Способ одорирования газа

Изобретение относится к способам дозированного ввода жидких реагентов в поток газа и может быть использовано в газовой промышленности для одорирования газа, транспортируемого по газопроводу. Способ одорирования газа включает измерение расхода одорируемого газа, насыщение части газа парами одоранта в испарительном узле одного из двух испарительных устройств и смешение с остальным газом. Каждое из испарительных устройств включает расходную емкость, узел насыщения и устройство взвешивания, при этом одно испарительное устройство находится в стадии дозирования одоранта, а второе - в стадии восполнения израсходованного одоранта. Узел насыщения периодически или непрерывно пополняют жидким одорантом из расходной емкости, а испарительное устройство непрерывно взвешивают. Дозировку подачи одоранта осуществляют путем регулирования расхода газа, насыщенного парами одоранта, с помощью регулируемого клапана, управляемого сигналом, выдаваемым системой управления, в результате обработки данных по расходу одорируемого газа и изменению во времени веса испарительного устройства. Техническим результатом изобретения является упрощение способа и повышение точности дозирования одоранта, исключение использования газоанализатора. 1 ил.

 

Изобретение относится к способам дотированного ввода жидких реагентов в поток газа и может быть использовано в газовой промышленности для ввода одоранта в поток природного газа, транспортируемого по газопроводу.

Известны и широко используются способы одорирования газа [RU 2183134, МПК B01F 3/04, опубл. 10.06.2002 г., RU 2247332, МПК G01F 13/00, G05D 11/02, опубл. 27.02.2005 г., RU 2317580, МПК G05D 11/00, опубл. 20.02.2008 г., RU 2363931, МПК G05D 11/00, опубл. 10.08.2009 г., RU 2457445, МПК G01F 13/00, G05D 11/02, опубл. 27.07.2012 г., RU 2494350, МПК G01F 13/00, опубл. 27.09.2013 г.) путем объемного дозирования порций жидкого одоранта и периодического их ввода в поток газа.

Недостатками указанных способов являются: неравномерность ввода одоранта в поток газа при подаче его порциями, необходимость измерения плотности одоранта, поскольку норма ввода одоранта в газ выражена в удельных единицах массы одоранта на объем одорируемого газа, а также сложность, связанная с необходимостью использования механического оборудования прецизионного исполнения и сложной системы управления.

Известны способы одорирования, основанные на дозировании паров одоранта в поток газа [RU 2173874, МПК G05D 7/00, опубл. 20.09.2001 г., RU 2242725, МПК G01F 13/00, G05D 11/03, опубл. 20.12.2004 г., RU 2467293, МПК G01F 13/00, опубл. 20.11.2012 г.] путем непрерывного или порционного испарения жидкого одоранта и ввода паров одоранта в поток газа.

Основным недостатком указанных способов является низкая точность из-за трудностей получения определенного объемного потока паров с известной массовой концентрацией одоранта.

Наиболее близок к заявляемому изобретению способ и устройство одоризации газа [RU 2411071, МПК B01F 3/02, опубл. 10.02.2011 г.], согласно которому способ включает насыщение части газа парами одоранта путем барботажа через слой одоранта и смешение с основным (остальным) потоком газа, при этом посредством системы автоматического управления определяют термобарические параметры барботажа и рассчитывают степень насыщения части газа парами одоранта, затем с учетом измеренного расхода остального потока газа рассчитывают необходимое для смешения количество одорированного газа. Кроме того, для увеличения точности дозирования газоанализатором измеряют содержание одоранта в одорированном газе корректируют с учетом этих данных подачу газа, насыщенного одорантом, а также термостатируют барботажную емкость.

Недостатками известного способа являются:

- сложность способа из-за необходимости измерения и регулирования большого количества вспомогательных параметров (8-9 входных и 3-4 выходных параметра), обеспечивающих точность дозирования одоранта,

- сложность вычислительных процедур при расчете удельного массового расхода одоранта и необходимость использования дорогостоящего газоанализатора для корректировки рассчитанных значений расхода,

- трудность поточного анализа состава газа, содержащего пары одоранта, в удельных единицах массы одоранта на единицу объема газа.

Задачей изобретения является упрощение способа и повышение точности дозирования одоранта, исключение использования газоанализатора.

