Дифракционная решетка на полимерной основе



Дифракционная решетка на полимерной основе
Дифракционная решетка на полимерной основе
Дифракционная решетка на полимерной основе
Дифракционная решетка на полимерной основе
Дифракционная решетка на полимерной основе
Дифракционная решетка на полимерной основе
Дифракционная решетка на полимерной основе
Дифракционная решетка на полимерной основе
Дифракционная решетка на полимерной основе
Дифракционная решетка на полимерной основе

 


Владельцы патента RU 2561197:

Федеральное государственное бюджетное учреждение науки Казанский физико-технический институт им. Е.К. Завойского Казанского научного центра Российской Академии наук (КФТИ КазНЦ РАН) (RU)

Изобретение относится к дифракционной решетке для видимого диапазона, выполненной на основе полимерных материалов. Дифракционная решетка содержит подложку, выполненную из полимерного материала с дифракционной периодической микроструктурой. В качестве полимерного материала подложки использован несветочувствительный полимер, а сформированная дифракционная периодическая микроструктура содержит ионно-синтезированные металлические наночастицы, диспергированные в приповерхностной области подложки на толщине слоя от 20 до 500 нм при концентрации металла 2.5·1020 - 6.5·1022 атомов/см3. Технический результат заключается в обеспечении возможности дифракционных решёток на основе несветочувствительных типов полимеров с наночастицами различных металлов. 10 ил.

 

Изобретение относится к оптике, а именно к устройствам дифракционных решеток для видимого диапазона, выполненным на основе полимерных материалов. Полимеры представляют особый отдельный специфический класс материалов, который может характеризоваться различными диэлектрическими, полупроводниковыми и проводниковыми свойствами, при этом коренным образом отличаясь по структуре от неорганических материалов. Полимерные материалы в настоящее время активно используются для построения различных типов оптических волноводов и управляющих светом фотонных элементов, таких как призмы, линзы и др. На практике решетки и периодические структуры на полимерной основе используются:

- в элементах оптической коммуникации для введения в тонкопленочные волноводы лазерного излучения или фильтрации в волноводе оптического сигнала (периодические структуры - решетки Брегга);

- в качестве резонаторов с распределенной обратной связью в волноводных лазерах, дифракционных элементов, используемых для управления светом [1] и др.

Известно устройство, выбранное в качестве аналога, выполненное в виде дифракционной решетки, изготовленное из плоской прозрачной подложки и нанесенной на нее оптически непрозрачной пленки, имеющей кольцеобразную полупрозрачную зону, состоящую из чередующихся концентрических штрихов (патент Р.Ф. №2226284, опубликованный 27.03.2004).

Недостатком аналога является то, что в такой дифракционной решетке имеются непрозрачные области, что существенно снижает ее пропускную способность.

Известно [2] устройство, выполненное в виде оптической дифракционной решетки, в котором формирование заданной периодической структуры (участки полимера, чередуются с областями полимер/Ag-наночатицы) осуществлено восстановлением металлического прекурсора, периодически распределенного в полимерной матрице. Для этого была использована специально разработанная фотополимеризующая композиция [3], которая обеспечила необратимое объемное диффузное перераспределение мономерной составляющей и прекурсора наночастиц серебра в интерференционном поле (топографическим способом). В результате проведения фотохимической реакции была создана дифракционная решетка.

Эта дифракционная решетка [2] является наиболее близкой к заявляемому техническому решению и поэтому выбрана в качестве прототипа.

Недостатки прототипа:

- дифракционная решетка, описанная в прототипе [2], может быть сформирована только на основе специальной фотополимеризующей композиции. Это ограничивает выбор полимеров, используемых, в настоящее время, для изготовления оптических устройств, таких как, например, полиметилметакрилат (ПММА), полиимид, эпоксидные смолы и др. [4];

- в элементах периодической структуры дифракционной решетки, выполненной на основе фоточувствительной полимерной матрицы, могут быть использованы только наночастицы металла - серебра, это ограничивает возможность использования наночастиц других металлов.

Решаемая техническая задача в заявляемом техническом решении - обеспечение возможности получения дифракционных решеток на основе несветочувствительных типов полимеров с наночастицами различных металлов.

