Способ испытания эрд и стенд для его реализации

Изобретение относится к области электроракетных двигателей и стендов для их испытаний. В способе испытания электроракетных двигателей в вакуумной камере, основанном на том, что истекающее рабочее тело затормаживают на защитной мишени, согласно изобретению, энергию истекающего рабочего тела в виде ионизирующего излучения высокотемпературной плазмы преобразуют в электрическую энергию, которую выводят за пределы вакуумной камеры для полезного использования. Способ осуществляется с помощью стенда, содержащего вакуумную камеру, системы питания и управления, защитную мишень, согласно изобретению, на защитной мишени или вместо нее установлен фотоэлектрический и/или термоэлектрический преобразователь, вырабатывающий электродвижущую силу. Техническим результатом изобретения является повышение эффективности зашиты внутренних стенок и оборудования вакуумной камеры от воздействия ионизирующего излучения высокотемпературной плазмы, снижение расхода охладителя мишени, используемого во время испытаний, повышение надежности работы испытательного стенда для испытаний ЭРД. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к области электроракетных двигателей (ЭРД) и стендов для их испытаний.

Особенностью функционирования ЭРД является их эксплуатация в условиях глубокого вакуума, не выше 1·10-4 мм рт.ст. При наземной отработке ЭРД используются вакуумные камеры. Плазма на выходе из ЭРД высокими тепловыми потоками ионизирующего излучения воздействует на внутренние стенки и оборудование вакуумной камеры. Для защиты последних при длительных испытаниях ЭРД необходимо использовать экраны или мишени, которые поглощают или преобразуют энергию ионизирующего излучения для вывода за пределы вакуумной камеры.

Известен стенд для испытания электроракетных двигателей, состоящий из вакуумной камеры, системы вакуумирования, покрытой графитом охлаждаемой мишени, криогенных панелей (бандажей) (см. доклад, представленный на 30-ой Международной Конференции по электроракетным двигателям во Флоренции, Италия, с 17 по 20 сентября, 2007 г. M. Saverdi, M. Signori, L. Milaneschi, U. Cesari, L. Biagioni Alta SpA, via A. Gherardesca, «The IV10 space simulator for high power electric propulsion testing: performance improvements and operation status»).

Недостатком известного стенда является большой расход криогенного охладителя для обеспечения проведения испытаний ЭРД, высокая стоимость проведения испытаний.

Известен стенд для испытания электроракетного двигателя на йоде, состоящий из вакуумной камеры, системы вакуумирования, подвижного в продольном направлении кронштейна с установленным на нем электроракетным двигателем и системы торможения и конденсации истекающей из двигателя струи плазмы, включающий мишень и криопанель, снабженные системой подачи криоагента, мишень и криопанель дополнительно снабжены нагревателями и герметично связаны друг с другом, причем криопанель со стороны, обращенной к двигателю, снабжена люком, имеющим дистанционный привод и открытым при работе двигателя, а при закрытии - образующим герметичный отсек, при этом люк имеет герметично прикрепленный к его внутренней поверхности эластичный мешок, соединенный с баллоном, содержащим инертный газ, например аргон, причем герметичный отсек, образованный криопанелью, мишенью и люком, через разъемное соединение герметично связан с емкостью для утилизации йода, снабженной системой охлаждения и нагревателем (см. патент РФ №2412373, МПК F04H 1/00, по заявке №2008137447/06 от 18.09.2008 г.).

Недостатком известного стенда является использование дополнительной камеры для улавливания частиц йода, использование большого количества охладителя для ионной мишени и криопанелей, необходимость периодической очистки вакуумной камеры от частиц йода.

Известен способ и стенд для ресурсных испытаний ионных двигателей, работающих на ксеноне, состоящий из основной и вспомогательной камер, разделенных клапаном. Двигатель устанавливается на подвижном кронштейне. Большая часть истекающей из двигателя плазменной струи тормозится и частично адсорбируется на ионной мишени, выполненной в виде алюминиевого диска, на котором смонтированы титановые пластины, образующие ячейки, подобно коробке для яиц. Ионная мишень охлаждается основным холодильником. Отраженная от ионной мишени часть истекающей из двигателя струи плазмы адсорбируется цилиндрическими криопанелями, охлаждаемыми криогенераторами до температур (50-100) К (см. статью Y Hayakawa, K. Miyazaki, S. Kitamura and H. Yoshida, Y. Yamamoto, K. Akai. Endurance test of 35-cm Xenon ion thruster. AIAA 2000-3530.36 th AIAA/ASME/SAE/ASEE Join Propulsion Conference and Exhibik. 16-19 Juiy 2000/Huntsville, Alabama - прототип).