При реализации изобретения в качестве технического результата достигается:

- упрощение способа одоризации газа и повышение точности дозирования одоранта за счет определения массового расхода одоранта в поток газа весовым методом путем непрерывного взвешивания испарительного устройства,

- исключение необходимости использования газоанализатора за счет высокой точности весового метода определения массового расхода.

Указанный технический результат достигаемся тем, что в известном способе одорирования газа, включающем насыщение части газа парами одоранта и введение его в остальной поток газа, особенность заключается в том, что насыщение части газа парами одоранта осуществляют в двух испарительных устройствах, включающих расходную емкость и узел насыщения, одно из которых находится в стадии восполнения израсходованного одоранта, а другое находится в стадии дозирования одоранта и непрерывно взвешивается, а количество одоранта, непрерывно вводимого в остальной поток газа, устанавливают путем изменения расхода части газа через узел насыщения в зависимости от расхода газа и временной производной веса испарительного устройства, находящего в стадии дозирования одоранта.

При этом измеряют всего два параметра - расход всего потока одорируемого газа и вес испарительного устройства, находящего в стадии дозирования одоранта, рассчитывают производную веса по времени, а регулируют только один параметр - расход части газа через узел насыщения.

В этом случае масса одоранта, введенного в единицу объема потока газа М рассчитывается как: M=δW/g·δt/δV/δt, г/м3, где: W - вес испарительного устройства, H, δW/δt - временная производная веса испарительного устройства, H/сек; V - объем одорируемого газа, м3; δV/δt - расход одорируемого газа, м3/сек, g - ускорение свободного падения, м/с2.

Вес испарительного устройства изменяется во времени за счет убыли одоранта, испаряющегося в поток части газа. Степень насыщения части газа, пропускаемого через узел насыщения, парами одоранта при этом не имеет значения, поскольку осуществляется прямое инструментальное измерение количества испарившегося одоранта путем взвешивания. Это позволяет упростить способ за счет исключения измерения и регулирования большей части параметров, измеряемых и регулируемых в способе по прототипу, а также снижения объема математических вычислений.

В связи с тем что точность инструментальных методов взвешивания на 2-3 порядка превосходит точность измерения расхода и давления, осуществляемых в способе по прототипу, точность дозирования одоранта определяется исключительно точностью измерения расхода одорируемого газа и регулирования расхода части газа через узел насыщения, что увеличивает точность дозирования одоранта в сравнении со способом по прототипу и исключает необходимость применения газоанализатора.

Предлагаемый способ осуществляют следующим образом. Расход одорируемого газа (I) измеряют в устройстве 1 и разделяют на две части, одну часть (II) подают в одно из испарительных устройств 2 и 3, а остальной газ (III) направляют на смешение с газом, насыщенным парами одоранта (IV). Каждое испарительных устройств включает расходную емкость 4, узел насыщения 5 и устройство взвешивания 6, при этом испарительное устройство 2 находится в стадии дозирования одоранта, а испарительное устройство 3 находится в стадии восполнения израсходованного одоранта.

Часть газа (II), пропуская через узел насыщения 5 испарительного устройства 2, насыщают парами одоранта и смешивают с остальным газом (III), получая одорированный газ (V). Узел насыщения периодически или непрерывно пополняют жидким одорантом (VI) из расходной емкости 4.

Дозировку подачи одоранта осуществляют путем регулирования расхода газа, насыщенного парами одоранта (IV), с помощью регулируемого клапана 7, управляемого сигналом, выдаваемым системой управления 8, в результате обработки данных измерительных устройств 1 и 6.

При этом в испарительном устройстве 3 восполняют израсходованный одорант.

После исчерпания запаса одоранта в испарительном устройстве 2 их меняют местами.

Работоспособность способа подтверждается следующим примером. Из потока природного газа отделяют часть с расходом 1,5 нм3 /час и пропускают ее через испарительное устройство, находящееся на стадии дозирования одоранта, получая газ, насыщенный парами одоранта (диметилмеркаптана), который затем смешивают с основным потоком газа и получают одорированный газ. Испарительное устройство непрерывно взвешивают и путем расчета определяют, что скорость убыли его веса составляет 0,0436 н/сек. Текущий расход природного газа при этом составляет 2,778 нм3/сек, а масса одоранта, введенного в единицу объема потока газа, составляет 0,0436/(9,81*2,778)=0,0016 г/нм3 газа, что соответствует нормативному значению 1,6 г одоранта на 1000 нм3 газа. Точность дозирования составила 0,5% отн. По мере исчерпания запаса одоранта в испарительном устройстве его периодически пополняют жидким одорантом из расходной емкости, а для обеспечения непрерывности процесса используют два попеременно работающих испарительных устройства.

