Способ определения коэффициента вязкости микроразрушения тонких пленок из многокомпонентных аморфно-нанокристаллических металлических сплавов (варианты)

Изобретение относится к области исследования физических свойств металлов и сплавов, а именно к анализу вязкости разрушения тонких пленок многокомпонентных аморфно-нанокристаллических металлических сплавов (АНКМС) после их перехода из одного состояния в другое, в результате термической обработки, то есть определению условий, при которых данные сплавы приобретают требуемые свойства. Сущность: изготавливают образцы тонких пленок из многокомпонентных аморфно-нанокристаллических металлических сплавов, предварительно подвергнутых печному отжигу и охлажденных до комнатной температуры, закрепляют их на подложке из полимерного композитного материала, который в свою очередь нанесен на металлическую пластину. Исследуют механических свойств образцов путем вдавливания в образец индентора, представляющего собой стальной шарик, с такими значениями нагрузки, скорости и времени воздействия на образец, которые позволяют спровоцировать появление группы трещин. Коэффициент вязкости микроразрушения рассчитывают с учетом либо только тех кольцевых трещин, которые образуют замкнутые окружности или дуги окружности, которые составляют не менее 270°, и образуют фигуру в виде вложенных окружностей или дуг окружностей, либо трещины, имеющей форму спирали. Технический результат: повышение точности измерений, их достоверности, а также возможность исследовать даже самые хрупкие материалы. 2 н.п. ф-лы, 2 ил., 1 табл.

 

Изобретение относится к области исследования физических свойств металлов и сплавов, а именно к анализу вязкости разрушения тонких пленок многокомпонентных аморфно-нанокристаллических металлических сплавов (АНКМС) после их перехода из одного состояния в другое в результате термической обработки, то есть определению условий, при которых данные сплавы приобретают требуемые свойства, например хрупкость, но сохраняют другие свои свойства, например магнитные.

Известна методика определения механических характеристик аморфных лент при испытании на изгиб, заключающаяся в изгибании образца ленты АНКМС до его разрушения [«Металлы. Методы испытания на изгиб» ГОСТ 14019-80 (СТ СЭВ 474-38, ИСО 7438-85)]. Данная методика наглядна и позволяет легко сравнивать образцы материалов, прошедших различную термическую обработку. Однако, при исследовании аморфно-нанокристаллических материалов (имеющих в своем составе нанокристаллы), в ней проявляются определенные недостатки.

Главным недостатком данного способа является то обстоятельство, что при печном отжиге данных материалов выше определенной температуры (температуры отпускной хрупкости) и при переходе части материала в нанокристаллическое состояние происходит его охрупчивание, а измерения пластичности, по упомянутому выше методу, дают околонулевые значения, что делает невозможным исследование их свойств в заданном диапазоне температурного воздействия. Недостатком также является невозможность исследования локальных неоднородных областей в образцах металлических пленок и большой расход образцов и времени, необходимых для испытаний.

Известен также способ определения пластичности микроиндентированием на подложках. При использовании данного способа предварительно отожженный и охлажденный до комнатной температуры образец исследуемого материала помещают на металлическую подложку, на которую со стороны исследуемого образца наносится слой полимерного композитного материала; закрепляют на ней, после чего воздействуют на исследуемый образец четырехгранной пирамидкой, например пирамидкой Викерса; подбирая усилие воздействия, скорость касания поверхности исследуемого материала пирамидкой и время воздействия на образец таким образом, чтобы в месте воздействия (проникновения) пирамидки образовалась группа трещин в виде фигур, близких по форме к вложенным квадратам. При этом для определения коэффициента пластичности используют выражение:

где h - толщина исследуемого образца, d - диаметр приведенной полуокружности, достроенной по результатам измерения фигуры, образованной группой трещин после воздействия на образец четырехгранной пирамидкой. Также возможно использование эмпирических коэффициентов, умножаемых на величину «ступени» отпечатка от индентора, то есть на расстояние между соседними трещинами, образующими фигуру из вложенных квадратов. [Ушаков И.В., Федоров В.А., Пермякова И.Е. / Определение пластичности металлического стекла микроиндентированием на подложках // М.: Заводская лаборатория. Диагностика материалов. 2003 г. Том 69, №7. С. 43-47.]

Недостатком данного способа является относительно низкая точность расчета коэффициента пластичности S вследствие ошибок при определении приведенного диаметра полуокружности и эмпирических коэффициентов.

