Способ энергосбережения


 


Владельцы патента RU 2561822:

Закрытое акционерное общество "ГРИН ЭНЕРДЖИ" (RU)

Изобретение относится к области электротехники, а именно к повышению качества тока в электропитающих сетях за счет повышения коэффициента мощности. Способ включает в себя параллельное подключение компонентов сети между фазными проводами, симметрирование токов в фазах и межфазных токов, измерение значения напряжений на подключаемых и подключенных конденсаторах, сравнение мгновенных значений напряжений на подключаемых и подключенных конденсаторах, параллельное соединение их в момент их равенства. Это позволяет повысить коэффициент мощности, повысить надежность работы конденсаторов.

 

Изобретение относится к области электротехники, а именно к повышению качества тока в электропитающих сетях, особенно при включении (отключении) мощных нагрузок.

Известен способ энергосбережения на основе оптимизации энергосберегающих мероприятий (ЭСП) по всем этапам электротехнологического процесса (ЭТП) /1/. Способ заключается в следующем: разбивают весь энерготехнологический процесс на этапы его проведения, устанавливают измерители энергии и измеряют или вычисляют потребляемую энергию на каждом этапе, определяют энергоемкость этапов в исходном варианте проведения ЭТП, намечают ЭСМ, в качестве которых могут выступать регулирование параметров изменения режимов, замена элементов, прочие технические, технологические, производственные, организационные меры, направленные на повышение эффективности данного этапа ЭТП, определяются энергоемкости этапов при внедрении намеченных ЭСМ, вычисляют коэффициенты эффективности ЭСМ. ЭТП проводят применением таких ЭСМ на каждом этапе, чтобы его общий коэффициент эффективности принимал оптимальное значение. К недостаткам можно отнести ограниченные функциональные возможности, поскольку проведение энергосберегающих мероприятий необходимо проводить на каждом этапе технологического процесса. К недостаткам можно отнести ограниченные функциональные возможности, поскольку проведение энергосберегающих мероприятий необходимо проводить на каждом этапе электротехнического процесса.

Известен также способ управления энергоресурсами /2/. За заданный промежуток времени система определяет приращения расходов энергоносителей, сквозных энергозатрат и производительности выпуска продукции, определение динамической энергоемкости, оценки расходования энергоресурсов объекта управления по динамической энергоемкости. Система обеспечивает в динамике в пошаговом режиме оценку приращенной за заданный промежуток времени расходов энергоносителей сквозной энергоемкости и производительности выпуска продукции. Эти оценки проводятся как для сквозных энергозатрат, так и для их отдельных составляющих. К недостаткам данного способа можно отнести ухудшение эксплуатационных характеристик элементов защиты из-за кратковременных перенапряжений.

Известен также способ управления энергопотреблением, заключающийся в параллельном подключении компонентов и использовании реверсивных фильтров, что позволяет уменьшить фазовый угол тока и напряжения, снизить гармоники в сети, снизить гармонические искажения (суммарное значение коэффициента нелинейных искажений) до очень низких значений, при включении выпрямителя напряжения уменьшить напряжение /3/. Если напряжение и ток различаются по фазе, система уменьшает угол между током и напряжением. Система снижает потребление энергии и реагирует на нагрузку посредством тока и регулирует потребление мощности, регулирует напряжение с учетом потребления тока. Это особенно полезно для отраслей промышленности с высоким потреблением тока, например, с нагрузкой сети до 2500 Ампер. Элементы сети - конденсаторы, дугогасительное устройство, варисторы, ограничитель скачков напряжения, индуктивности или обмотки трансформатора - группируются для работы в однофазной сети, возможно подключение к двухфазной или трехфазной сети. Недостатком предложенного решения является то, что при выполнении данного способа происходит временная потеря экономии электроэнергии в результате ухудшения динамики процесса.

Также известен способ повышения качества электроэнергии, описанный в/4/, при уменьшении несинусоидальной формы питающего напряжения которого производят распределение потребления электроэнергии между электронными устройствами, искажающими форму питающего напряжения, и электронными устройствами, улучшающими форму питающего напряжения, в течение полуволны питающего напряжения сети. При этом улучшается форма питающего напряжения при упрощении конструкции.

Наиболее близким по технической сути является способ повышения качества электроэнергии в многофазной системе энергоснабжения при симметрировании по одной из фаз и комбинированном отборе мощности /5/. Процесс компенсации высших гармонических составляющих ставят в зависимость от характеристик последних в каждой из фаз и осуществляют совместно с симметрированием токов в упомянутых фазах, а процесс симметрирования осуществляют относительно опорной фазы. К недостаткам способа можно отнести то, что подключение (отключение) дополнительных межфазных и фазных конденсаторов происходит, когда напряжение на подключенных и отключенных конденсаторах равно нулю, то есть, когда они разрядятся, время разряда может достигать нескольких минут, в течение этого времени экономия электроэнергии невозможна, а при часто меняющейся динамической нагрузке вообще невозможна.

