Способ одоризации газа

Изобретение относится к способам дозированного ввода жидких испаряющихся реагентов в поток газа и может быть использовано в газовой промышленности для одоризации природного газа. Cпособ включает разделение газа на потоки, направляемые потребителям, и часть, направляемую в испарительное устройство, где насыщается парами одоранта и получают газ, насыщенный одорантом, который смешивают с потоками, направляемыми потребителям, пропорционально их расходу. Измеряют расход потоков, направляемых потребителям, и рассчитывают суммарный расход газа. Весовой расход одоранта в поток части газа устанавливают, изменяя скорость уменьшения веса испарительного устройства в зависимости от суммарного расхода газа. Для обеспечения непрерывности процесса используют два испарительных устройства, в одном из которых восполняют израсходованный одорант, а в другом получают газ, насыщенный одорантом. Техническим результатом является упрощение способа, повышение точности дозирования одоранта и одоризация нескольких потоков газа. 1 ил.

 

Изобретение относится к способам дозированного ввода жидких испаряющихся реагентов в поток газа и может быть использовано в газовой промышленности для одоризации природного газа.

Известны и широко используются способы одоризации газа [RU 2183134, МПК B01F 3/04, опубл. 10.06.2002 г., RU 2247332, МПК G01F 13/00, G05D 11/02, опубл. 27.02.2005 г., RU 2317580, МПК G05D 11/00, опубл. 20.02.2008 г., RU 2363931, МПК G05D 11/00, опубл. 10.08.2009 г., RU 2457445, МПК G01F 13/00, G05D 11/02, опубл. 27.07.2012 г., RU 2494350, МПК G01F 13/00, опубл. 27.09.2013 г.] путем объемного дозирования порций жидкого одоранта и периодического их ввода в поток газа.

Недостатками указанных способов являются: неравномерность ввода одоранта в поток газа при подаче его порциями, необходимость измерения плотности одоранта, поскольку норма ввода одоранта в газ выражена в удельных единицах массы одоранта на объем одорируемого газа, а также сложность, связанная с необходимостью использования механического оборудования прецизионного исполнения и сложной системы управления.

Известны способы одоризации, основанные на дозировании паров одоранта в поток газа [RU 2173874, МПК G05D 7/00, опубл. 20.09.2001 г., RU 2242725, МПК G01F 13/00, G05D 11/03, опубл. 20.12.2004 г., RU 2467293, МПК G01F 13/00, опубл. 20.11.2012 г.] путем непрерывного или порционного испарения жидкого одоранта и ввода паров одоранта в поток газа.

Основным недостатком указанных способов является низкая точность из-за трудностей получения определенного объемного потока паров с известной массовой концентрацией одоранта.

Наиболее близок к заявляемому изобретению способ и устройство одоризации газа [RU 2411071, МПК B01F 3/02, опубл. 10.02.2011 г.], согласно которому способ включает барботирование части газа через слой одоранта с получением газа, насыщенного одорантом, его смешение с основной частью газа с получением одорированного газа, подаваемого потребителю, при этом посредством системы автоматического управления определяют термобарические параметры барботажа и рассчитывают концентрацию одоранта в газе, насыщенном одорантом, затем, с учетом измеренного расхода основной части газа, рассчитывают необходимое количество газа, насыщенного одорантом. Кроме того, для увеличения точности дозирования, барботажную емкость термостатируют, а также измеряют газоанализатором содержание одоранта в одорированном газе для корректировки подачи газа, насыщенного одорантом, с учетом этих данных.

Недостатками известного способа являются:

- сложность способа из-за необходимости измерения и регулирования большого количества вспомогательных параметров (8-9 входных и 3-4 выходных параметра), обеспечивающих точность дозирования одоранта,

- необходимость использования дорогостоящего газоанализатора для корректировки расхода одоранта,

- невозможность раздельной одоризации нескольких потоков газа, подаваемых нескольким потребителям, с помощью одного устройства.

Задачей изобретения является упрощение способа, повышение точности дозирования одоранта и одоризация нескольких потоков газа.

Техническим результатом является:

- упрощение способа одоризации газа и повышение точности дозирования одоранта за счет определения расхода одоранта весовым методом путем непрерывного взвешивания дозирующего устройства, и исключение вследствие этого необходимости использования газоанализатора,

- одоризация нескольких потоков газа за счет пропорционального распределения газа, насыщенного одорантом, между потоками газа, направляемыми разным потребителям.