Наиболее близким к предлагаемому методу является способ определения пластических характеристик пленок многокомпонентных аморфно-нанокристаллических металлических сплавов, взятый нами в качестве прототипа. [Патент №2494039, С1 Российская Федерация, МКП G01N 3/42, B82Y 32/00. Способ определения коэффициента пластичности тонких пленок из многокомпонентных аморфно-нанокристаллических металлических сплавов / Ушаков И.В., Сафронов И.С.; заявитель и патентообладатель ФГБОУ ВПО «МГГУ». - №2012116406/28; заявлено 24.04.2012; опубликовано 27.09.2013.]

В данном методе для расчетов коэффициента пластичности используется ввод новых показателей и их усреднение, а именно для расчета величины d в выражении (1) используется следующее выражение:

где lсред мкм и lмин. сред мкм - это среднее и минимальное среднее расстояния между соседними трещинами соответствующих сторон фигуры, образованной трещинами в форме вложенных квадратов после воздействия на образец индентора. При этом учитываются только те трещины, которые относительно параллельны соответствующим сторонам квадрата и образуют характерную фигуру в виде вложенных квадратов. Расчеты lсред производят путем измерения всех расстояний между соседними трещинами во всех сторонах образованной ими фигуры, при необходимости достраивая незамкнутые квадраты до замкнутых. Аналогично рассчитываем lмин.сред, но вместо всех расстояний между соседними трещинами берем только минимальные расстояния между соседними трещинами в каждой из сторон фигуры ими образованной.

Недостатком данного метода являются то, что ребра индентора являются концентраторами напряжения, что вносит искажения в формирование трещин в исследуемом образце. Также возникающие из-за воздействия ребер трещины разрушения материала блокируют развитие трещин ориентированных параллельно граням индентора. Недостатком, также, является образование при индентировании большого количества мелких отколов, которые не позволяют определить начальную ориентацию основных трещин из-за их сдвигов.

Отметим также, что с терминологической точки зрения использование термина «пластических характеристик» для предложенной характеристики материалов не совсем корректно.

Используя (косвенно) при расчете коэффициента 8 в формулах для «характеристики пластичности», понятия количества и длин микротрещин, образующихся в материалах, и учитывая, что появление трещин характеризуется, в основном, предельными характеристиками материала, а распространение трещин - поверхностной энергией разрушения и энергией деформации, включая пластические деформации в вершине трещины, коэффициент 8 корректнее называть «параметром вязкости микроразрушения». Действительно, пластические свойства материалов связаны с остаточными деформациями после нагружения (скольжение дислокации, двойникование и пр.).

Техническим результатом, представленного изобретения, является создание способа исследования механических свойств тонких пленок многокомпонентных аморфно-нанокристаллических металлических сплавов, который позволяет увеличить точность измерения коэффициента вязкости микроразрушения путем исключения возможности формирования магистральных микротрещин, разрушающих образец. Отмеченный технический результат является первым следствием использования в качестве индентора стального шарика, а не пирамидки, вдавливание которой из-за концентраторов механических напряжений в области вершины и ребер пирамидки способно инициировать в локальных неоднородных областях макротрещины, которые могут приводить к исключению результатов измерения и формирования макротрещин.

Таким образом, в предлагаемом способе определяется коэффициент вязкости микроразрушения тонких пленок из многокомпонентных аморфно-нанокристаллических металлических сплавов, помещаемых на подложку, вместо использования пирамидки Викерса используется стальной шарик, что позволяет исследовать даже самые хрупкие образцы металлических пленок. Так как при исследовании образцов пленок при помощи шарика имеет место два вида трещин, то систему координат для определения расстояний между ними строят исходя из их особенностей. Возможно формирование двух характерных микрокартин разрушения, на основе анализа которых определяется коэффициент вязкости микроразрушения.

По первому варианту характерная микрокартина разрушения состоит из групп кольцевых трещин, которые образуют замкнутые окружности или группы дуг окружностей. При расчете учитываем только те кольцевые трещины, которые образуют замкнутые окружности или дуги окружности, которые составляют не менее 270°. Данная картина разрушения образца показана на фигуре 1, где 1 - это отпечаток от индентора, 2 - система замкнутых трещин, а 3 - незамкнутые трещины. Оси, по которым замеряются расстояния, имеют буквенные обозначения (А, Б, В, Г и т.д.), а расстояния обозначаются буквой «l» с соответствующими буквенным и цифровым символами (например, lв2). В отличие от прототипа, с целью увеличения достоверности результатов расчета учитываются только те трещины, которые образуют относительно замкнутый круг и формируют характерную фигуру в виде вложенных окружностей. Расчеты lсред производят путем измерения всех расстояний между соседними трещинами образованной ими фигуры, при необходимости дополняя декартовую систему осей дополнительными осями (ось 4 на фигуре 1) и ориентируя оси на плоскости так, чтобы они проходили через наиболее характерные точки образованной системой трещин фигуры, то есть:

В случае если трещина не замкнута, то ее не достраивают и в расчетах учитывают только те трещины, которые пересекаются осями. Аналогично рассчитываем lмин. сред, но вместо всех расстояний между соседними трещинами используем только минимальные расстояния между соседними трещинами.