Задачей предлагаемого изобретения является экономия энергии за счет повышения коэффициента мощности без задержки на время, необходимое для разряда подключаемых конденсаторов до нуля и упрощения схемотехники входных блоков электропотребителей.

Способ энергосбережения включает в себя параллельное подключение компонентов сети между фазными проводами и общим проводом и между фазными проводами, симметрирование токов в фазах и межфазных токов, измерение значения напряжения на подключенных и подключаемых конденсаторах, сравнение мгновенных значений напряжений на подключаемых и подключенных конденсаторах, и в момент их равенства при помощи электронных ключей осуществляется параллельное соединение для повышения коэффициента мощности, который измеряется непрерывно, в течение всего времени эксплуатации сети.

Способ энергосбережения может осуществляться в любом месте электрической сети, где ее параметры не соответствуют требованиям Регламента сети и подвержены динамическим изменениям в процессе эксплуатации, например, при изменении характера нагрузки в сторону увеличения или уменьшения реактивной составляющей. Введение блоков динамической коррекции электросети позволяет анализировать фазовые соотношения между токами и напряжениями в сети: соединенные последовательно с нагрузкой дроссели ограничивают зарядный и разрядный ток в момент их коммутации при сохранении всех остальных стандартных функций защиты.

По сравнению с прототипом, когда пока подключаемые конденсаторы не разрядятся до нуля, подключать новые нельзя, соответственно, экономить электроэнергию в это время невозможно. Ресурс (срок службы) конденсаторов увеличивается, поскольку сравнить два напряжения можно с большей точностью, чем проводить измерения напряжений вблизи нуля из-за остаточных (шумовых) напряжений на конденсаторах. В случаях, когда изменение нагрузки в сети происходит часто, экономить электроэнергию стандартным образом не удается, поскольку ожидание разряда конденсатора до нуля может превзойти время переключения.

Способ осуществляется следующим образом. Все компоненты сети подключаются параллельно между фазными проводами и общим проводом и между фазными проводами. Симметрируют токи в фазах и межфазные токи. Измеряют значение напряжения на подключенных и подключаемых конденсаторах, затем сравнивают мгновенные значения напряжений на подключенных и подключаемых конденсаторах, при равенстве значений напряжений осуществляется параллельное соединение конденсаторов при помощи электронных ключей - для повышения коэффициента мощности, который измеряется непрерывно, в течение всего времени эксплуатации сети.

Пример конкретного выполнения

В результате измеренного текущего изменения коэффициента мощности в сети выше установленного уровня контроллер вычисляет значение емкости конденсатора, необходимое для компенсации этого изменения. Измеряются значения напряжения в сети и напряжение на подключаемом конденсаторе. Когда напряжение в сети становится равным напряжению на подключаемом конденсаторе, контроллер выдает управляющую команду на подключение электронным ключом конденсатора (конденсаторов) к сети.

Изобретение позволяет экономить электроэнергию за счет повышения коэффициента мощности, позволяет упростить схемотехнику входных блоков электропотребителей, повысить срок службы конденсаторов.

Источники информации

1. Патент РФ №2357342.

2. Патент РФ №2315324.

3. Патент РФ №2340991.

4. Патент США №7573253.

5. Патент РФ №2390083. - прототип.

Способ энергосбережения, включающий параллельное подключение компонентов сети между фазными проводами и общим проводом и между фазными проводами, симметрирование токов в фазах и межфазных токов, отличающийся тем, что измеряется значение напряжений на подключенных и подключаемых конденсаторах, сравниваются мгновенные значения напряжений на подключенных и подключаемых конденсаторах, и в момент их равенства осуществляется их параллельное соединение при помощи электронных ключей для повышения коэффициента мощности, который измеряется непрерывно, в течение всего времени эксплуатации сети.



 

Похожие патенты:

Изобретение относится к электротехнике, а именно к устройствам, обеспечивающим энергосбережение путем централизованной компенсации реактивной мощности в условиях переменных нагрузок, и может быть использовано в высоковольтных электрических сетях напряжением от 3 кВ и выше.

Изобретение относится к области электроэнергетики и может быть использовано в сетях с компенсацией емкостных токов замыкания на землю с помощью настраиваемого дугогасящего реактора (ДГР), включенного в контур нулевой последовательности (КНП) сети, например в нейтраль питающего трансформатора.