Таким образом, предлагаемый способ позволяет упростить и повысить точность дозирования одоранта, исключить использование газоанализатора и может быть использован в газовой промышленности.

Способ одорирования газа, включающий насыщение части газа парами одоранта и введение его в остальной поток газа, отличающийся тем, что насыщение части газа парами одоранта осуществляют при помощи двух испарительных устройств, включающих расходную емкость и узел насыщения, одно из которых находится в стадии восполнения израсходованного одоранта, а другое находится в стадии дозирования одоранта и непрерывно взвешивается, а количество одоранта, непрерывно вводимого в остальной поток газа, устанавливают путем регулирования расхода части газа через узел насыщения в зависимости от расхода газа и временной производной веса испарительного устройства, находящего в стадии дозирования одоранта.



 

Похожие патенты:

Изобретение относится к способам дозированного ввода жидких испаряющихся реагентов в поток газа и может быть использовано в газовой промышленности для одоризации природного газа.

Изобретение относится к техническим средствам оценки качества воздушной среды обитания человека. Предложенная аэрозольная камерная установка содержит формирователь 1 аэрозольных потоков, соединенный пневмомагистралью с генератором аэрозольного потока.

Изобретение относится к смешивающему устройству для смешивания первого газа со вторым газом, причем этот второй газ является коррозионным по отношению к смешивающему устройству.

Изобретение относится к приготовлению многокомпонентных газовых смесей и может быть использовано в лазерной технике, химической промышленности, в частности для приготовления смеси из перфторалкилиодида и буферных газов и последующего заполнения различных рабочих емкостей.
Изобретение относится к области разработки биокатализаторов, предназначенных для использования в составе биологических фильтров для очистки газов, и может быть использовано для проведения лабораторных экспериментов с образцами биокатализаторов, осуществляющих удаление из воздуха летучих компонентов натурального табачного сырья, а также для создания селективных условий в процессе выделения и исследования микроорганизмов, составляющих биологически активную компоненту данного типа биокатализаторов.

Изобретение относится к смесителям газов и может использоваться для получения смеси газов, используемой в качестве защитной среды в процессах сварки, и при необходимости для изменения состава газовой смеси в процессе работы.

Изобретение относится к устройству для непрерывного смешивания извлеченного из хранилища природного газа с кислородом в горючий газ для нагревания находящегося под давлением природного газа перед его расширением или после него.

Изобретение относится к аналитическому приборостроению, конкретно - к методам приготовления газовых смесей, предназначенных для проверки функционирования газосигнализаторов на угарный газ в процессе их эксплуатации.

Изобретение относится к конструкции газосмесительной камеры для приготовления градуировочных газовых смесей заданного состава. .

Изобретение относится к аналитическому приборостроению, конкретно к методам изготовления газовых смесей, предназначенных для проверки функционирования газосигнализаторов в процессе эксплуатации.

Изобретение относится к смешивающим устройствам и может быть применено для смешения потоков текучей среды, в частности газов или жидкостей, в различных отраслях промышленности и преимущественно в нефтепереработке и нефтехимии, газовой и энергетической промышленности. Смешивающее устройство для потоков текучей среды содержит камеру смешения, соединенные с ней по меньшей мере две коаксиально размещенные цилиндрические трубы, по которым потоки текучей среды поступают на смешение, завихритель, установленный по меньшей мере в одной из труб, и штуцер для вывода смеси, диаметр камеры смешения более чем в 1,7 раза превышает диаметр внешней из труб, а соотношение между длиной камеры смешения и ее диаметром больше или равно 1,5. При этом завихритель установлен с возможностью подвода закрученного потока на вход камеры смешения с интенсивностью, определяемой из отношения момента количества движения потока текучей среды к осевому количеству движения потоков на входе в камеру смешения, которое равно или больше 0,7. Техническим результатом изобретения является повышение эффективности смешения подаваемых потоков текучей среды. 3 ил.

