен нагреватель (6) в виде цилиндрический пружины, внутри которой по ее оси и по диаметру шарообразного полупроводникового элемента (5) расположен прямой измерительный проводник (7). Нагреватель (6) и измерительный проводник (7) газочувствительного элемента (5) выполнены из платиновой проволоки диаметром 0,01…0,025 мм, нагреватель (6) имеет 3…15 витка проволоки, шарообразный полупроводниковый газочувствительный элемент (2) имеет внешний диаметр 0,4…0,8 мм и выполнен из внутреннего объема (8): SnO2 - 40…60 мас.% и внешнего объема (5): пористого гамма-Аl2О3 - 40…60 мас.% соответственно шарообразного газочувствительного элемента сенсора. Нагреватель (6) выполнен с возможностью питания постоянным напряжением в 0,2…1,5 В. Изобретение обеспечивает существенное улучшение долговременной стабильности, упрощение технологии изготовления сенсора, а также повышение чувствительности полупроводникового газового сенсора к малым концентрациям газов, быстродействие и устойчивость к воздействию внешних факторов. 1 табл., 10 ил.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и изменения содержания микропримесей аммиака. Датчик микропримесей аммиака содержит полупроводниковое основание и подложку, полупроводниковое основание выполнено из поликристаллической пленки твердого раствора теллурида цинка в антимониде галлия (GaSb)0,90(ZnTe)0,10, а подложкой служит электродная площадка пьезокварцевого резонатора. Заявляемый датчик при существенном упрощении технологии его изготовления позволяет определять содержание аммиака с чувствительностью, в несколько раз превышающую чувствительность известных датчиков. 3 ил.
Наверх