Поставленная задача в предлагаемом техническом решении в дифракционной решетке на полимерной основе, содержащей подложку, выполненную из полимерного материала с дифракционной периодической микроструктурой, достигается тем, что в качестве полимерного материала подложки использован несветочувствительный полимер, а сформированная дифракционная периодическая микроструктура содержит ионно-синтезированные металлические наночастицы, диспергированные в приповерхностной области подложки на толщине слоя от 20 до 500 нм при концентрации металла 2.5·1020 - 6.5·1022 атомов/см3.

На фиг. 1 показан чертеж в изометрии дифракционной решетки (изделия), содержащей: 1 - подложку из несветочувствительного полимера; 2 - имплантированные ячейки; 3 - необлученные перегородки между ячейками.

На фиг. 2 показано рассчитанное распределение имплантированного серебра по глубине в ПММА, при энергии облучения 30 кэВ.

На фиг. 3 показаны спектры оптического пропускания необлученного ПММА (а) и ПММА с ионно-синтезированными наночастицами серебра (б).

На фиг. 4 показано ПЭМ-изображение, полученное на просвечивающем электронном микроскопе, поверхности ПММА с наночастицами серебра, синтезированными с помощью ионной имплантации.

На фиг. 5 показано АСМ-изображение, полученное на атомно-силовом микроскопе, микроструктурированного ПММА (фрагмента дифракционной решетки), имплантированного ионами серебра через поверхностную маску.

На фиг. 6 показано изображение картины дифракционного рассеяния, полученное на экране при пропускании света от микроструктурированного ПММА с ионно-синтезированными наночастицами серебра, зондируемого лазером на длине волны 527 нм.

На фиг. 7 показано ПЭМ-изображение, полученное на просвечивающем электронном микроскопе, поверхности эпоксидной смолы с наночастицами серебра, синтезированными с помощью ионной имплантации.

На фиг. 8 показан спектр оптического поглощения эпоксидной смолы (а) и эпоксидной смолы с ионно-синтезированными наночастицами серебра (б).

Фиг. 9 - ПЭМ-изображение, полученное на просвечивающем электронном микроскопе, поверхности эпоксидной смолы с наночастицами кобальта, синтезированными с помощью ионной имплантации. Слева внизу на вставке приведена электронная микродифракция наночастиц кобальта.

На фиг. 10 показан спектр оптического пропускания полиимида (а) и полиимида с ионно-синтезированными наночастицами меди (б).

Рассмотрим способ изготовления дифракционной решетки на полимерной основе на конкретных примерах. Условие изготовления дифракционной решетки на полимерной основе включает формирование заданной периодической микроструктуры на полимерной подложке. Формирование заданной дифракционной периодической микроструктуры осуществляют с помощью имплантаций ионами металла с энергией 4-1200 кэВ, дозой облучения, обеспечивающей концентрацию вводимых атомов металла 2.5·1020 - 6.5·1022 атомов/см3, в облучаемой подложке, в качестве которой используют несветочувствительный полимер, на толщине слоя его приповерхностной области от 20 до 500 нм, плотностью тока ионного пучка 1.5·1012 - 3.5·1013 ион/см2·с через поверхностную маску.

На фиг. 1 показан в изометрии чертеж дифракционной решетки (изделия) на полимерной основе, содержащей подложку 1 (выполненную из не светочувствительного полимерного материала) с дифракционной периодической микроструктурой на ее поверхности, элементами которой являются области, подвергнутые ионному облучению - имплантированные ячейки 2 и характеризуемые другой диэлектрической проницаемостью относительно материала подложки 1. Дифракционная периодическая микроструктура имплантированных ячеек 2 содержит ионно-синтезированные металлические наночастицы, диспергированные в приповерхностной области подложки 1 на толщине слоя от 20 до 500 нм при концентрации атомов металла 2.5·1020 - 6.5·1022 атомов/см3. Необлученные перегородки 3, находящиеся между имплантированными ячейками 2, имеют ту же диэлектрическую проницаемость, что и оптически прозрачная подложка 1.