Указанный технический результат достигается тем, что в известном способе, включающем насыщение части газа парами одоранта с получением газа, насыщенного одорантом, и введение его в основную часть газа, особенность заключается в том, что один или несколько потоков основной части газа, выделенных по числу потребителей, смешивают с частью газа, насыщенного одорантом, пропорциональной расходу каждого потока, при этом получение газа, насыщенного одорантом, осуществляют в непрерывно взвешиваемом испарительном устройстве, состоящем из расходной емкости и узла испарения, расход одоранта устанавливают в зависимости от суммарного расхода газа путем изменения временной производной веса испарительного устройства, а для обеспечения непрерывности процесса используют два испарительных устройства, в одном из которых восполняют израсходованный одорант, а в другом получают газ, насыщенный одорантом.

Измеряют расход потоков газа, направляемых потребителям, и вес испарительного устройства, дозирующего одорант, затем рассчитывают производную веса испарительного устройства по времени и регулируют эту величину в зависимости от суммарного расхода газа. Кроме того, регулируют количество газа, насыщенного одорантом, направляемого на смешение с потоками газа, направляемых потребителям.

В этом случае вес одоранта, введенного в единицу объема газа WS, рассчитывают как: WS=δW/δt□: δV/δt, г/м3, где: W - вес испарительного устройства, г, δW/δt - производная веса испарительного устройства по времени, г/сек; V - объем газа, м3; δV/δt - расход одорируемого газа, м3/сек.

Вес испарительного устройства снижается во времени за счет убыли одоранта, насыщающего часть газа. Степень насыщения части газа, пропускаемой через испарительное устройство, одорантом при этом не имеет значения, поскольку осуществляется прямое инструментальное измерение взвешиванием количества испарившегося одоранта. Это позволяет упростить способ за счет исключения необходимости измерения и регулирования большей части параметров, требующейся в способе по прототипу.

В связи с тем что точность инструментальных методов взвешивания на 2-3 порядка превосходит точность измерения расхода и давления, осуществляемых в способе по прототипу, точность дозирования одоранта определяется практически только точностью измерения расхода потоков газа, направляемых потребителям, что увеличивает точность дозирования одоранта в сравнении со способом по прототипу и исключает необходимость применения газоанализатора. Количество газа, насыщенного одорантом, крайне незначительно (0,01-0,05% от суммарного объема газа) и практически не влияет на точность коммерческого учета газа.

Предлагаемый способ осуществляют следующим образом (см. чертеж). Газ (I) разделяют на потоки (II), направляемые потребителям (условно показано 3 потока), и часть (III), направляемую в испарительное устройство 1, состоящее из расходной емкости 2, узла испарения 3 и устройства взвешивания 4. Часть газа (III) пропускают через узел 3, где получают газ, насыщенный одорантом (IV), который разделяют с помощью устройств 5 на части по числу потоков (II) пропорционально их расходу, измеряемому с помощью устройств 6. Суммируя расход потоков газа (II), определяют расход газа (I). Весовой расход одоранта (VI) в поток части газа (III) устанавливают, изменяя скорость уменьшения веса испарительного устройства 1 в зависимости от суммарного расхода газа (I) с помощью управляющего сигнала, полученного от системы управления 7 в результате обработки данных измерительных устройств 6 и 4. Пунктирными стрелками показаны измеряемые сигналы и управляющие воздействия.

Для обеспечения непрерывности процесса используют два испарительных устройства (второе на схеме не показано), в одном из которых восполняют израсходованный одорант, а в другом получают газ, насыщенный одорантом.

Таким образом, предлагаемое изобретение позволяет упростить одоризацию газа, повысить точность дозирования одоранта, одорировать одновременно несколько потоков газа и может быть использовано в газовой промышленности.

Способ одоризации газа, включающий насыщение части газа парами одоранта с получением газа, насыщенного одорантом, и введение его в основную часть газа, отличающийся тем, что один или несколько потоков основной части газа, выделенных по числу потребителей, смешивают с частью газа, насыщенного одорантом, пропорциональной расходу каждого потока, при этом получение газа, насыщенного одорантом, осуществляют в непрерывно взвешиваемом испарительном устройстве, состоящем из расходной емкости и узла испарения, расход одоранта устанавливают в зависимости от суммарного расхода газа путем изменения временной производной веса испарительного устройства, а для обеспечения непрерывности процесса используют два испарительных устройства, в одном из которых восполняют израсходованный одорант, а в другом получают газ, насыщенный одорантом.



