Способ получения водорода из углеводородного сырья


 


Владельцы патента RU 2561077:

Общество с ограниченной ответственностью "ВТР" (RU)

Изобретение относится к области химии и может быть использовано при получении водорода из углеводородов. Способ получения водорода по технологии двухстадийного окисления углеводородного сырья включает первую стадию - парциальное окисление углеводородов при недостатке окислителя, на которой происходит смешение сырья с кислородом и сжиганием его в камере сгорания проточного охлаждаемого высокотемпературного реактора при высокой температуре (до 3000°C) и на высоких скоростях с получением парогазовой смеси, содержащей водород, моно- и двуокись углерода, воду и побочные продукты реакции горения, затем полученную смесь увлажняют и одновременно охлаждают до температуры от 300 до 700°C путем впрыскивания и распыления воды в газовый поток, и очистка смеси пропусканием ее через фильтры; и вторую стадию - паровое каталитическое окисление монооксида углерода, на которой конверсию монооксида углерода проводят последовательно в два этапа на соответствующих конверторах: первом, предназначенном для среднетемпературной конверсии монооксида углерода при температурах 300-700°C на соответствующем среднетемпературном катализаторе, с последующим дополнительным увлажнением, а затем на втором, предназначенном для низкотемпературной паровой конверсии монооксида углерода при температурах от 200 до 300°C на соответствующем низкотемпературном катализаторе. Изобретение позволяет получить повышенный выход водорода на единицу углеводородного сырья при большей химической однородности получаемого водородсодержащего газа и меньших затратах энергии на процесс, а также при уменьшенных габаритах технологической аппаратуры по сравнению с традиционными способами получения водорода. 1 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к области химии и может быть использовано при получении водорода из углеводородов различного химического состава, в частности к способу получения водорода путем конверсии углеводородов.

Основные теоретические предпосылки процесса, поясняющие подходы для разработки оригинального способа получения водорода, приведены в виде дополнительного материала к данной заявке.

Известен способ получения синтез-газа (как водородсодержащего газа) по патенту РФ №2191743, C01B 3/36, B01J 7/00. Способ получения синтез-газа включает смешивание углеводородного сырья с воздухом в соотношении, соответствующем коэффициенту избытка окислителя менее 1, принудительное воспламенение воздушно-углеводородной смеси и парциальное окисление углеводородного сырья кислородом воздуха в реакционной зоне, расширение и охлаждение с последующим выводом продуктов процесса, содержащих синтез-газ, и введение новой порции углеводородного сырья и воздуха, при этом подогрев углеводородного сырья и воздуха осуществляют при повышенных давлении и температуре, на 50-100°C ниже температуры самовоспламенения их смеси, процесс парциального окисления углеводородного сырья проводят в проточной камере горения, при этом принудительное воспламенение проводят при коэффициенте избытка окислителя = 0,6-0,7 и после прогрева проточной камеры горения соотношение кислорода к углеводородному сырью доводят до уровня = 0,30-0,56. При этом процесс охлаждения продуктов парциального окисления, выходящих из реакционной зоны, проводят со скоростью не менее 3000°C/с.

Основным недостатком способа получения водорода по патенту РФ №2191743 является использование воздуха для окислительной конверсии метана на стадии получения синтез-газа. Это приводит к получению «бедного», сильно разбавленного азотом синтез-газа и увеличению затрат на выделение водорода из него.

Известен также способ получения водорода паро-углекислотной конверсией природного газа (патент №2379230). Углекислый газ смешивают с предварительно нагретыми углеводородами C1-C4 и парами воды. Газовую смесь подают в реакционную камеру для термической конверсии с получением синтез-газа, который разделяют на водород и монооксид углерода. Смешивают монооксид углерода с воздухом, подогревают полученную смесь при повышенном давлении и температуре на 50-100°C ниже температуры самовоспламенения этой смеси, принудительно ее воспламеняют, окисляют монооксид углерода в реакционной зоне проточной камеры горения, затем расширяют, охлаждают и отделяют углекислый газ. Углекислотно-паровую конверсию проводят при температуре 700-1500°C и повышенном давлении в реакционной камере, выполненной в виде проточного реактора со стенкой из жаропрочного материала и размещенной в камере горения, используя тепло, выделяющееся при окислении монооксида углерода. Перед подачей в реакционную камеру углекислотно-паровой конверсии подогрев смеси углеводородного сырья, углекислого газа и воды проводят до 300-700°C в теплообменнике за счет тепла охлаждаемых продуктов окисления монооксида углерода.