Недостатком известного стенда является большой расход охладителя ионной мишени, недостаточная эффективность зашиты стенок и оборудования вакуумной камеры, высокая стоимость проведения длительных испытаний двигателя. Причем затраты резко возрастают с увеличением мощности испытываемого двигателя.

Технической задачей, решаемой предлагаемым изобретением, является:

- повышение эффективности зашиты внутренних стенок и оборудования вакуумной камеры от воздействия ионизирующего излучения высокотемпературной плазмы;

- снижение расхода охладителя мишени, используемого во время испытаний ЭРД;

- повышение надежности работы испытательного стенда для испытаний ЭРД.

Данная техническая задача решается тем, что при известном способе испытания электроракетных двигателей в вакуумной камере, основанном на том, что истекающее рабочее тело затормаживают на защитной мишени, согласно изобретению, энергию истекающего рабочего тела в виде ионизирующего излучения высокотемпературной плазмы преобразуют в электрическую энергию, которую выводят за пределы вакуумной камеры для полезного использования.

Способ осуществляется с помощью стенда, содержащего вакуумную камеру, системы питания и управления, защитную мишень, согласно изобретению, на защитной мишени или вместо нее установлен фотоэлектрический и/или термоэлектрический преобразователь, вырабатывающий электродвижущую силу.

Указанная совокупность признаков проявляет новые свойства, заключающиеся в том, что благодаря ей появляется возможность повысить эффективность зашиты внутренних стенок и оборудования вакуумной камеры от воздействия ионизирующего излучения высокотемпературной плазмы, работы испытательного стенда, а также снизить расход охладителя мишени, используемого во время испытаний ЭРД.

Принципиальная схема стенда для испытания ЭРД показана на фиг. 1 - где:

1 - электроракетный двигатель (ЭРД);

2 - вакуумная камера;

3 - система откачки;

4 - крионасос;

5 - система подачи рабочего тела;

6 - источники питания;

7 - защитная охлаждаемая мишень;

8 - система подачи охладителя;

9 - фотоэлектрические преобразователи;

10 - термоэлектрические преобразователи;

11 - контроллер;

12 - аккумулятор;

13 - нагрузочное устройство.

Стенд для испытаний электроракетного двигателя состоит из ЭРД 1, вакуумной камеры 2, системы откачки 3, крионасоса 4, системы подачи рабочего тела 5, источников питания 6, защитной охлаждаемой мишени 7, системы подачи охладителя 8, фотоэлектрических преобразователей 9, термоэлектрических преобразователей 10, контроллера 11, аккумулятора 12 и нагрузочного устройства 13.

Работа стенда осуществляется следующим образом. ЭРД 1 монтируется в вакуумную камеру 2. С помощью системы откачки 3 и крионасоса 4 создается давление в вакуумной камере 2 порядка 1·10-7÷1·10-5 мм рт.ст. В дальнейшем по системе 5 в ЭРД подается рабочее тело, а от источников питания 6 - напряжение. В охлаждаемую мишень 7, расположенную в вакуумной камере 2, по системе 8 подается охладитель. Охлаждаемая мишень 7 предназначена для защиты внутренних стенок и оборудования вакуумной камеры 2 от воздействия образовавшегося в ходе работы ЭРД 1 ионизирующего излучения высокотемпературной плазмы. С целью снижения расхода охладителя и использования энергии высокотемпературной плазмы, образующейся в ходе работы ЭРД 1 и поступающей на охлаждаемую мишень 7, на нее установлены фотоэлектрические преобразователи 9 и термоэлектрические преобразователи 10, которые в свою очередь вырабатывают ЭДС.

Электрический ток от фотоэлектрических преобразователей 9 и термоэлектрических преобразователей 10 через контроллер 11 поступает на аккумулятор 12, от которого запитывается нагрузочное устройство 13. В качестве нагрузочного устройства 13 может выступать, например, как вспомогательное стендовое оборудование, так и источники питания 6 ЭРД1.

Таким образом, благодаря использованию изобретения за счет преобразования ионизирующего излучения высокотемпературной плазмы в электрическую энергию с отводом ее из вакуумной камеры повышается эффективность зашиты внутренних стенок и оборудования вакуумной камеры, снижается расход охладителя, используемого во время испытаний, и повышается надежность работы испытательного стенда.