Пример 1. Дифракционная решетка изготовлена на полимерной основе, ее способ изготовления включает формирование заданной дифракционной периодической микроструктуры на полимерной основе, при этом формирование заданной дифракционной периодической микроструктуры осуществлялось с помощью имплантации на ускорителе ИЛУ-3 ионами металла - Ag+ с энергией Е=30 кэВ, дозой облучения D=2.5·1016 ион/см2, обеспечивающей концентрацию вводимых атомов металла 1.0·1022 атомов/см3 в облучаемой подложке, в качестве которой использовался несветочувствительный полимер (ПММА) плотностью тока в ионном пучке J=1·1013 ион/см2·с через поверхностную маску - металлическую сетку с размерами ячейки 25 мкм.

Моделирование концентрационных профилей распределения имплантированного серебра с энергией 30 кэВ в ПММА по глубине с помощью компьютерного алгоритма SRIM-2013 [5] (фиг. 2) показало, что в приповерхностном имплантированном слое полимера происходит накопление атомов серебра, приводящее к зарождению и росту металлических наночастиц. Общая толщина имплантированного слоя с наночастицами серебра, а следовательно, и толщина активного слоя формируемой дифракционной решетки в ПММА, для данных условий имплантации, не превышает 100 нм.

На фиг. 3. приведены экспериментальные спектры линейного оптического пропускания для исходного ПММА, а также имплантированного ионами серебра (Ag:ПММА), измеренные на двухлучевом спектрометре Hitach-330. В отличие от исходной матрицы ПММА фиг. 3 (а) имплантированный образец Ag:ПММА фиг. 3 (б) характеризируется наличием в видимой области спектра селективной полосы поглощения с максимумом ~500 нм. Данная полоса указывает на формирование в ПММА наночастиц серебра, и она обусловлена проявлением эффекта поверхностного плазменного резонанса в металлических наночастицах [6].

Изображение, полученное на просвечивающем электронном микроскопе - TESLA ВS-5 00, (ПЭМ-изображение) поверхности ПММА в области полимера, не покрытого сетчатой маской, после имплантации ионами серебра приведено на фиг. 4. В отличие от необлученного полимера на микрофотографии видны наночастицы сферической формы. Из анализа микродифракции (фотография не приводится) следует, что сферические образования имеют гранецентрированную кубическую решетку с постоянной, соответствующей металлическому серебру. Изображение микродифракции характеризуются набором тонких колец поликристаллического типа от наночастиц серебра, наблюдаемым на фоне широких диффузных дифракционно-размытых колец низкой интенсивности, соответствующих аморфной полимерной матрице. Сравнение экспериментальных дифракционных картин со стандартными международными табличными рентгеновскими ASTM-данными позволяет заключить, что образование каких-либо химических соединений с ионами серебра при ионной имплантации не происходит.

Поверхностные микроструктуры на имплантированном ионами серебра через маску ПММА, наблюдаемые на атомно-силовом микроскопе FastScan Brucker (ACM), приведены на фиг. 5. На АСМ-изображении видно, что поверхность образца представляет собой упорядоченную решетку с ячейками размером 25 мкм, которые сформированы при имплантации ПММА ионами серебра в заданном режиме. При этом квадратная область ячеек представляет собой ионно-облученный ПММА, т.е. структуру полимера с наночастицами серебра, наблюдаемыми на фиг. 4, характеризуемыми селективным плазменным поглощением. Стенки между квадратными ячейками решетки состоят из необлученного полимера. Дифракционная решетка, показанная на фиг. 5, сформирована в соответствии с заданным чертежом, изометрическое изображение которого приведено на фиг. 1.

Поскольку известно, что имплантация ионов металла в диэлектрик приводит к увеличению его показателя преломления вплоть до ~1.7-1.9 для видимой области спектра (особенно на частотах плазмонного резонанса металлических наночастиц) [7], то очевидно, что в результате имплантации ПММА через маску формируется микроструктура с периодическиизменяемым распределением оптических констант материала, т.е. между ячейками решетки и ее стенками (nПММА=1.5).

Таким образом, сформированная имплантацией микроструктура с периодически изменяемым показателем преломления (диэлектрической проницаемостью) представляет собой дифракционную решетку. На фиг. 6 приведено дифракционное изображение, регистрируемое при зондировании сформированной решетки лазером на длине волны 527 нм.