Использование: в области электротехники. Технический результат - повышение стабильности работы генератора.

Изобретение относится к электротехнике и может найти применение в устройствах электропитания технологического оборудования, в частности нагревателей прецизионных электропечей.

Использование: в области электротехники. Технический результат - устранение напряжения обратной последовательности в многофазной электрической сети (1) электропередачи с многофазным соединением (2).

Предлагаемое устройство относится к силовой преобразовательной технике и обеспечивает энергетически эффективный импульсный способ регулирования мощности, передаваемой в нагрузку.

Изобретение относится к электротехнике, прежде всего, к способам и устройствам для компенсации или регулирования коэффициента мощности в преобразователях или инверторах и, в частности, касается способов компенсации реактивной мощности в питающих сетях промышленных предприятий или индивидуальных потребителей этой мощности с целью обеспечения требований энергосистемы к потреблению реактивной мощности. Заявляемый способ заключается в установлении в каждой линии питающей сети 1 вентильного моста 2, имеющего во входной цепи со стороны питающей сети по меньшей мере один конденсатор 3, и пропускании выходного тока вентильного моста 2 через нагрузку, обеспечивающую регулирование тока, протекающего через этот конденсатор 3.

Изобретение относится к области электротехники и может быть использовано в преобразователях, входящих в состав системы энергообеспечения электронной, электромеханической и осветительной аппаратуры.

Изобретение относится к области электротехники. В устройстве обеспечивается подстройка реактивной мощности путем переключения двух или более ветвей, каждая из которых снабжена выключателем для подключения к питающей сети и содержит выполняющие функции фильтрации и компенсации конденсаторные батареи, резисторы, реакторы.

Изобретение относится к области электротехники и может быть использовано в системах БП и обратных преобразователях Технический результат - повышение надежности и эффективности для пользователей и поставщиков.

Использование: в области электроснабжения электрических железных дорог переменного тока. Технический результат - повышение точности регулирования мощности установки поперечной емкостной компенсации (КУ) и, следовательно, повышение надежности и экономичности электроснабжения тяговой сети. Согласно способу используют расчетный блок, подключенный ко вторичной обмотке трансформатора напряжения, к блок-контакту выключателя КУ и к приемному полукомплекту телемеханики поста секционирования. Расчетный блок определяет потери напряжения при включении (отключении) КУ и сравнивает с потерями напряжения, при которых будут потери мощности наименьшие. В зависимости от полученных текущих потерь напряжения КУ включается или отключается. 1 ил.

Использование: в области электроэнергетики. Технический результат - обеспечение напряжения у потребителей на допустимом уровне, компенсация реактивной мощности непосредственно у ее потребителя и упрощение расчетов мест размещения конденсаторных устройств. Способ включает определение значений длин магистральной линии, двухфазных и трехфазных ответвлений от магистрали; измерение в узлах, соответствующих полученным значениям, напряжения и коэффициента мощности, при этом значение длины магистральной линии LM определяют согласно определенной формуле. Далее в узле, соответствующем полученному значению LM, замеряют суммарные потери напряжения относительно трансформаторной подстанции (ТП) и коэффициент реактивной мощности, если они не удовлетворяют предельно допустимым значениям, в узле устанавливают конденсаторную установку (КУ); а если действительные суммарные потери напряжения и коэффициент реактивной мощности в данном узле удовлетворяют предельно допустимым значениям, а потери напряжения и коэффициент реактивной мощности у бытовых потребителей не отвечают предельно допустимым значениям, определяют значение длины двухфазных и трехфазных ответвлений от магистрали L2-3. Далее замеряют суммарные потери напряжения относительно ТП и коэффициент реактивной мощности в узле, соответствующем полученному значению, если измеренные значения не удовлетворяют предельно допустимым, в данном узле устанавливается КУ; далее замеряют значения уровня напряжения и коэффициента реактивной мощности у бытовых потребителей в линии, если измеренные значения не отвечают предельно допустимым, КУ устанавливают в самой удаленной от ТП отпайке от магистральной линии. 4 з.п. ф-лы.