1. Способ испытания электроракетных двигателей (ЭРД) в вакуумной камере, основанный на том, что истекающее рабочее тело затормаживают на защитной мишени, отличающийся тем, что энергию истекающего рабочего тела в виде ионизирующего излучения высокотемпературной плазмы преобразуют в электрическую энергию, которую выводят за пределы вакуумной камеры для полезного использования.

2. Стенд для реализации способа по п. 1, содержащий вакуумную камеру, системы питания и управления, защитную мишень, отличающийся тем, что на защитной мишени или вместо нее установлен фотоэлектрический и/или термоэлектрический преобразователь, вырабатывающий электродвижущую силу.



 

Похожие патенты:

Изобретение может быть использовано для определения технического состояния электронной системы управления и элементов двигателей с распределенным впрыском топлива в процессе их изготовления, технического обслуживания и ремонта.

Изобретение относится к области эксплуатации машин и может быть использовано при диагностировании двигателей внутреннего сгорания. Способ безразборной диагностики степени износа подшипников двигателей внутреннего сгорания заключается в измерении давления в масленой магистрали при работе двигателя, отличается тем, что давление масла измеряют в масленой магистрали на участке канала, расположенным между коренным и шатунным подшипниками по оси коленчатого вала при работе двигателя без нагрузки, и по величине измеренного давления судят о допустимой степени износа шатунного подшипника.

Изобретение относится к способу обнаружения точек истирания и/или контакта на машинах с вращающимися частями. Вращающиеся части образуют электрическую коаксиальную систему относительно неподвижных частей такой машины, а в этой системе импульсы электрического напряжения распространяются с характеристической скоростью из-за малого расстояния между вращающейся и неподвижной частями.

Изобретение относится к диагностированию технического состояния механизмов и машин, а именно технического состояния ротора. В способе диагностирования технического состояния ротора машины выводят машину на контролируемый режим, измеряют на этом режиме исходную частоту вращения ротора и останавливают машину.

Изобретение относится к области испытаний двигателей внутреннего сгорания. Способ контроля углов газораспределения двигателя внутреннего сгорания полезен при эксплуатации, при предремонтной и послеремонтной проверке двигателей.

Изобретение относится к области транспорта и может быть использовано в двигателях внутреннего сгорания. Техническим результатом является повышение надежности диагностирования функциональности клапана рециркуляции отработавших газов двигателя внутреннего сгорания.

Группа изобретений относится к машиностроению, в частности к насосным станциям гидравлических стендов для испытаний гидроустройств. Насосная станция включает в себя бак, насос, на выходе которого установлен переливной клапан, и теплообменник, установленный в сливной гидролинии переливного клапана.

Изобретение используется для поузловой доводки авиационных двигателей при стендовых испытаниях, а именно доводки рабочих колес турбин и колес компрессоров. При реализации способа определения частоты вынужденных колебаний рабочего колеса (РК) определяют количество лопаток РК и количество лопаток направляющего аппарата (НА) или соплового аппарата (СА) ступени турбомашины.

Изобретение относится к области контроля технического состояния авиационных газотурбинных двигателей, оборудованных штатной измерительной аппаратурой, сигналы с которой в процессе эксплуатации записываются также штатным бортовым устройством регистрации, установленном на борту соответствующего воздушного судна.

Изобретение относится к энергетике. Газотурбинный двигатель выполнен двухконтурным, двухвальным, содержит не менее восьми модулей, смонтированных по модульно-узловой системе, включая компрессоры высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания, воздухо-воздушный теплообменник, турбины высокого и низкого давления, смеситель, фронтовое устройство, форсажную камеру сгорания и всережимное реактивное сопло.

Изобретение относится к способу обнаружения попадания воды или града в газотурбинный двигатель, причем упомянутый двигатель имеет, по меньшей мере, компрессор, камеру сгорания и турбину. Способ содержит следующие этапы, состоящие из: - оценки значения первого показателя, символизирующего всасывание воды или града; - оценки значения второго показателя, представляющего всасывание воды или града, причем упомянутый второй показатель отличается от первого показателя; и - вычисления значения общего показателя путем сложения вместе, по меньшей мере, упомянутого первого и второго показателей. Технический результат изобретения - повышение эффективности и быстродействия данного способа. 6 н. и 6 з.п.ф-лы, 5 ил.