Пример 2. В качестве подложки используется несветочувствительный полимер - эпоксидная смола, которая характеризуется относительно высокой оптической прозрачностью в широком спектральном диапазоне от 350 до 900 нм.

Имплантацию проводят однозарядными ионами Ag+ с энергией Е=30 кэВ, дозой D=3·1016 ион/см2 (концентрация - 2.2·1022 атомов/см3) и плотностью тока в ионном пучке J=3.2·1013 ион/см2·с. Остальные технологические операции и режимы ионной имплантации, связанные с облучением через поверхностную маску, такие, как и в первом примере конкретной реализации предлагаемой дифракционной решетки на полимерной основе.

ПЭМ-изображение поверхности эпоксидной смолы, имплантированной ионами серебра, приведено на фиг. 7, на котором отчетливо видны сферические синтезированные наночастицы серебра.

Спектр оптического поглощения синтезированного образца, измеренный на спектрометре Hitachi-330, приведен на фиг. 8. В результате ионной имплантации полимера в спектре композиционного материала появляется селективная полоса плазменного поглощения с максимумом вблизи 495 нм, соответствующая ионно-синтезируемым наночастицам серебра [6].

Пример 3. В качестве подложки используется несветочувствительный полимер - эпоксидная смола, которая характеризуется относительно высокой оптической прозрачностью в широком спектральном диапазоне от 350 до 900 нм.

Имплантацию проводят однозарядными ионами Co+ с энергией E=40 кэВ, дозой D=1·1017 (концентрация - 0.7·1022 атомов/см3) и плотностью тока в ионном пучке J=3.2·1013 ион/см2·с. Остальные технологические операции и режимы ионной имплантации, связанные с облучением через поверхностную маску, такие, как и в первом примере конкретной реализации предлагаемой дифракционной решетки на полимерной основе.

ПЭМ-изображение поверхности эпоксидной смолы, имплантированной ионами кобальта, приведено на фиг. 9, на котором отчетливо видны сферические синтезированные наночастицы кобальта. На этом же рисунке на вставке приведена электронная микродифракция, подтверждающая образование наночастиц кобальта. Сравнение экспериментальных дифракционных картин со стандартными международными табличными рентгеновскими ASTM-данными позволяет заключить, что образование каких-либо химических соединений с ионами кобальта при ионной имплантации не происходит.

Пример 4. В качестве подложки используется несветочувствительный полимер - полиимид, характеризующийся высокой прозрачностью (около 90%) в широком спектральном диапазоне от 200 до 1000 нм.

Имплантацию проводят однозарядными ионами Cu+ с энергией Е=40 кэВ, дозой D=5.0·1016 ион/см2 (концентрация - 2.0·1022 атомов/см3) и плотностью тока в ионном пучке J=3.5·1013 ион/см2·с. Остальные технологические операции и режимы ионной имплантации, связанные с облучением через поверхностную маску, такие, как и в первом примере конкретной реализации предлагаемой дифракционной решетки на полимерной основе.

Спектр оптического пропускания синтезированного образца, измеренный на спектрометре Hitachi-330, приведен на фиг. 10. В результате ионной имплантации полимера в спектре композиционного материала появляется селективная полоса плазменного поглощения с максимумом вблизи 630 нм, соответствующая ионно-синтезируемым наночастицам меди [6].

При изготовлении дифракционной решетки на полимерной основе режимы ионной имплантации по параметрам имеют следующие ограничения: E=4-1200 кэВ, D - должна обеспечивать концентрацию вводимых атомов металла в облучаемой подложке 2.5·1020 - 6.5·1022 атомов/см3, J=1.5·1012 - 1·1014 ион/см2·с. За границами этих режимов не достигается необходимого технического результата, и качество изготовленных дифракционных решеток на полимерной основе не будет соответствовать необходимым требованиям.