Изобретение относится к смешиванию текучих сред. Устройство содержит полый трубчатый основной корпус (41) для смешивания первой (G4) и второй (G5) текучих сред внутри него, первый впускной порт, предусмотренный в верхней по потоку части основного корпуса (41), через который протекает первая текучая среда (G4), способствующий смешиванию корпус (38) трубчатой формы, расположенный внутри основного корпуса (41) и имеющий продольную ось (С1), проходящую в направлении, согласованном с направлением потока первой текучей среды (G4), причем противоположные концы способствующего смешиванию корпуса оставлены открытыми, и второй впускной порт (45), предусмотренный в периферийной стенке основного корпуса, через который протекает вторая текучая среда (G5) в направлении наружной периферийной стенки способствующего смешиванию корпуса (38). Первая текучая среда (G4) протекает снаружи и внутри способствующего смешиванию корпуса (38). Изобретение обеспечивает однородное смешивание и позволяет снизить потери давления. 2 н. и 4 з.п. ф-лы, 12 ил.

Изобретение относится к смесителям газов и может использоваться для получения смеси газов в различных технологических процессах, например для получения смеси газов, используемой в качестве плазмообразующей среды в процессе плазменного напыления. Устройство для приготовления газовой смеси, используемой при ионно-плазменном напылении, содержит камеру смешивания, сообщенную с плазменной ячейкой устройства, впускные клапаны подачи газа, установленные на входе в камеру смешивания, выпускной клапан подачи газовой смеси, установленный на выходе камеры смешивания, датчики давления, установленные в камере смешивания и в плазменной ячейке, блок управления, при этом все клапаны соединены с блоком управления и датчиками давления с обеспечением автоматического переключения клапанов. Изобретение обеспечивает возможность дискретной порционной подачи газов нужного типа и требуемого давления в камеру смешивания, что позволяет получить смесь газов с определенной пропорцией требуемых компонент, сформировать необходимый дозированный газовый поток полученной смеси в рабочую камеру (плазменную ячейку), поддерживать необходимое давление смеси газов в объеме камеры смешивания и в рабочей камере (плазменной ячейке), осуществлять управление параметрами смеси и газового потока в ручном, полуавтоматическом или автоматическом режимах. 5 ил.

Система предназначена для получения газообразного топлива и может быть использована на промышленных предприятиях и объектах ЖКХ. Система содержит линию подачи воздуха, содержащую последовательно соединенные между собой трубопроводом в произвольном порядке: первый расходомер, выполненный с возможностью измерения расхода воздуха, и регулирующий клапан, выполненный с возможностью регулирования расхода воздуха в линии подачи воздуха; линию подачи газа, содержащую соединенный трубопроводом с входом эжектора второй расходомер, выполненный с возможностью измерения расхода газа; линию смешения газа и воздуха, содержащую эжектор, выполненный с возможностью получения газовоздушной смеси и соединенный трубопроводами на входе с выходом линии подачи воздуха и выходом линии подачи газа, а на выходе - с выходом системы; обводную линию, содержащую первый редуктор, выполненный с возможностью формирования предварительно установленного давления на выходе обводной линии, соединенный трубопроводами с линией подачи газа между вторым расходомером и входом эжектора и с линией смешения газа и воздуха между эжектором и выходом системы; блок управления, соединенный с первым расходомером, вторым расходомером и регулирующим клапаном и выполненный с возможностью: приема информации о расходе воздуха от первого расходомера, приема информации о расходе газа от второго расходомера, и управления регулирующим клапаном на основании принятой информации таким образом, чтобы при текущем значении расхода газа поддерживать расход воздуха, необходимый для обеспечения предварительно заданного соотношения воздуха и газа в получаемой газовоздушной смеси. Технический результат - упрощение конструкции системы, повышение надежности, безопасности и эффективности использования природного газа. 11 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам для получения стандартных образцов газовых смесей на основе инертных и постоянных газов и может быть использовано в различных отраслях промышленности. Устройство включает узел гидростатического взвешивания с мерной емкостью, заполненной дозируемым газом, тестовой емкостью, подвешенной к тензодатчику, расположенному изнутри на крышке мерной емкости, дозатор реагента и систему управления (первый и второй варианты). Первый вариант устройства дополнительно включает расходомер флюида. При работе устройства по первому варианту дозируемый газ периодически подают в мерную емкость, внутри которой к тензодатчику подвешена тестовая емкость. При расходовании дозируемого газа в мерной емкости снижается давление, уменьшается вес газа, вытесняемого тестовой емкостью, и ее вес увеличивается. Сигнал от тензодатчика поступает в блок управления, где обрабатывается совместно с сигналом, поступающим от расходомера в трубопроводе флюида, а сгенерированный сигнал управляет клапаном, подающим дозируемый газ в трубопровод флюида. Работа устройства по второму варианту предполагает дозирование заданного блоком управления количества в замкнутый объем. Техническим результатом является дозирование газа с высокой точностью. 2 н.п. ф-лы, 2 ил.