Изобретение относится к измерительной технике, а именно, к устройствам для измерения аэродинамических сил и моментов, действующих на модели изделий авиационной и ракетной техники при проведении испытаний в аэродинамических трубах. Устройство содержит модель ракеты со съемной носовой частью, установленную на внутримодельных шестикомпонентных тензовесах с помощью конической посадки, соединенных с внутренней державкой, прикрепленной к модели носителя, установленной в аэродинамической трубе, оснащенной тензостанцией и пультом управления в препараторской. Державка для модели ракеты выполнена в виде цилиндра, размещенного внутри корпуса модели, с продольными пазами, в которых установлена оребренная посадочная втулка, соединенная и с тензовесами и с обечайкой корпуса модели с использованием ребер. При этом в передней части цилиндра в пазу закреплен вкладыш, а на хвостовой части - подвижное кольцо, причем и вкладыш, и кольцо снабжены сменными узлами крепления цилиндра к кронштейнам, установленным на модели носителя. Технический результат заключается в повышении достоверности измерений. 2 ил.

Изобретение направлено на получение данных или осуществление получения данных или распределения среды многоточечно, точно и быстро с хорошим пространственным разрешением и минимальными габаритными размерами. Для этого в изобретении предусматривается скрученное размещение трубопроводов в зоне получений/распределений на многих высотах одним устройством. В частности, для получения измерения вращения в полете устройство является зондом давления, в котором корпус зонда имеет первую часть или отрезок получения данных о давлении, образующий цилиндр, по меньшей мере, в 6 мм в диаметре. Зонд имеет внутренние трубопроводы (С1-С9) по параллельным спиралям и каналы (К1-К9), образованные в корпусе из металлического сплава между трубопроводами (С1-С9) и входные отверстия (01-03, 04-06, 07-09), расположенные на трех различных высотах (Н1-Н3) корпуса зонда. 2 н. и 8 з.п. ф-лы, 3 ил.

Описан способ проверки правильности определения вращающего момента двигателя, включающий: определение вращающего момента двигателя по количеству топлива, впрыскиваемого в двигатель, причем вращающий момент двигателя получают из таблицы впрыскивания топлива; вычисление первой величины веса транспортного средства по его ускорению и полученному вращающему моменту двигателя; определение вращающего момента вспомогательного тормозного устройства с использованием таблицы вспомогательного тормозного устройства; вычисление второй величины веса транспортного средства по полученному тормозному моменту вспомогательного тормозного устройства и сравнение первой и второй величин веса транспортного средства. Достоинство изобретения заключается в том, что можно определить отклонение действительной величины вращающего момента двигателя от номинальной величины вращающего момента двигателя транспортного средства без необходимости измерения вращающего момента двигателя с помощью отдельного датчика вращающего момента. 14 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Предложен способ диагностики топливной форсунки, в котором для уравновешивания крутящих моментов, производимых цилиндром двигателя, производят регулирование количества впрыскиваемого топлива или начало/конец синхронизации впрыска топлива в указанный цилиндр. В предложенном способе определяют уменьшение эффективности регулировки впрыска топлива или начала/конца синхронизации впрыска топлива при уравновешивании произведенных цилиндром крутящих моментов, когда минимальное количество топлива, впрыскиваемое в цилиндр или начало/конец синхронизации впрыска топлива, необходимые для уравновешивания крутящего момента цилиндра, находятся за пределами предопределенного диапазона. Предложенный способ диагностики топливной форсунки различает типы уменьшения эффективности работы форсунки. 3 н. и 17 з.п. ф-лы, 5 ил.