Основной недостаток способа по патенту №2379230 - сложность аппаратного оформления и управления процессами, идущими в реакторах, значительные затраты энергии.

Известна система для получения водорода и двуокиси углерода, патент США 8088185. Предусмотрена система для получения и отделения водорода и диоксида углерода из углеводорода и водяного пара.

Недостаток такого способа - наличие двух потоков газа с разным содержанием водорода, значительные (как и в традиционном способе паро-углекислотной конверсии) затраты энергии и сложность самой установки.

Примером двухстадийного процесса - «окисление углеводородов кислородом при недостатке окислителя + каталитическая паровая конверсия монооксида углерода», в котором реализуется высокая полнота преобразования исходных реагентов в водород, является способ, описанный в патенте США №5,714,132. Способ получения водорода через синтез-газ с последующей конверсией по патенту США №5,714,132, C01B 3/18 принят нами в качестве ближайшего аналога заявляемого способа. Способ включает сжигание углеводородного топлива (C1-C4) в кислородно-топливной пламенной печи с использованием кислорода (концентрация кислорода не менее 90 об.%) как окислителя, полученные углекислый газ и пары воды с температурой от 525 до 1000°C подают в конвертор, в котором он контактирует с предварительно нагретым углеводородом, или в реактор неполного окисления, где он контактирует с дополнительным углеводородным топливом и кислородом. Реакцию конверсии проводят в присутствии катализатора конверсии, однако возможно проведение термической конверсии. Не прореагировавшее топливо рециркулируют в реактор неполного окисления или конвертор. Газообразный поток, выходящий из конвертора или реактора неполного окисления, содержащий высокие концентрации монооксида углерода и водорода и некоторую часть углекислого газа, подвергают очистке от нежелательных компонентов, таких как оксиды серы и азота. При необходимости в конвертор или реактор неполного окисления добавляется дополнительный пар. Отходящий поток подвергается разделению при использовании короткоцикловой адсорбции адсорбентом, который более сильно адсорбирует монооксид углерода, чем водород, получая таким образом особочистый монооксид углерода и поток, обогащенный водородом. Затем подвергают поток, обогащенный водородом, короткоцикловой адсорбции адсорбентом, который слабо адсорбирует водород по сравнению с другими компонентами потока, получая особочистый водород, или короткоцикловой адсорбции с получением особочистого водорода и потока обогащенного монооксида углерода и последующей дистилляцией этого потока с получением особочистого монооксида углерода.

Основным недостатком ближайшего аналога является необходимость использования окислителя с высокой (90-98%) концентрацией кислорода, сложность аппаратуры, большие габариты как самой установки, так и системы разделения газов.

Задачами заявляемого способа являются снижение затрат энергии, повышение выхода водорода на единицу углеводородного сырья и уменьшение габаритов установки.

Поставленные перед способом получения водорода задачи решаются за счет комбинированного подхода и применения прямоточных охлаждаемых высокотемпературных устройств.

На фиг.1 приведена схема технологического процесса производства водорода методом комбинированной конверсии углеводородов, иллюстрирующая предлагаемый способ.