По второму варианту характерная микрокартина разрушения состоит из одной спиралевидной трещины. Для расчета lсред и lмин. сред производится измерение всех расстояний по выбранным направлениям между соседними витками спирали. При этом угол между осями устанавливается в зависимости от характера трещин и изменения величины расстояний между соседними витками, но проводится не менее 4-х осей. Пример построения системы координат и измерения расстояний показан на фигуре 2. Начало координат ориентируется по полюсу спирали 5 и точке пятна контакта индентора 1. Направление 0 градусов выбирается исходя из удобства произведения расчетов. После построения необходимо учитывать количество витков спирали вокруг полюса. Минимальное значение - 1 полный оборот или угловое значение 360 градусов.

Способ может быть реализован следующим образом. Образец пленки аморфного многокомпонентного металлического сплава в составе: 83,7% Со + 3,7% Fe + 3,2% Cr + 9,4Si размером 10×20 мм и толщиной 30 мкм отжигают в печи при температурах от 740 К до 830 К. Нагрев и охлаждение производят со скоростью порядка 10 К/мин. Образцы выдерживают при заданной температуре 10 мин. Для индентирования образцов применяют микротвердомер, например ПТМ-3, с использованием стального шарика. Предварительно определяют микротвердость исследуемого образца, для чего производят его тестирование на микротвердомере в торец пленки, закрепленной в эпоксидной смоле. В качестве подложки используются металлически пластины толщиной 3 мм, обеспечивающие достаточную жесткость конструкции, например пластины из алюминиевых сплавов. Пластины покрывают со стороны исследуемого образца полиэфирным композитом толщиной 2 мм. Микротвердость полиэфирного композита ≈1000 МПа, что составляет не более 10% от микротвердости исследуемого образца. Это позволяет индентору свободно внедряться в подложку, а механические свойства полиэфирного композита позволяют зафиксировать картину разрушений исследуемого образца пленки. После фиксируют образец на пластине и выдерживают его до слипания (склеивания) с полиэфирной композицией. Наличие в исследуемых образцах аморфно-нанокристаллической структуры контролируется путем проведения рентгеноструктурного анализа, например, на дифрактометре ДРОН-2. Для данного сплава установлено, что в интервале температур отжига от 740 К до 830 К существует аморфно-нанокристаллическая структура. При индентировании отожженных образцов данного сплава стальным шариком (диаметром порядка 0,5 мм) выявлено, что в температурном интервале от 740 К до 830 К происходит формирование характерной зоны трещин, образующих фигуры, близкие к форме окружности.

Результаты испытаний образцов пленок выше указанного сплава проведены методами: «на изгиб», на подложке с помощью пирамидки Викерса и на подложке с использованием шарика (предлагаемый метод), показаны в таблице 1.

Таблица 1
Сравнение результатов
Температура отжига, К Коэффициент пластичности ε (относительные единицы) Определено методом на изгиб Коэффициент пластичности ε (относительные единицы). Определено индентированием пирамидкой Викерса Коэффициент вязкости микроразрушения ε (относительные единицы). Определено индентированием шариком
766 0,025 11,4 8,9
770 0,023 8,2 5,5
780 0,022 4,3 3,5
800 0,021 3,2 2,96

Значения коэффициента вязкости микроразрушения тонких пленок из многокомпонентных аморфно-нанокристаллических металлических сплавов, рассчитанные на основе данных, полученных при использовании в качестве индентора стального шарика, имеют меньший доверительный интервал. Это свидетельствует о меньшем количестве грубых ошибок, связанных со случайным нахождением в области ребра и вершины пирамидки неоднородных дефектных областей, которые провоцируют появление макротрещин. Макротрещины блокируют формирование трещин, образующих фигуры, схожие с вложенными квадратами (на основании которых рассчитывается коэффициент ε). Поэтому результаты, полученные при использовании предлагаемого метода, точнее и лучше соответствуют физической сущности выявления вязкости микроразрушения тонких пленок. Предложенный метод не только регистрирует значительное изменение коэффициента вязкости микроразрушения в интервале температур отжига, где метод изгиба [Ушаков И.В., Федоров В.А., Пермякова И.Е. / Определение пластичности металлического стекла микроиндентированием на подложках // М.: Заводская лаборатория. Диагностика материалов. 2003 г. Том 69, №7. С. 43-47] дает околонулевые значения, но и правильно отображает физическую сущность этих изменений, демонстрируя снижение коэффициента вязкости разрушения с ростом температуры отжига. Поэтому применение предлагаемого способа повышает точность измерений, их достоверность и позволяет исследовать даже самые хрупкие материалы.