Изобретения относятся к области машиностроения, а именно к испытаниям корпусов роторов лопаточных машин на непробиваемость. Способ заключается в том, что на одной из лопаток, установленных в роторе, расположенном внутри неподвижного корпуса, осуществляется ослабление ее поперечного сечения, при достижении ротором заданной частоты вращения и прогреве корпуса и деталей ротора до необходимой температуры проводят обрыв этой лопатки с последующим взаимодействием оборвавшейся части с корпусом. Обрыв лопатки осуществляется при помощи груза, размещенного в канале диска ротора под обрываемой лопаткой и в заданный момент времени нагружающего эту лопатку дополнительной силой, обеспечивающей ее обрыв. Устройство включает ротор с лопатками, расположенный внутри корпуса, привод для раскрутки ротора, систему управления частотой вращения, при этом обрываемая лопатка выполнена с ослабленным (за счет уменьшения площади поперечного сечения) сечением. В канале диска ротора под обрываемой лопаткой размещен груз, зафиксированный таким образом, чтобы в заданный момент времени под воздействием исполнительного механизма обеспечить свободное радиальное перемещение груза под действием центробежных сил до взаимодействия с обрываемой лопаткой над ослабленным ее сечением. Технический результат заключается в гарантированном обрыве лопатки в заданных условиях, обеспечивающих идентичность движения оборвавшейся части лопатки траектории лопатки, оборвавшейся в условиях реальной эксплуатации. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение относится к оценке работоспособности технологического оборудования при эксплуатации в условиях, вызывающих снижение пластичности и растрескивание металла конструктивных элементов, и может быть использовано при его диагностировании для обоснования возможности, сроков, условий дальнейшей эксплуатации и предупреждения хрупких разрушений. Технический результат от использования изобретения заключается в обосновании возможности дальнейшей эксплуатации технологического оборудования и предупреждении высокоопасных хрупких разрушений. Для этого оценку работоспособности технологического оборудования ведут по параметрам и критериям пластичности металла, для чего определяют максимальные деформации в вершине концентратора еmax и разрушающие деформации eL, при этом если соблюдается условие emax<eL, то состояние оборудования оценивается как работоспособное, если условие не соблюдается, то в вершине исходного концентратора при действии номинальных напряжений σH от внешних нагрузок возможно растрескивание, т.е. образование исходной трещины размером L0, тогда, в случае если выполняется условие KI(L0)≤[KI], где KI - допустимый коэффициент интенсивности напряжений, состояние оборудования оценивается как работоспособное. 3 ил., 1 табл.

Изобретение относится к испытательной технике и испытаниям на усталостную прочность при кручении. Стенд содержит сервогидравлическое нагружающее устройство (СНУ), элемент коленчатого вала (1), один конец которого жестко крепится через фланец отбора мощности к вертикальной неподвижной стойке (7). Напрессованный с натягом на свободный конец вала каток (2) имеет возможность свободно кататься по опорной плите (5), которая жестко крепится к столу СНУ. Сопряженная с катком (2) поверхность опорной плиты (5) повторяет форму опорной поверхности катка (2). К катку (2) крепится рычаг (4), на который через сферический упор (6), присоединенный к СНУ, передается эксцентричная нагрузка от поршня СНУ, под действием которой жестко связанный с рычагом (4) каток (5) может совершать качательное движение вокруг оси, совпадающей с продольной осью коленчатого вала (1) и передавать крутящий момент элементу коленчатого вала (1). Технический результат заключается в обеспечении задания произвольного закона нагружения. 1 ил.
Способ диагностирования образования и развития трещины в диске работающего авиационного газотурбинного двигателя, который реализуется регистрацией сигнала с датчика линейного перемещения, установленного на корпусе двигателя и фиксирующего кратковременное колебание корпуса из-за импульсного высвобождения энергии при образовании и ступенчатом развитии трещины при выходе двигателя на максимальные обороты в рабочем цикле. Изобретение позволяет определять появление и развитие трещины в диске, а также степень поврежденности диска без разборки двигателя и предотвращать разрушение диска. 1 з.п. ф-лы.

Изобретение относится к области транспорта и может быть использовано для бортовой диагностики катушек зажигания двигателей внутреннего сгорания (ДВС) с принудительным воспламенением от искрового разряда, формируемого микропроцессорной системой зажигания в условиях сложной электромагнитной обстановки. Технический результат - повышение достоверности определения работоспособности катушек зажигания в условиях сложной электромагнитной обстановки, обеспечение своевременного принятия мер по обеспечению экологических требований, предъявляемых к транспортному средству (ТС), например прекращение топливоподачи в соответствующий цилиндр ДВС ТС и отключение тока накопления в неисправной катушке зажигания в случае определения нарушения их работоспособности. В способе диагностики катушек зажигания N-цилиндрового ДВС их работоспособность определяют по результату сравнения измеренной величины амплитуды тока, протекающего в ее первичной обмотке, с данными превентивно заданных пороговых значений и статистическими данными измерений в течение нескольких циклов работы ДВС величины амплитуд токов, протекающих в первичных обмотках других катушек ДВС. 6 ил.
Наверх