Согласно заявляемому способу получения водорода, углеводородное сырье и окислитель (технически чистый кислород либо кислородсодержащий газ) непрерывно подаются в проточную охлаждаемую камеру сгорания (1) высокотемпературного реактора под давлением от 3 атмосфер и выше, в которой происходит их смешение, воспламенение и неполное сгорание, в результате чего образуется водородсодержаший газ, содержащий водород, моно - и диоксид углерода, а также небольшое количество паров воды и другие газы. С точки зрения химических процессов в камере сгорания осуществляется парциальное (неполное) кислородное окисление углеводородного сырья при температурах 2000…3000°C в зависимости от состава сырья и концентрации кислорода в окислителе. Соотношение компонентов в газогенераторе выбирается таким образом, чтобы при минимальном образовании К-фазы обеспечить максимально возможный выход водорода и температуру, необходимую для последующих ступеней процесса. При использовании технически чистого кислорода для различных видов углеводородного сырья оптимальный коэффициент избытка окислителя составляет от 0,3 (метан) до 0,45 (нефтепродукты). При использовании воздуха коэффициент избытка окислителя может достигать 0,4 и выше для обеспечения необходимой в дальнейших процессах температуры. Полученный высокотемпературный водородсодержаший газ поступает в увлажнитель 2, где смешивается с водой. Увлажнитель 2 представляет собой проточную конструкцию с охлаждаемыми стенками, конструктивно подобную камере сгорания, в которой происходит распыливание, смешение и испарение воды, подаваемой в поток идущего из камеры сгорания газа. В результате этого температура газа снижается до рабочей температуры среднетемпературного катализатора (300…700°C), а доля паров воды в газе увеличивается до необходимой для полного окисления CO. Температура газа, выходящего из камеры сгорания, определяется внутренними процессами и может быть задана и стабилизирована поддержанием соотношения углеводородного сырья и окислителя, поэтому обеспечение необходимого количества подаваемой воды может вестись по достижению требуемой температуры газа на входе в блок конверсии с помощью автоматического регулятора расхода воды (8). Объединенный блок камеры сгорания (1) и увлажнителя (2) является трехкомпонентным (углеводородное сырье + окислитель + вода) газогенератором. Стенки камеры сгорания и увлажнителя представляют собой двухслойную конструкцию и охлаждаются оборотной водой по межстеночному пространству, в результате чего используемые для них обычные материалы (сталь, медь, хромистая бронза или другие металлы и сплавы с высокой или средней теплопроводностью) способны выдерживать высокие температуры, а это позволяет снизить габариты и стоимость конструкции газогенератора. Наиболее целесообразный способ подачи компонентов - форсуночный, поскольку обеспечивает высокое качество смесеобразования и полноты реакций. После газогенератора водородсодержащий газ очищается от К-фазы и поступает в блок паровой каталитической конверсии, где происходит окисление содержащегося в нем монооксида углерода парами воды с одновременным увеличением доли водорода в газе (конверсия монооксида углерода). Для очистки водородсодержащего газа от К-фазы используется блок фильтров типа «циклон» (3) и насыпной фильтр (4), установленные между газогенератором и блоком каталитической конверсии монооксида углерода. Блок паровой каталитической конверсии представляет собой последовательно установленные конверторы с соответствующими катализаторами. Первый конвертор (5) предназначен для среднетемпературной паровой конверсии монооксида углерода при температурах 300…700°C на катализаторе СТК-1 на основе магнетита или подобном ему по назначению. Второй конвертор (7) предназначен для низкотемпературной паровой конверсии монооксида углерода при температурах от 200 до 300°C на катализаторе типа НТК на основе оксидных соединений меди, цинка, хрома, алюминия или подобном ему по назначению. Конструкция как среднетемпературного, так и низкотемпературного конверторов для заявляемого способа принципиального значения не имеет и определяется только производительностью установки по водороду. Паровая каталитическая конверсия монооксида углерода является экзотермической реакцией, излишки тепла утилизируются в увлажнителе (6), установленном между конверторами. В увлажнителе (6) температура газа снижается за счет испарения подаваемой в него воды, либо за счет теплообмена между газом и подаваемым в него низкотемпературным водяным паром. Дополнительная автоматически реализуемая функция этого увлажнителя - увеличение реакционной способности газа за счет увеличения концентрации водяного пара в нем, в результате чего снижается требуемый объем низкотемпературного катализатора. Стадия паровой каталитической конверсии монооксида углерода и наличие блока конверсии, включающего как среднетемпературный, так и низкотемпературный конверторы, обеспечивает увеличение выхода водорода на единицу углеводородного сырья и увеличение однородности конечного газа за счет очистки его от монооксида углерода. Полученная в результате всех описанных выше реакций смесь водорода и диоксида углерода может быть разделена на водород и CO2 в существующих системах разделения (мембранных, абсорбционных, криогенных и др.). Метод разделения для заявляемого способа получения водорода непринципиален. Давление в аппаратах обеспечивается давлением подачи компонентов и наличием критического сечения (на рисунке не указано), устанавливаемого за блоком конверсии.