Изобретение относится к линиям электроснабжения для транспортных средств. Способ регулирования заключается в том, что фильтрокомпенсирующую установку (ФКУ) включают или отключают в зависимости от значения измеряемого фактического коэффициента реактивной мощности t g ϕ факт в часы больших суточных нагрузок электрической сети и отключают ФКУ в часы малых нагрузок при генерируемой реактивной мощности: t g ϕ г .факт = 0 . Блок расчета полного коэффициента гармоник напряжения K U (n) на шинах 110 (220) кВ и блок расчета коэффициента реактивной мощности нагрузки t g ϕ и генерируемой реактивной мощности t g ϕ г рассчитывают K U (n) от и t g ϕ от при включенной ФКУ в часы больших нагрузок в предположении отключенного положения ФКУ. При условиях K U (n) от ≤ K U (n) доп и t g ϕ от ≤ t g ϕ доп , где K U (n) доп и t g ϕ доп - допустимые значения, ФКУ отключается. При отключенной ФКУ в часы малых нагрузок измеряют фактическое значение K U (n) факт и рассчитывают t g ϕ г .вкл в предположении включенного состояния ФКУ. При условиях K U (n) факт ≥ K U (n) доп и t g ϕ г .вкл = 0 , ФКУ включается. Технический результат изобретения заключается в эффективной компенсации реактивной мощности и снижении уровня гармоник тока и напряжения. 1 ил.

Изобретение относится к области электротехники и может быть использовано в электроподвижном составе переменного тока с зонно-фазным регулированием напряжения. Технический результат заключается в повышении коэффициента мощности за счет улучшения синусоидальности формы первичного тока электровоза. Устройство для компенсации реактивной мощности содержит трансформатор напряжения, нагрузку в виде выпрямительно-инверторного преобразователя электровоза с подключенным к нему тяговым двигателем, источник реактивной мощности с последовательно соединенными конденсатором и индуктивностью, датчиком тока компенсатора и инвертором, блок вычисления заданного тока, элемент сравнения, блок управления источником реактивной мощности. Блок вычисления заданного тока содержит устройство фазовой автоподстройки, блоки вычисления основной, третьей и пятой гармоник тока, сумматор, первый и второй умножители, в котором выход устройства фазовой автоподстройки непосредственно соединен с вторым входом блока вычисления основной гармоники тока, и, соответственно, через первый и второй умножители - с вторыми входами блока вычисления третьей гармоники тока и блока вычисления пятой гармоники тока, выходы которых подключены к соответствующими входами сумматора. Первичная обмотка трансформатора напряжения связана с сетью, вторичная обмотка которого через датчик тока соединена с параллельно включенными нагрузкой и источником реактивной мощности, датчик напряжения подключен параллельно вторичной обмотке трансформатора напряжения, выход которого связан с входом устройством фазовой автоподстройки. Выход сумматора соединен с первым входом элемента сравнения, выход источника реактивной мощности соединен с его вторым входом, а выход элемента сравнения через блок управления подключен к третьему входу источника реактивной мощности. 1 ил.

Использование: в области электротехники. Технический результат - повышение точности компенсации потери напряжения. Согласно способу сигналы с датчиков тока 3 и 5 и напряжения 4 поступают на входы контроллеров 7 и 9. Контроллер 7 выполняет следующие функции: аналого-цифровое преобразование сигналов тока и напряжения; непрерывное вычисление действующих значений активной Iа и реактивной Iрн составляющих тока нагрузки и напряжения U путем усреднения за период питающей сети. Контроллер 9 выполняет следующие функции: аналого-цифровое преобразование сигналов тока и напряжения, непрерывное вычисление и запоминание действующих значений активной Iан и реактивной Iрн составляющих тока нагрузки и напряжения U путем усреднения за период питающей сети; вычисление значений активного r и реактивного x сопротивлений питающей электрической сети 1. Данные о действующих значениях активной Iан и реактивной Iрн составляющих тока нагрузки и напряжения U и значениях активного r и реактивного x сопротивления питающей электрической сети по шине данных 10 поступают в контроллер 8, который производит вычисление требуемого значения реактивного тока питающей сети и формирование сигнала задания для компенсирующего устройства в соответствии с уравнением Iк=Iр+Iрн. 3 ил.

Изобретение относится к области электротехники, в том числе к преобразователю (10) для трехфазного напряжения с тремя электрически включенными в треугольник последовательными соединениями (R1, R2, R3), каждое из которых содержит по меньшей мере два последовательно включенных переключающих модуля (SM), и управляющим устройством (30), соединенным с переключающими модулями (SM), которое может управлять переключающими модулями (SM) таким образом, что в последовательных соединениях (R1, R2, R3) протекают токи ветвей с основной частотой трехфазного напряжения и с по меньшей мере одной дополнительной гармоникой тока, причем дополнительная гармоника тока рассчитана таким образом, что она протекает в последовательных соединениях (R1, R2, R3) преобразователя (10) по контуру и остается в преобразователе. Технический результат - уменьшение размаха пульсаций энергии в преобразовательных ветвях. 2 н. и 8 з.п. ф-лы, 8 ил.