 

Похожие патенты:

Изобретение относится к техническим средствам оценки качества воздушной среды обитания человека. Предложенная аэрозольная камерная установка содержит формирователь 1 аэрозольных потоков, соединенный пневмомагистралью с генератором аэрозольного потока.

Изобретение относится к смешивающему устройству для смешивания первого газа со вторым газом, причем этот второй газ является коррозионным по отношению к смешивающему устройству.

Изобретение относится к приготовлению многокомпонентных газовых смесей и может быть использовано в лазерной технике, химической промышленности, в частности для приготовления смеси из перфторалкилиодида и буферных газов и последующего заполнения различных рабочих емкостей.
Изобретение относится к области разработки биокатализаторов, предназначенных для использования в составе биологических фильтров для очистки газов, и может быть использовано для проведения лабораторных экспериментов с образцами биокатализаторов, осуществляющих удаление из воздуха летучих компонентов натурального табачного сырья, а также для создания селективных условий в процессе выделения и исследования микроорганизмов, составляющих биологически активную компоненту данного типа биокатализаторов.

Изобретение относится к смесителям газов и может использоваться для получения смеси газов, используемой в качестве защитной среды в процессах сварки, и при необходимости для изменения состава газовой смеси в процессе работы.

Изобретение относится к устройству для непрерывного смешивания извлеченного из хранилища природного газа с кислородом в горючий газ для нагревания находящегося под давлением природного газа перед его расширением или после него.

Изобретение относится к аналитическому приборостроению, конкретно - к методам приготовления газовых смесей, предназначенных для проверки функционирования газосигнализаторов на угарный газ в процессе их эксплуатации.

Изобретение относится к конструкции газосмесительной камеры для приготовления градуировочных газовых смесей заданного состава. .

Изобретение относится к аналитическому приборостроению, конкретно к методам изготовления газовых смесей, предназначенных для проверки функционирования газосигнализаторов в процессе эксплуатации.

Изобретение относится к перемешивающему устройству для двух газов/паров и может использоваться, в частности, для смешивания этилбензола и пара при высокой температуре в установках получения стирола.

Изобретение относится к способам дозированного ввода жидких реагентов в поток газа и может быть использовано в газовой промышленности для одорирования газа, транспортируемого по газопроводу. Способ одорирования газа включает измерение расхода одорируемого газа, насыщение части газа парами одоранта в испарительном узле одного из двух испарительных устройств и смешение с остальным газом. Каждое из испарительных устройств включает расходную емкость, узел насыщения и устройство взвешивания, при этом одно испарительное устройство находится в стадии дозирования одоранта, а второе - в стадии восполнения израсходованного одоранта. Узел насыщения периодически или непрерывно пополняют жидким одорантом из расходной емкости, а испарительное устройство непрерывно взвешивают. Дозировку подачи одоранта осуществляют путем регулирования расхода газа, насыщенного парами одоранта, с помощью регулируемого клапана, управляемого сигналом, выдаваемым системой управления, в результате обработки данных по расходу одорируемого газа и изменению во времени веса испарительного устройства. Техническим результатом изобретения является упрощение способа и повышение точности дозирования одоранта, исключение использования газоанализатора. 1 ил.

Изобретение относится к смешивающим устройствам и может быть применено для смешения потоков текучей среды, в частности газов или жидкостей, в различных отраслях промышленности и преимущественно в нефтепереработке и нефтехимии, газовой и энергетической промышленности. Смешивающее устройство для потоков текучей среды содержит камеру смешения, соединенные с ней по меньшей мере две коаксиально размещенные цилиндрические трубы, по которым потоки текучей среды поступают на смешение, завихритель, установленный по меньшей мере в одной из труб, и штуцер для вывода смеси, диаметр камеры смешения более чем в 1,7 раза превышает диаметр внешней из труб, а соотношение между длиной камеры смешения и ее диаметром больше или равно 1,5. При этом завихритель установлен с возможностью подвода закрученного потока на вход камеры смешения с интенсивностью, определяемой из отношения момента количества движения потока текучей среды к осевому количеству движения потоков на входе в камеру смешения, которое равно или больше 0,7. Техническим результатом изобретения является повышение эффективности смешения подаваемых потоков текучей среды. 3 ил.