Изобретение относится к десублимационной технике и может быть использовано в химической и фармацевтической промышленности. Способ десублимации твердых веществ включает загрузку не менее двух видов десублимируемых веществ в сублиматоры, их расплавление и возгонку с образованием разнородных сублимированных паров, взаимодействие сублимированных паров с холодным газом-носителем над верхней секцией парогазораспределительной камеры сублиматора, расположенного соосно парогазораспределительной камере, до состояния пересыщения парогазовых смесей, десублимацию готовой смеси паров с образованием частиц требуемых размеров и отделение готового продукта, при этом перед десублимацией на выходе из каналов верхней секции парогазораспределительной камеры осуществляют начальное смешение паров веществ еще в сублимированной фазе путем направления их потоков под углом навстречу друг к другу, с последующей десублимацией одновременно с окончательным их смешением в одной зоне - зоне смешения-десублимации при взаимодействии с холодным газом-носителем по мере движения в смесителе-десублиматоре. Устройство для осуществления данного способа содержит сублиматоры 1, 2, парогазораспределительную камеру 3 с решеткой 13 и каналами для подачи паров десублимируемых продуктов 7, 8 и холодного газа–носителя 25, десублиматор 9 и узлы отделения готового продукта 26, 28, при этом десублиматор совмещен со смесителем и является смесителем-десублиматором 9, под ним расположена парогазораспределительная камера 3, состоящая из двух секций - нижней 5 и верхней 6, нижняя секция 5 находится на одном из сублиматоров 1, расположенном соосно парогазораспределительной камере 3, смеситель–десублиматор 9, парогазораспределительная камера 3 и сублиматор 1, расположенный соосно парогазораспределительной камере 3, расположены в одном корпусе, второй сублиматор 2 расположен снаружи от корпуса и связан с нижней секцией 5 парогазораспределительной камеры 3 обогреваемым паропроводом 4, причем каналы 7, 8 парогазораспределительной камеры 3 с решеткой 13 выполнены кольцевыми, а центральный ее канал - в виде цилиндрической трубы, в отверстия каналов для подачи паров десублимируемых продуктов установлены насадки 16, 17, 18, причем насадка центрального канала 16 установлена по оси парагазораспределительной камеры 3 и выполнена конической формы, остальные насадки 17 на отверстия каналов II выполнены кольцевыми с поперечным сечением в виде равнобедренного треугольника, а стенки кольцевых насадок наклонены к продольной оси парогазараспределительной камеры 3 с образованием двухсторонних щелей для выхода паров сублимата в направлении к центру смесителя-десублиматора 9 и к его боковой стенке, а во внешнем кольцевом канале I выполнена односторонняя щель между внутренней стенкой кольцевой насадки 18 и отверстием внешнего кольцевого канала I для выхода паров сублимата в направлении к центру смесителя-десублиматора 9, при этом входные отверстия 14 в каналах нижней секции 5 парагазораспределительной камеры 3 выполнены над сублиматором 1, расположенным соосно парогазораспределительной камере 3, входные отверстия 11 каналов верхней секции 6 расположены над нижней секцией 5 парогазораспределительной камеры 3, а решетка 13, установленная в верхней части верхней секции 6 парогазораспределительной камеры 3, выполнена из отдельных колец, и все кольцевые каналы 7 в нижней секции 5 парогазораспределительной камеры 3 имеют радиальные перетоки 10 для распределения пара сублимата из второго сублиматора 2, расположенного снаружи от корпуса, по всей нижней секции, а в верхней секции 6 парогазораспределительной камеры 3 все кольцевые каналы 8 имеют радиальные перетоки 12 для распределения холодного газа-носителя по всей верхней секции 6. Техническим результатом изобретения является возможность получения смеси мелко- и ультрадисперсных материалов в объемах продукта массой не более 3 мг. 2 н.п. ф-лы, 7 ил., 1 табл.
Наверх