Состав водородсодержащего газа, получаемого в результате осуществления заявляемого способа при использовании в качестве окислителя технически чистого кислорода в сравнении с ближайшим аналогом приведен в таблице 1.

Таблица 1.
Сырье или Ближайший аналог Расход углеводородного сырья (моль) на образование 1 моль водорода Состав получаемого водородсодержащего газа перед разделением
H2 % об. CO % об. H2O % об. CO2 % об. CnHm % об. N2 % об.
Метан 0,35…0,4 более 72 До 0,5 До 3 До 24 менее 0.5 -
Жидкие углеводороды нефтяного происхождения 0,4…0,5 более 64 До 0,5 До 3 До 32 Менее 0.5 -
Патент США №5.932.181 каталитический риформинг 0.9 (метан) 48,3 20,24 3,14 24,8 0,12 2,94
Патент США №5,932,181 термический риформинг 0.9 (метан) 51,64 24,83 3,14 17,83 0,05 2,49

На основании полученных результатов осуществления способа получения водорода комбинированной конверсией углеводородного сырья можно сделать вывод о том, что в заявляемом способе благодаря использованию при парциальном окислении углеводородного сырья высокотемпературного проточного охлаждаемого газогенератора с форсуночным способом подачи компонентов и последующей конверсии монооксида углерода в блоке паровой каталитической конверсии с использованием промежуточного увлажнителя получен технический результат, а именно: без дополнительных затрат энергии и при использовании в качестве исходных компонентов углеводородного сырья, воды и кислорода либо кислородсодержащего газа с концентрацией кислорода от 50% и выше, высокий выход концентрированного водородсодержащего газа с повышенным содержанием водорода, превышающий обычные способы парциального окисления и конверсии, на установке с меньшими, чем у аналогов, массогабаритными характеристиками, что позволяет снизить текущие и капитальные затраты, включая затраты на газоотделение водорода от побочных газов.

1. Способ получения водорода из углеводородного сырья, включающий смешение сырья с кислородом и сжиганием его в камере сгорания проточного охлаждаемого высокотемпературного реактора с получением парогазовой смеси, содержащей водород, моно- и двуокись углерода, воду и побочные продукты реакции горения, очистку смеси пропусканием ее через фильтры, проведением паровой каталитической конверсии при заданной температуре с последующим выделением водорода, отличающийся тем, что полученную в результате неполного окисления парогазовую смесь на выходе из камеры сгорания увлажняют и одновременно охлаждают до температуры от 300 до 700°C путем впрыскивания и распыления воды в газовый поток, а паровую каталитическую конверсию монооксида углерода проводят последовательно в две стадии на соответствующих конверторах: первом, предназначенном для среднетемпературной конверсии монооксида углерода при температурах 300-700°C на соответствующем среднетемпературном катализаторе с последующим дополнительным увлажнением, а затем на втором, предназначенном для низкотемпературной паровой конверсии монооксида углерода при температурах от 200 до 300°C на соответствующем низкотемпературном катализаторе.

2. Способ по п. 1, отличающийся тем, что количество воды, подаваемой для увлажнения и охлаждения водородсодержащего газа, определяют по достижению парогазовой смеси заданных температурных параметров.



 

Похожие патенты:

Изобретение относится к способу получения синтез-газа из углеводородного сырья. Способ включает последовательное пропускание углеводородного сырья через радиационную печь, устройство теплообменного риформинга и устройство автотермического риформинга, при этом газ, выходящий из устройства автотермического риформинга, используют в качестве источника тепла для реакций риформинга, протекающих в устройстве теплообменного риформинга, а в устройство теплообменного риформинга подают охлаждающую среду.

Изобретение относится к катализатору парциального окисления метана, который представляет собой никель-алюминиевую шпинель. Данная шпинель имеет общую химическую формулу (Ni1-x(М2O3)x)y·γ-Аl2O3, где М - Сr, Мn или Fe, 0,01≤x≤0,99, 0,01≤y≤1.