1. Способ определения коэффициента вязкости микроразрушения тонких пленок, включающий изготовление образцов тонких пленок из многокомпонентных аморфно-нанокристаллических металлических сплавов, предварительно подвергнутых печному отжигу и охлажденных до комнатной температуры, закрепление их на подложке из полимерного композитного материала, который в свою очередь нанесен на металлическую пластину, исследование механических свойств образцов путем вдавливания в образец индентора с такими значениями нагрузки, скорости и времени воздействия на образец, которые позволяют спровоцировать появление группы трещин, расчет коэффициента вязкости микроразрушения исследуемого образца по формуле ε=h/(d-h), где - h толщина образца, a d рассчитывается по формуле d=2(lсред+lмин. сред), где lсред - среднее расстояние между двумя параллельными трещинами в группе трещин, образованных в образце после испытания, а lмин. сред - минимальное среднее расстояние между двумя параллельными трещинами в тех же группах, измеряемое по осям декартовой системы координат, в которой точкой пересечения осей является место внедрения индентора в образец, отличающийся тем, что в качестве индентора используют стальной шарик, при расчете d учитывают только те кольцевые трещины, которые образуют замкнутые окружности или дуги окружности, которые составляют не менее 270°, и образуют фигуру в виде вложенных окружностей или дуг окружностей, при этом расчеты lсред и lмин. сред производят путем измерения всех расстояний между соседними трещинами образованной ими фигуры, при необходимости дополняя декартовую систему координат дополнительными осями с началом в месте пересечения основных осей и ориентируя дополнительные оси на плоскости так, чтобы они проходили через наиболее характерные точки образованной системой трещин фигуры.

2. Способ определения коэффициента вязкости микроразрушения тонких пленок, включающий изготовление образцов тонких пленок из многокомпонентных аморфно-нанокристаллических металлических сплавов, предварительно подвергнутых печному отжигу и охлажденных до комнатной температуры, закрепление их на подложке из полимерного композитного материала, который в свою очередь нанесен на металлическую пластину, исследование механических свойств образцов путем вдавливания в образец индентора с такими значениями нагрузки, скорости и времени воздействия на образец, которые позволяют спровоцировать появление группы трещин, расчет коэффициента вязкости микроразрушения исследуемого образца по формуле ε=h/(d-h), где - h толщина образца, a d рассчитывается по формуле d=2(lсред+lмин. сред), где lсред - среднее расстояние между двумя параллельными трещинами в группе трещин, образованных в образце после испытания, а lмин. сред - минимальное среднее расстояние между двумя параллельными трещинами в тех же группах, измеряемое по осям декартовой системы координат, в которой точкой пересечения осей является место внедрения индентора в образец, отличающийся тем, что в качестве индентора используют стальной шарик, при расчете d учитывают образованную при индентировании трещину, которая имеет форму спирали, расчет lсред и lмин. сред производится путем измерения всех расстояний по выбранным направлениям между соседними витками спирали, при этом направления устанавливают в зависимости от характера трещин и изменения величины расстояний между соседними витками, но не менее 4-х направлений, при этом в расчет принимаются только те трещины, которые хотя бы дважды пересекают одну из осей.



 

Похожие патенты:

Изобретение относится к области древесиноведения и деревообрабатывающей промышленности и касается оценки механических свойств натуральной и модифицированной древесины.

Твердомер // 2550375
Изобретение относится к области строительства и эксплуатации грунтовых аэродромов, подготавливаемых методом уплотнения снега. Твердомер содержит корпус, снабженный шаровым элементом, имеющим сквозное отверстие, направляющую трубу, стержень с указателем со стрелкой, коническим наконечником и сменным грузом, зафиксированным гайкой.

Изобретение относится к неразрушающим методам контроля, в частности к способу обнаружения в металле критических изменений его технического состояния, связанных с протеканием процесса старения.