Доза облучения определяется необходимым количеством атомов металлического вещества, чтобы, во-первых, обеспечить высокий контраст в коэффициентах отражения формируемых элементов дифракционной решетки, т.е. должны быть синтезированы достаточно крупные металлические наночастицы, проявляющие селективное плазменное отражение и поглощение для наночастиц благородных металлов или релеевское рассеяние, например, для наночастиц переходных металлов. Это условие, согласно нашим исследованиям зависимости появления оптического сигнала у металлических наночастиц от дозы имплантации, выполняется при концентрациях атомов металла в облучаемом полимере порядка 2.5·1020 атомов/см3. Во-вторых, количество внедренной примеси не должно превышать той дозы, при которой начнется слипание растущих металлических наночастиц, приводящее к образованию сплошной металлической пленки, и по нашим оценкам составляет не более 6.5·1022 атомов/см3.

Плотность тока в ионном пучке J определяет, с одной стороны, время набора дозы имплантации, а с другой стороны, степень нагрева облучаемого материала. Экспериментально установлено, что при J=3.5·1013 ион/см2·с температура облучаемой поверхности образца увеличивается и приводит к ее разрушению (изменению). Облучение с малой плотностью ионного тока нецелесообразно увеличивает время имплантации. Поэтому, минимальная плотность ионного тока ограничена величиной J=1.5·1012 ион/см2·с.

Энергия иона Е обуславливает величину его среднего проекционного пробега, которая определяет глубину залегания имплантированного иона, а следовательно, толщину модифицированного слоя и дифракционной решетки. Сверху энергия ускорения иона ограничена величиной Е=1200 кэВ, поскольку при увеличении данной энергии имплантации и разумной длительности облучения не достигается требуемая концентрация примеси атомов металла, необходимая для зарождения на большой глубине металлических наночастиц. Ограничение снизу величиной Е=4 кэВ, согласно нашим экспериментам, связано с тем, что при дальнейшем уменьшении Е не удается получить столь крупные элементы структуры решетки, на которых бы наблюдалась дифракция света. При выборе Е=4-1200 кэВ дифракционная периодическая микроструктура содержит ионно-синтезированные металлические наночастицы, диспергированные в приповерхностной области подложки на толщине слоя от 20 до 500 нм.

Техническим результатом является то, что предлагаемая дифракционная решетка на полимерной основе может быть изготовлена на основе несветочувствительных полимеров при использовании различных типов металлов.

Список цитируемой литературы

1. Дифракционная нанофотоника. Ред. Сойфер В.А. М.: Физматлид, 2011.

2. Кохтич Л.М., Смирнова Т.Н., Куценко А.С. Новый метод формирования периодических структур полимер - наночастицы серебра. Труды научно-практической конференции «Голография. Наука и практика» и the 6-th international conference „HOLOEXPO-2009″, 1-2 июля 2009, Киев, Украина С.223-224.

3. Смирнова А.Л., Кохтич Л.М., Сахно О.В., Штумпе И. Голографические нанокомпозиты для записи периодических структур полимер-наночастицы. I. Общий подход к выбору компонент нанокомпозитов и их голографические свойства. / Оптика и спектроскопия 2011. Т.110. №1. С.135-142.

4. Серова В.Н. Полимерные материалы для оптики. М.: Научные основы и технологии 2011.

5. Ziegel J.F., Biersak J.R, Littmark U. The stopping and range of ions in solids. N.Y.: Pergamon, 1996.

6. Kreibig U., Vollmer М. Optical properties of metal clusters. Berlin: Springer. 1995.

7. Faik A., Allen L., Etcher C., Gagola A., Townsend P.D. Dispersion and luminescence measurements of optical waveguides / J. Appl. Phys. 1983. V.54. P.2597-2601.

Дифракционная решетка на полимерной основе, содержащая подложку, выполненную из полимерного материала с дифракционной периодической микроструктурой, отличающаяся тем, что в качестве полимерного материала подложки использован несветочувствительный полимер, а сформированная дифракционная периодическая микроструктура содержит ионно-синтезированные металлические наночастицы, диспергированные в приповерхностной области подложки на толщине слоя от 20 до 500 нм при концентрации металла 2.5·1020 - 6.5·1022 атомов/см3.