Изобретение относится к смешиванию текучих сред. Устройство содержит полый трубчатый основной корпус (41) для смешивания первой (G4) и второй (G5) текучих сред внутри него, первый впускной порт, предусмотренный в верхней по потоку части основного корпуса (41), через который протекает первая текучая среда (G4), способствующий смешиванию корпус (38) трубчатой формы, расположенный внутри основного корпуса (41) и имеющий продольную ось (С1), проходящую в направлении, согласованном с направлением потока первой текучей среды (G4), причем противоположные концы способствующего смешиванию корпуса оставлены открытыми, и второй впускной порт (45), предусмотренный в периферийной стенке основного корпуса, через который протекает вторая текучая среда (G5) в направлении наружной периферийной стенки способствующего смешиванию корпуса (38). Первая текучая среда (G4) протекает снаружи и внутри способствующего смешиванию корпуса (38). Изобретение обеспечивает однородное смешивание и позволяет снизить потери давления. 2 н. и 4 з.п. ф-лы, 12 ил.

Изобретение относится к смесителям газов и может использоваться для получения смеси газов в различных технологических процессах, например для получения смеси газов, используемой в качестве плазмообразующей среды в процессе плазменного напыления. Устройство для приготовления газовой смеси, используемой при ионно-плазменном напылении, содержит камеру смешивания, сообщенную с плазменной ячейкой устройства, впускные клапаны подачи газа, установленные на входе в камеру смешивания, выпускной клапан подачи газовой смеси, установленный на выходе камеры смешивания, датчики давления, установленные в камере смешивания и в плазменной ячейке, блок управления, при этом все клапаны соединены с блоком управления и датчиками давления с обеспечением автоматического переключения клапанов. Изобретение обеспечивает возможность дискретной порционной подачи газов нужного типа и требуемого давления в камеру смешивания, что позволяет получить смесь газов с определенной пропорцией требуемых компонент, сформировать необходимый дозированный газовый поток полученной смеси в рабочую камеру (плазменную ячейку), поддерживать необходимое давление смеси газов в объеме камеры смешивания и в рабочей камере (плазменной ячейке), осуществлять управление параметрами смеси и газового потока в ручном, полуавтоматическом или автоматическом режимах. 5 ил.

Система предназначена для получения газообразного топлива и может быть использована на промышленных предприятиях и объектах ЖКХ. Система содержит линию подачи воздуха, содержащую последовательно соединенные между собой трубопроводом в произвольном порядке: первый расходомер, выполненный с возможностью измерения расхода воздуха, и регулирующий клапан, выполненный с возможностью регулирования расхода воздуха в линии подачи воздуха; линию подачи газа, содержащую соединенный трубопроводом с входом эжектора второй расходомер, выполненный с возможностью измерения расхода газа; линию смешения газа и воздуха, содержащую эжектор, выполненный с возможностью получения газовоздушной смеси и соединенный трубопроводами на входе с выходом линии подачи воздуха и выходом линии подачи газа, а на выходе - с выходом системы; обводную линию, содержащую первый редуктор, выполненный с возможностью формирования предварительно установленного давления на выходе обводной линии, соединенный трубопроводами с линией подачи газа между вторым расходомером и входом эжектора и с линией смешения газа и воздуха между эжектором и выходом системы; блок управления, соединенный с первым расходомером, вторым расходомером и регулирующим клапаном и выполненный с возможностью: приема информации о расходе воздуха от первого расходомера, приема информации о расходе газа от второго расходомера, и управления регулирующим клапаном на основании принятой информации таким образом, чтобы при текущем значении расхода газа поддерживать расход воздуха, необходимый для обеспечения предварительно заданного соотношения воздуха и газа в получаемой газовоздушной смеси. Технический результат - упрощение конструкции системы, повышение надежности, безопасности и эффективности использования природного газа. 11 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам для получения стандартных образцов газовых смесей на основе инертных и постоянных газов и может быть использовано в различных отраслях промышленности. Устройство включает узел гидростатического взвешивания с мерной емкостью, заполненной дозируемым газом, тестовой емкостью, подвешенной к тензодатчику, расположенному изнутри на крышке мерной емкости, дозатор реагента и систему управления (первый и второй варианты). Первый вариант устройства дополнительно включает расходомер флюида. При работе устройства по первому варианту дозируемый газ периодически подают в мерную емкость, внутри которой к тензодатчику подвешена тестовая емкость. При расходовании дозируемого газа в мерной емкости снижается давление, уменьшается вес газа, вытесняемого тестовой емкостью, и ее вес увеличивается. Сигнал от тензодатчика поступает в блок управления, где обрабатывается совместно с сигналом, поступающим от расходомера в трубопроводе флюида, а сгенерированный сигнал управляет клапаном, подающим дозируемый газ в трубопровод флюида. Работа устройства по второму варианту предполагает дозирование заданного блоком управления количества в замкнутый объем. Техническим результатом является дозирование газа с высокой точностью. 2 н.п. ф-лы, 2 ил.