Изобретение относится к области исследования физических свойств металлов и сплавов, а именно к анализу пластических свойств тонких пленок аморфно-нанокристаллических многокомпонентных металлических сплавов (АНКМС) после их перехода из одного состояния в другое в результате термической обработки.

Изобретение относится к измерительной технике для определения модуля упругости материала тонких покрытий на изделии. .

Изобретение относится к машиностроению и может быть использовано, в частности, для определения пластической твердости материалов. .

Изобретение относится к измерительной технике и может быть использовано для экспресс-определения физико-механических свойств твердых материалов, в частности для оценки степени упрочнения поверхностного слоя деталей после защитно-упрочняющей обработки.

Изобретение относится к области металловедения, в частности к способам определения соотношения фаз в феррито-перлитных сталях. .

Изобретение относится к области измерений и, в частности, предназначено для использования при исследовании механических характеристик материалов. .

Изобретение относится к способу и устройству для определения степени твердости полутвердых материалов, в частности дорожных покрытий, таких как асфальт, или смазочных веществ.

Изобретение относится к технологиям получения массивов углеродных нанотрубок на поверхности подложки. В реакционной камере формируют поток рабочего газа, содержащего несущий газ, газообразный углеводород и предшественник катализатора для синтеза углеродных нанотрубок.

Изобретение относится к области порошковой металлургии и может быть использовано при изготовлении твердых сплавов, режущего инструмента и износостойких покрытий.

Изобретение относится к химической технологии. На первой стадии производства наночастиц антипирена гидроксида магния осуществляют взаимодействие водного раствора хлорида магния с щелочным компонентом при температуре не выше 100°C и мольном отношении ионов ОН-: Mg++ в пределах (1,9-2,1):1.

Изобретение относится к фармацевтической промышленности, а именно к конъюгату наноалмаза с глицином для доставки глицина в организм. Конъюгат наноалмаза с глицином для доставки глицина в организм, представляющий собой частицы наноалмаза, модифицированные глицином, с размером частиц 2-10 нм, содержащие до 21±3% мас.

Изобретение относится к медицине и касается способа создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител, может применяться для производства диагностикумов новых поколений.

Изобретение относится к фармацевтической промышленности, а именно к системе доставки биологически активных веществ в организм. Система доставки биологически активных веществ в организм, представляющая собой наноалмаз с размером частиц 2-10 нм, поверхность которых модифицирована хлором при содержании хлора до 14% ат.

Изобретение относится к области изготовления оптического элемента путем соединения нескольких кристаллов гранатов. Такие композитные оптические элементы широко применяются в лазерах и других оптических устройствах.

Настоящее изобретение относится к способу получения бутанола, который имеет важное промышленное значение как исходное сырье для получения химических и фармацевтических продуктов, а также в качестве растворителя и топлива.

Солнечный элемент содержит стеклянную подложку; первый проводящий слой на основе CNT, расположенный непосредственно или косвенно на стеклянной подложке; первый полупроводниковый слой в контакте с первым проводящим слоем на основе CNT; по меньшей мере, один поглощающий слой, расположенный непосредственно или косвенно на первом полупроводниковом слое; второй полупроводниковый слой, расположенный непосредственно или косвенно на, по меньшей мере, одном поглощающем слое; второй проводящий слой на основе CNT в контакте со вторым полупроводниковым слоем и контакт к тыльной поверхности, расположенный непосредственно или косвенно на втором проводящем слое на основе CNT.

Группа изобретений относится к медицине и касается фармацевтической композиции для лечения рака, содержащей наночастицы, включающие альбумин и по существу не растворимый в воде фармакологически активный противораковый агент, приготовленные из смеси, содержащей органическую фазу, включающую по существу не растворимый в воде фармакологически активный противораковый агент и раствор альбумина, которая была подвергнута воздействию высокого сдвигающего усилия, где в указанной композиции по существу отсутствует прионный белок.

Изобретение относится к области резки стекла и может применяться в составе ручного и механического инструмента. При изготовлении режущей головки стеклореза в качестве режущего элемента используют графеновый кластер в виде пачки плоскопараллельных графенов, связанных между собой по одному из торцов (графеновую пемзу), или графеновый ламинат - материал в виде параллельных слоёв плоских графенов, связанных твёрдым материалом по поскостям. Режущий элемент механически ориентируют так, чтобы листы графенов располагались плоскостями по ходу движения стеклореза и перпендикулярно поверхности стекла, и в этом положении закрепляют в державке с помощью полимерного клея или металлического припоя. Технический результат изобретения - увеличение режущей способности и ресурса службы стеклореза. 5 з.п. ф-лы, 5 ил.
Наверх