 

Похожие патенты:

Изобретение относится к оптике. Способ изготовления дифракционной решетки заключается в формировании на поверхности исходной подложки элементов заданной структуры дифракционной решетки путем ионной имплантации через поверхностную маску, при этом имплантацию осуществляют ионами металла с энергией 5-1100 кэВ, дозой облучения, обеспечивающей концентрацию вводимых атомов металла в облучаемой подложке 3·1020-6·1022 атомов/см3, плотностью тока ионного пучка 2·1012-1·1014 ион/см2с в оптически прозрачную диэлектрическую или полупроводниковую подложку.

Настоящее изобретение относится к формированию фазово-контрастного изображения, которым визуализируют фазовую информацию когерентного излучения, проходящего через сканируемый объект.

Изобретение может быть использовано, в том числе, для введения в тонкопленочные волноводы лазерного излучения или фильтрации в волноводе оптического сигнала, для исследования и контроля напряжений деформаций тонкого слоя на поверхности твердого тела методом муаровых картин, как тонкопленочный температурный сенсор при постоянном или импульсном режиме нагрева материалов в агрессивных средах.

Рельефные микроструктуры поверхности могут быть использованы для защиты документов и различных предметов от подделки и подлога. Способ тиражирования образующей узор рельефной микроструктуры поверхности включает стадии: формирования первого слоя (21), имеющего образующую узор рельефную микроструктуру поверхности, на втором слое (22), причем первый слой содержит первый материал, а второй слой содержит второй материал; создания матрицы, включающего копирование микроструктуры первого слоя во второй слой на одной стадии травления; причем первый материал первого слоя и второй материал второго слоя (22), а также условия травления выбирают таким образом, чтобы скорость травления второго слоя (22) была выше скорости травления первого слоя (21); микроструктуру матрицы вводят в контакт с материалом копии так, чтобы микроструктура матрицы воспроизвелась в материале копии с профилем рельефа поверхности, обратным по сравнению с профилем рельефа поверхности матрицы.

Способ может быть использован для изготовления высокоточных и крупноразмерных дифракционных оптических элементов (ДОЭ). Способ включает фокусировку пучка лазерного излучения на поверхность светочувствительного слоя оптической заготовки, приведение ее во вращение, совмещение центра фокусировки пучка лазерного излучения с осью вращения заготовки, выбор точки совмещения центра фокусировки пучка лазерного излучения с осью вращения оптической заготовки за начало отсчета декартовой системы координат устройства позиционирования сфокусированного пучка лазерного излучения, перемещение сфокусированного пучка лазерного излучения по поверхности оптической заготовки в радиальном направлении.

Изобретение относится к технологии создания индикаторов (средств отображения). Индикатор включает в себя одну или более рельефных структур (RS1).

Изобретение относится к слоистым материалам и касается ламинированного материала, имеющего тонкую периодическую структуру, и способа изготовления данного материала.

Изобретение может быть использовано при изготовлении высокоточных дифракционных оптических элементов (ДОЭ), таких как корректоры волнового фронта (аберраций) и дифракционные эталонные линзы для контроля качества оптических поверхностей интерферометрическим методом.

Оптическое устройство может использоваться для защиты от подделки. Оптическое устройство включает в себя рельефно-структурированный слой, содержащий первую и вторую области, первый слой, выполненный из первого материала, имеющего показатель преломления, отличающийся от показателя преломления материала рельефно-структурированного слоя, и покрывающий рельефно-структурный слой, и второй слой, выполненный из второго материала, отличающегося от первого материала, и покрывающий первый слой.

Дифракционная структура содержит множество канавок, скомпонованных для формирования первого дифракционного оптического эффекта. Каждая канавка сформирована множеством рассеивающих и/или дифракционных канавочных элементов, каждый из которых выровнен таким образом, чтобы обеспечивать второй рассеивающий и/или дифракционный оптический эффект с формированием микро- или макроразличимого графического признака.