Изобретение относится к десублимационной технике и может быть использовано в химической и фармацевтической промышленности. Способ десублимации твердых веществ включает загрузку не менее двух видов десублимируемых веществ в сублиматоры, их расплавление и возгонку с образованием разнородных сублимированных паров, взаимодействие сублимированных паров с холодным газом-носителем над верхней секцией парогазораспределительной камеры сублиматора, расположенного соосно парогазораспределительной камере, до состояния пересыщения парогазовых смесей, десублимацию готовой смеси паров с образованием частиц требуемых размеров и отделение готового продукта, при этом перед десублимацией на выходе из каналов верхней секции парогазораспределительной камеры осуществляют начальное смешение паров веществ еще в сублимированной фазе путем направления их потоков под углом навстречу друг к другу, с последующей десублимацией одновременно с окончательным их смешением в одной зоне - зоне смешения-десублимации при взаимодействии с холодным газом-носителем по мере движения в смесителе-десублиматоре. Устройство для осуществления данного способа содержит сублиматоры 1, 2, парогазораспределительную камеру 3 с решеткой 13 и каналами для подачи паров десублимируемых продуктов 7, 8 и холодного газа–носителя 25, десублиматор 9 и узлы отделения готового продукта 26, 28, при этом десублиматор совмещен со смесителем и является смесителем-десублиматором 9, под ним расположена парогазораспределительная камера 3, состоящая из двух секций - нижней 5 и верхней 6, нижняя секция 5 находится на одном из сублиматоров 1, расположенном соосно парогазораспределительной камере 3, смеситель–десублиматор 9, парогазораспределительная камера 3 и сублиматор 1, расположенный соосно парогазораспределительной камере 3, расположены в одном корпусе, второй сублиматор 2 расположен снаружи от корпуса и связан с нижней секцией 5 парогазораспределительной камеры 3 обогреваемым паропроводом 4, причем каналы 7, 8 парогазораспределительной камеры 3 с решеткой 13 выполнены кольцевыми, а центральный ее канал - в виде цилиндрической трубы, в отверстия каналов для подачи паров десублимируемых продуктов установлены насадки 16, 17, 18, причем насадка центрального канала 16 установлена по оси парагазораспределительной камеры 3 и выполнена конической формы, остальные насадки 17 на отверстия каналов II выполнены кольцевыми с поперечным сечением в виде равнобедренного треугольника, а стенки кольцевых насадок наклонены к продольной оси парогазараспределительной камеры 3 с образованием двухсторонних щелей для выхода паров сублимата в направлении к центру смесителя-десублиматора 9 и к его боковой стенке, а во внешнем кольцевом канале I выполнена односторонняя щель между внутренней стенкой кольцевой насадки 18 и отверстием внешнего кольцевого канала I для выхода паров сублимата в направлении к центру смесителя-десублиматора 9, при этом входные отверстия 14 в каналах нижней секции 5 парагазораспределительной камеры 3 выполнены над сублиматором 1, расположенным соосно парогазораспределительной камере 3, входные отверстия 11 каналов верхней секции 6 расположены над нижней секцией 5 парогазораспределительной камеры 3, а решетка 13, установленная в верхней части верхней секции 6 парогазораспределительной камеры 3, выполнена из отдельных колец, и все кольцевые каналы 7 в нижней секции 5 парогазораспределительной камеры 3 имеют радиальные перетоки 10 для распределения пара сублимата из второго сублиматора 2, расположенного снаружи от корпуса, по всей нижней секции, а в верхней секции 6 парогазораспределительной камеры 3 все кольцевые каналы 8 имеют радиальные перетоки 12 для распределения холодного газа-носителя по всей верхней секции 6. Техническим результатом изобретения является возможность получения смеси мелко- и ультрадисперсных материалов в объемах продукта массой не более 3 мг. 2 н.п. ф-лы, 7 ил., 1 табл.
Наверх