Использование: в области электротехники. Технический результат - повышение надежности. Устройство электропитания имеет систему (2) тока с несколькими фазами (3), к которым подключены нелинейная, изменяющаяся во времени нагрузка (1) и компенсатор (5) реактивной мощности. Компенсатор (5) реактивной мощности выполнен как многоуровневый конвертор с несколькими ветвями (6), которые с одной стороны соединены с соответствующей одной из фаз (3) системы (2) тока и, с другой стороны, соединены между собой в общей нулевой точке (7) соединения звездой многоуровневого конвертора (5). Общая нулевая точка (7) соединена с нулевой точкой (12, 15) соединения звездой другого, подключенного к фазам (3) системы (2) тока устройства (8, 14), так что общая нулевая точка (7) как через ветви (6) многоуровневого конвертора (5), так и через другое устройство (8, 14) соединена с фазами (3) системы (2) тока. Соединение через другое устройство (8, 14) выполнено таким образом, что в отношении токовой системы нулевой последовательности системы (2) тока существует низкоомное, а в отношении токовой системы прямой последовательности системы (2) тока и токовой системы обратной последовательности системы (2) тока существует высокоомное соединение общей нулевой точки (7) соединения звездой многоуровневого конвертора (5) с фазами (3) системы (2) тока. 4 з.п. ф-лы, 4 ил.

Изобретение относится к области электротехники и может быть использовано для регулирования напряжения и реактивной мощности блоков генерации электростанций. Техническим результатом является повышение надежности энергоблока, величины активной мощности, выдаваемой в сеть синхронным генератором энергоблока, и повышение быстродействия при регулировании напряжения и реактивной мощности энергоблока. Устройство состоит из синхронного генератора с нерегулируемой системой возбуждения, к его выводам подключены начала первичных обмоток сериесного трансформатора, концы которых являются выводами энергоблока, вторичные обмотки сериесного трансформатора соединены с выводами переменного напряжения первого преобразователя напряжения. К выводам энергоблока через трансформатор подключены выводы переменного напряжения второго преобразователя напряжения, выводы постоянного напряжения которого соединены с однополярными выводами постоянного напряжения первого преобразователя. Выходы сигналов автоматического регулятора реактивной мощности, величины и фазы напряжения энергоблока соединены с соответствующими входами систем управления преобразователей напряжения. 1 ил.

Использование: в области электротехники. Технический результат - повышение надежности и плавности регулирования. Устройство регулирования реактивной мощности электрической сети содержит управляемый реактор, сетевая обмотка которого подключена к сети высокого напряжения, устройства измерения тока и напряжения в точке подключения к сети, силовой блок управления индуктивностью реактора, конденсаторную батарею, содержащую, по крайней мере, две секции конденсаторов, и электронную систему управления силовым блоком управления индуктивностью реактора и переключателем секций конденсаторной батареи. При этом сетевая обмотка реактора содержит, по крайней мере, один отвод, подсоединенный через, по крайней мере, один переключатель к секциям конденсаторной батареи. В устройстве по второму варианту управляемый реактор снабжен дополнительной обмоткой, по крайней мере, с одним отводом, нейтральный конец которой заземлен, линейный конец изолирован, а отвод через, по крайней мере, один переключатель присоединен к секциям конденсаторной батареи. 2 н. и 3 з.п. ф-лы, 6 ил.

Использование: в области электротехники. Техническим результатом является улучшение качества тока за счет повышения быстродействия процессов компенсации реактивной мощности в условиях переменных нагрузок и отказов отдельных элементов, уменьшения перегрузок реактивных элементов и элементов коммутации и повышение надежности функционирования. Согласно изобретению число реактивных элементов М в каждой из N батарей реактивных элементов увеличивают до значения M+K, где К - число резервных реактивных элементов, которое выбирается из условия обеспечения непрерывности технологического процесса потребителей энергии. Подключение каждого из реактивных элементов в каждой из N батарей реактивных элементов производят индивидуально в моменты равенства напряжения на соответствующих реактивных элементах при произвольном его значении и напряжения сети с учетом результатов постоянной выполняемой диагностики исправности каждого из реактивных элементов. При этом подключение каждой из N батарей реактивных элементов к сети осуществляют после момента завершения коммутации реактивных элементов в соответствующей из N батарей реактивных элементов. После этого формируется управляющая команда для уточнения настроек адаптивного компенсатора гармоник. 2 н. и 3 з.п. ф-лы, 1 ил.
Наверх