Изобретение относится к способу изготовления дифракционных решеток для видимого диапазона, выполненных на основе полимерных материалов. Способ включает в себя формирование заданной дифракционной периодической микроструктуры на полимерной подложке за счёт имплантации ионов металла с энергией 4-1200 кэВ, дозой облучения, которая обеспечивает концентрацию вводимых атомов металла 2.5·1020 - 6.5·1022 атомов/см3 в облучаемой подложке. В качестве подложки используют несветочувствительный полимер плотностью тока ионного пучка 1.5·1012 - 3.5·1013 ион/см2·с через поверхностную маску. Технический результат заключается в обеспечении возможности изготовления дифракционных решеток для видимого диапазона на основе несветочувствительных типов полимеров с наночастицами различных металлов. 10 ил.

Оптический аутентификационный компонент, видимый при отражении, содержит рельефную структуру, выполненную на подложке с показателем преломления n0, тонкий слой с толщиной от 50 до 150 нм из диэлектрического материала с показателем преломления n1, отличным от n0, нанесенный на рельефную структуру, и слой из материала с показателем преломления n2, близким к n0, инкапсулирующий структуру, покрытую тонким слоем. Структура содержит первый рисунок и второй рисунок, который модулирует первый рисунок, являющийся барельефом, содержащим совокупность граней, форма которых моделирует рельефное изображение рельефного объекта. Второй рисунок является периодической решеткой, которая модулирует первый рисунок так, чтобы после нанесения тонкого слоя и инкапсуляции структуры получить первый цвет под первым углом наблюдения и второй цвет под вторым углом наблюдения путем азимутального поворота компонента. Технический результат - улучшение распознавания и запоминания изображения за счет изменения цвета в зависимости от направления наблюдения и визуального эффекта трехмерного рельефа. 2 н. и 13 з.п. ф-лы, 16 ил.

Защитный элемент содержит прозрачный несущий слой и частично прозрачный отражающий слой, который выполнен на несущем слое. Также элемент содержит прозрачный заполняющий слой, который выполнен на отражающем слое. Причем отражающий слой в области сюжета структурирован таким образом, что он образует несколько частично прозрачных микрозеркал, которые за счет направленного отражения падающего света при взгляде сверху на область сюжета демонстрируют различаемый сюжет. При этом коэффициенты преломления несущего и заполняющего слоя в видимом спектре различаются не более чем на 0,2, чтобы различаемый при рассмотрении сверху сюжет при рассмотрении области сюжета на просвет не мог быть распознан. Технический результат заключается в создании оптически изменяющегося защитного элемента с высокой защитой от подделки с высокой распознаваемостью и улучшенной верификации. 2 н. и 17 з.п. ф-лы, 15 ил.

Изобретение относится к вариантам защитного оптического компонента с плазмонным эффектом, предназначенного для наблюдения при пропускании. Компонент содержит: два слоя из прозрачного диэлектрического материала, металлический слой, расположенный между упомянутыми слоями из прозрачного диэлектрического материала с образованием двух диэлектрических границ раздела диэлектрик-металл и структурированный для образования, по меньшей мере, на части его поверхности волнообразных элементов, выполненных с возможностью связывания поверхностных плазмонных мод, поддерживаемых упомянутыми границами раздела диэлектрик-металл, с падающей световой волной. При этом волнообразные элементы выполнены в первой зоне связывания в первом главном направлении и, по меньшей мере, во второй зоне связывания, отличной от упомянутой первой зоны связывания, во втором главном направлении, по существу перпендикулярном к первому главному направлению, при этом упомянутый металлический слой является сплошным в каждой из упомянутых зон связывания. Также изобретение относится к защищенному документу и способу получения компонента. Использование настоящего изобретения позволяет легко и безопасно контролировать защитный оптический компонент при пропускании невооруженным взглядом, при этом для неопытного пользователя обеспечивается максимум комфорта и высокая надежность при аутентификации. 5 н. и 15 з.п. ф-лы, 12 ил.