Изобретение относится к способу получения водорода из сырьевого материала, содержащего углерод, и водяного пара. Способ включает газификацию сырьевого материала газовым потоком, включающим диоксид углерода при высокой температуре и кислород, для получения первого газового потока, содержащего молекулы монооксида углерода и молекулы молекулярного водорода, окисление первого газового потока носителями кислорода в окисленном состоянии и потоком кислорода для получения второго газового потока при высокой температуре, включающего диоксид углерода, носителей кислорода в восстановленном состоянии, и избытка тепловой энергии, активацию носителей кислорода в восстановленном состоянии газовым потоком активации, включающим водяной пар при высокой температуре, для получения носителей кислорода в окисленном состоянии, третьего газового потока, включающего водород, и избытка тепловой энергии.

Изобретение относится к устройству для извлечения трития путем изотопного обмена из таких вещей, как, например, перчатки, бумага и других подобных объектов, называемых «мягкими бытовыми отходами», имеющихся в лабораториях и заводах, обрабатывающих загрязненные тритием материалы.

Изобретение относится к способу и соответствующему оборудованию для получения кондиционного синтез-газа для производства аммиака с криогенной очисткой. Способ включает конверсию углеводородного исходного сырья с последующими стадиями конверсии СО, удаления СО2 и метанирования с получением потока сырого кондиционного синтез-газа, содержащего водород и азот, обработку сырого синтез-газа в секции криогенной очистки с получением потока очищенного синтез-газа, подачу жидкого потока, обогащенного азотом, при криогенной температуре в секцию криогенной очистки, обеспечение косвенного теплообмена между синтез-газом и жидким потоком, обогащенным азотом, в криогенной секции, причем поток, обогащенный азотом, частично испаряют для обеспечения охлаждения криогенной секции, и обработку воздушного потока в устройстве разделения воздуха с получением жидкого потока, обогащенного азотом, и потока, обогащенного кислородом.

Изобретение относится к катализатору получения ацетальдегида и водорода из этанола. Данный катализатор представляет собой мезопористый силикагель (Sуд.

Изобретение относится к способу реформинга с использованием катализатора. Описан способ реформинга с водяным паром углеводородов, включающий контактирование подаваемого газа в реакторе каталитического частичного окисления или установке для автотермического реформинга.

Изобретение относится к области нефтехимии и более конкретно к способу получения синтез-газа, который используется как исходное сырье, например, для синтеза метанола, диметилового эфира, углеводородов по методу Фишера-Тропша.

Изобретение может быть использовано при получении водорода из реагентов, включающих жидкие углеводороды, газообразные углеводороды и/или кислородсодержащие соединения, в том числе полученные из биомассы, и их смеси.

Изобретение относится к химической промышленности, а именно к усовершенствованию промышленного медьхромцинкового катализатора для низкотемпературной конверсии оксида углерода и расширения области его применения для других процессов.

Изобретение относится к пористому металлорганическому скелетному материалу. Материал содержит по меньшей мере одно по меньшей мере двухкоординационное органическое соединение, координационно соединенное по меньшей мере с одним ионом металла и являющееся производным 2,5-фурандикарбоновой или 2,5-тиофендикарбоновой кислоты. При этом по меньшей мере один ион металла является ионом металла, выбранного из группы, включающей алюминий, магний и цинк. Понятие «производное» означает, что 2,5-фурандикарбоновая кислота или 2,5-тиофендикарбоновая кислота могут присутствовать в скелетном материале в частично или полностью депротонированной форме. Также предложены формованное изделие, способ получения скелетного материала, применение скелетного материала или формованного изделия. Изобретение позволяет получить скелетный материал, который может применяться для аккумуляции газа и выделения газа из газовой смеси. 5 н. и 4 з.п. ф-лы, 3 ил., 6 пр.