Способ определения пространственного положения объектов обеспечивает облучение объекта через двумерную дифракционную решетку, что обеспечивает образование матрицы смежных оптических каналов. При этом каждому оптическому каналу задают определенное угловое направление. Сигнал в каждом оптическом канале поступает на соответствующий элемент матрицы приемников излучения, а дальность до точки объекта вычисляется в каждом из оптических каналов. При этом в устройстве, реализующем способ, лазерный излучатель снабжен расширителем пучка, за которым установлена двумерная дифракционная решетка. Приемник излучения выполнен в виде матрицы элементов, оптически сопряженных через приемный объектив с дифракционной картиной, а блок управления излучением лазера выполнен в виде модулятора и генератора опорного сигнала, подключенного одновременно к модулятору и процессору. Изобретение обеспечивает повышение быстродействия при формировании облака точек, определяющих угловые координаты и дальность каждой отражающей площадки объекта. 2 н.п. ф-лы, 1 ил.

Защитный элемент для защищенных от подделки бумаг, ценных документов или других носителей данных имеет подложку, которая в поверхностной области содержит оптически переменный поверхностный узор, который при различном направлении освещения и/или рассмотрения создает различные изображения. Оптически переменный поверхностный узор образован по меньшей мере локально периодической системой отражающих элементов, действующих, по существу, по законам лучевой оптики и в поверхностной области апериодически смещенных относительно друг друга по своей высоте. Высота отражающих элементов варьируется по поверхностной области согласно распределению псевдослучайных чисел. Технический результат - достижение повышенной степени защиты с одновременным обеспечением ахроматичности изображения и отсутствия наложенных дифракционных узоров. 4 н. и 14 з.п. ф-лы, 17 ил.

Способ контроля погрешности изготовления дифракционных оптических элементов (ДОЭ) заключается в формировании контрольных окон для нанесения координатных меток, которые выполняют хотя бы из двух групп периодических решеток. Причем первую группу периодических решеток наносят в контрольные окна до начала изготовления дифракционной структуры, а последующие группы периодических решеток наносят одновременно с ее изготовлением. Далее измеряют характеристику контрольных меток в виде взаимного смещения первой группы периодических решеток относительно последующих групп периодических решеток. Технический результат заявляемого изобретения заключается в уменьшении погрешности контроля изготовления дифракционной структуры осевых и внеосевых ДОЭ при осуществлении контроля характеристик координатных меток как в радиальном, так и в угловом направлениях. 3 з.п. ф-лы, 8 ил.

Элемент отображения содержит слои и множество пикселов. При этом множество пикселов содержит слой формирования рельефной структуры, включающий в себя первую область, сформированную посредством множества углублений или выступов и включающую в себя, по меньшей мере, одну подобласть, выполненную с возможностью отображать цвет, и вторую область. При этом элемент отображения отображает позитивное изображение на основе распределения первой области в состоянии, в котором элемент отображения наблюдается в упомянутом направлении под углом, и отображает негативное изображение на основе распределения второй области в состоянии, в котором элемент отображения наблюдается с использованием пропускаемого света. Технический результат - повышение защиты от подделок. 6 н. и 7 з.п. ф-лы, 28 ил.

Сканирующий дифракционный полихроматор содержит входную щель, вогнутую дифракционную решетку, вогнутое сферическое зеркало и многоэлементный приемник излучения. При этом дифракционная решетка выполнена с переменным шагом, коэффициент которого связан с начальным и конечным значениями углов падения на решетку. Технический результат - повышение спектрального разрешения полихроматора. 1 ил., 1 пр.

Устройство задней подсветки содержит источник света, коллиматор, расширитель пучка, один дефлектор пучка, волновод с элементом ввода и элементом вывода. Источник света выполнен в виде лазера. Коллиматор выполнен с возможностью коллимации светового пучка, излученного источником света. Расширитель пучка выполнен с возможностью изменения размера светового пучка после упомянутой коллимации. Дефлектор пучка выполнен с возможностью отклонения светового пучка после упомянутого изменения размера. Элемент ввода и элемент вывода расположены на разных торцевых или боковых поверхностях волновода или на одной и той же торцевой или боковой поверхности волновода. Элемент ввода выполнен с возможностью ввода светового пучка, падающего на него, в волновод, в котором свет распространяется вследствие полного внутреннего отражения. Элемент вывода выполнен с возможностью обеспечения дифракции и вывода светового пучка из волновода в направлении объекта, подлежащего освещению. Технический результат заключается в повышении однородности выходящего из устройства задней подсветки света. 2 н. и 50 з.п. ф-лы, 11 ил.
Наверх