Изобретение относится к области переработки и утилизации углеводородного сырья на основе метана в синтез-газ (смесь H2 и CO). В способе исходную смесь топлива и воздуха поочередно подают в два синхронизированных конверсионных блока, заполненных инертной пористой средой, где формируется и распространяется волна горения. Процесс конверсии смеси в синтез-газ происходит при сверхадиабатических температурах, возникающих в спутной волне горения, направление движения которой совпадает с направлением подачи исходной смеси. Запуск каждого блока осуществляется таким образом, чтобы после прохождения спутной волной горения всей длины одного блока, волна горения формировалась в другом, что позволяет без использования катализаторов перерабатывать сырье со значительной долей тяжелых компонентов без предварительной очистки или сепарации с получением синтез-газа постоянного расхода и состава. Для способа характерны высокая степень и скорость конверсии, низкий уровень сажеобразования и отсутствие необходимости внешнего подвода тепла. 2 н.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к каталитической системе, подходящей для проведения частичного каталитического окисления при малой продолжительности контакта, для получения синтез-газа и, возможно, водорода. Каталитическая система включает по меньшей мере две каталитические зоны, в которой одна зона содержит один или более благородный металл, выбранный из группы, состоящей из родия, рутения, иридия, палладия и платины, и не содержит никеля, и другая зона содержит никель, к которому добавлен один или более металл, выбранный из группы, состоящей из родия, рутения, иридия, палладия и платины, при этом зона, не содержащая никеля, всегда является отдельной, но находится в контакте с другой зоной, содержащей никель. Изобретение обеспечивает высокую степень превращения сырья и высокую селективность относительно синтез-газа и Н2, а также снижение или предотвращение образования сажистых образований. 4 н. и 19 з.п. ф-лы, 10 ил., 2 табл., 10 пр.

Изобретение относится к способу переработки углеводородсодержащего сырья, включающему стадию плазменной конверсии сырья в плазмохимическом модуле с дуговым плазмотроном, снабженным полым катодом, основанному на взаимодействии потока сырья с пароводяной плазмой с получением синтез-газа, с осуществлением вспомогательных стадий - рекуперации тепла, производства электроэнергии, очистки и компрессии синтез-газа. Способ характеризуется тем, что в качестве углеводородсодержащего сырья используют отработанные смазочные материалы, предварительно нагреваемые до температуры 100-150°C, поток которых затем подают в верхнюю часть реактора с массовым соотношением потоков сырья и плазмообразующего газа от 1:1 до 1:2, температурой в реакторе 827-1027°C и при давлении 0,1-0,13 МПа, затем поток разделяют на газовую и твердую фазы, при этом газовую фазу направляют в котел-утилизатор, в котором ее охлаждают водой с получением перегретого водяного пара, служащего рабочим телом в процессе производства электроэнергии, с дальнейшей очисткой газовой фазы от CO2 и H2S и многократной рециркуляцией твердой фазы через полый катод плазмотрона в зоне сверхвысоких температур, что обеспечивает концентрирование редких и ценных металлов и их оксидов на стадии извлечения металлов. Настоящий способ позволяет перерабатывать жидкие техногенные углеводородсодержащие отходы в ценные целевые продукты с высокой степенью конверсии сырья, минимальным вредом для окружающей среды, а также вырабатывать тепловую и электрическую энергию, идущую на внутренние технологические нужды. 6 табл., 6 пр., 5 ил.

Изобретение относится к химии и водородной энергетике и может быть использовано в транспортном машиностроении. Водород получают в генераторе 1, направляют в приёмник 2, разделяют на два потока 3 и воздействуют на них импульсным магнитным полем с амплитудой магнитной индукции В более 100 гаусс. Затем пропускают через аккумуляторы атомарного водорода 6, заполненные нанодисперсным углеродом, содержащим углеродные нанотрубки с удельной поверхностью от 200 до 550 м2/г в качестве микроконтейнеров для хранения водорода, при пульсирующем давлении водорода с амплитудой более 0,1 МПа. Обеспечивается надёжное и безопасное хранение водорода. 1 ил.

Изобретение относится к способу конверсии углеводородов для получения синтез-газа для производства аммиака. Способ получения сингаза из углеводородсодержащего исходного сырья включает стадии первичной конверсии, вторичной конверсии с окислительным потоком и дополнительной обработки сингаза, включающей шифт-конверсию (УТШ) при умеренной температуре от 200 до 350°C, причем установка первичной конверсии работает при соотношении пар/углерод меньше 2. Способ реконструкции установки для производства аммиака включает по меньшей мере стадии замены реактора ВТШ на новый шифт-реактор (19), работающий при умеренной температуре, или модификацию реактора ВТШ для работы при умеренной температуре, которая составляет от 200 до 350°C; модификацию подачи углеводорода (10) и пара (11) в установку первичной конверсии, обеспечивающую работу установки (12) первичной конверсии при соотношении пар/углерод ниже 2, и добавление секции (12a) предварительной конверсии выше по потоку от установки первичной конверсии. Изобретение позволяет увеличить производительность и снизить удельный расход энергии и объемную скорость потока при производстве синтез-газа. 2 н. и 8 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в химической промышленности. Установка синтеза химического продукта, в частности аммиака, включает секцию (10) синтеза высокого давления для проведения реакции и секцию (50) рекуперации энергии, содержащую теплообменник (17), выполненный с возможностью теплообмена между частью (16) жидкого продукта, полученного в секции (10) синтеза, и потоком (18) источника сбросного тепла с получением расширяемого потока (20) в паровом или сверхкритическом состоянии, детандер (13) для выработки механической энергии за счёт расширения этого потока, конденсатор (22) для конденсации потока из детандера (13). Техническим результатом является рекуперация тепла потока синтез-газа, выходящего из установки низкотемпературной конверсии. 4 н. и 8 з.п. ф-лы, 3 ил., 1 пр.

Изобретение относится к катализатору получения синтез-газа каталитической паро-углекислотной конверсией углеводородов, содержащему оксид никеля и оксид магния, нанесенные на пористый никель при следующем содержании компонентов, мас.%: оксид никеля - 3,5-5,1, оксид магния - 8,6-10,4, металлический пористый никель - остальное. Изобретение также относится к способу приготовления катализатора, включающему пропитку пористого никелевого носителя в виде ленты толщиной не менее 0,1 мм раствором азотнокислого магния с последующими стадиями сушки и прокаливания в токе водорода, пропитку смесью растворов азотнокислых солей магния и никеля с последующей сушкой и прокаливанием в токе азота. Также изобретение относится к способу получения синтез-газа каталитической паро-углекислотной конверсией углеводородов при температуре 600-900°C в присутствии описанного выше катализатора. Технический результат заключается в создании устойчивого к зауглероживанию, стабильного по активности и высокотеплопроводного катализатора для получения синтез-газа каталитической паро-углекислотной конверсией углеводородов. 3 н. и 3 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к энергетическому оборудованию и может быть использовано в водородной энергетике для получения, хранения и транспортировки водорода. Устройство для получения атомарного водорода содержит реактор 1, работающий на разложении воды твердым реагентом, анод 3, катод 4 и магистрали 8 с арматурой для ввода исходного сырья в реактор 1 и вывода из него водорода и продуктов реакции. В качестве твердого реагента выбран нанодисперсный углерод, размещенный на поверхности анода 3 в воде между анодом 3 и катодом 4. На магистрали вывода водорода из реактора 1 установлены приемник водорода, электромагнит 10 с блоком управления магнитной индукцией 11 и аккумулятор водорода 12 с углеродными нанотрубками. Кроме того, устройство содержит регулятор 6 подводимой к реактору 1 электрической мощности в зависимости от температуры нанодисперсного углерода 5 в прианодном пространстве и заданного программой темпа получения водорода. Изобретение позволяет радикально увеличить срок хранения атомарного водорода для последующего использования в технологических процессах. 1 ил.

Изобретение относится к области водородной энергетики, выделения водорода из газовых смесей, получения особо чистого водорода. Предложена композитная мембрана для выделения водорода из газовых смесей на основе сплавов металлов 5-й группы Периодической системы друг с другом с защитно-каталитическим покрытием на поверхности мембраны из палладия или сплавов палладия, при этом в качестве материала мембраны выбран материал с растворимостью водорода такой же, как у материала покрытия, либо отличающейся не более чем на 15%. При этом материал мембраны может быть выполнен из сплава V-18.8Pd, а защитно-каталитическое покрытие на поверхности мембраны будет при этом выполнено из чистого палладия, или материал мембраны может быть выполнен из сплава V-19Ni, а защитно-каталитическое покрытие на поверхности мембраны будет при этом выполнено из чистого палладия. Технический результат - увеличение термической стабильности работы покрытия. 2 з.п. ф-лы, 5 ил.
Наверх