Радиационно-защитный материал на полимерной основе с повышенными рентгенозащитными и нейтронозащитными свойствами



Радиационно-защитный материал на полимерной основе с повышенными рентгенозащитными и нейтронозащитными свойствами
Радиационно-защитный материал на полимерной основе с повышенными рентгенозащитными и нейтронозащитными свойствами
Радиационно-защитный материал на полимерной основе с повышенными рентгенозащитными и нейтронозащитными свойствами
Радиационно-защитный материал на полимерной основе с повышенными рентгенозащитными и нейтронозащитными свойствами

 


Владельцы патента RU 2561989:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" (RU)

Изобретение относится к ядерной технике, а именно к материалам для защиты от ионизирующего излучения, и предназначено для использования при изготовлении элементов радиационно-защитных экранов. Радиационно-защитный материал на полимерной основе содержит сверхвысокомолекулярный полиэтилен с наночастицами вольфрама и карбида бора. Изобретение обеспечивает увеличение поглощения ионизирующего излучения. 1 ил., 3 табл., 1 пр.

 

Изобретение относится к ядерной технике, к материалам для защиты от ионизирующего излучения и предназначено для использования при изготовлении элементов радиационно-защитных экранов.

Известен радиационно-защитный материал (RU 2368629 C2 20090927 «РАДИАЦИОННО-ЗАЩИТНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ»).

Способ изготовления данного материала включает полимеризацию этилена на поверхности частиц элементарного бора среднего размера 3-8 мкм в присутствии иммобилизованной на нем каталитической системы, состоящей из тетрахлорида ванадия и алюминийорганического соединения. Сначала на поверхности частиц бора проводят фор-полимеризацию этилена до образования на них покрытия из сверхвысокомолекулярного полиэтилена с молекулярной массой не менее 1·106 и толщиной 0,01-20 мкм. Радиационно-защитный композиционный материал представляет собой частицы элементарного бора с полиолефиновым покрытием в виде агломератов среднего размера 20-100 мкм. Полученный композиционный материал обладает равномерным распределением частиц бора в полимерной матрице, а также комплексом свойств - высокой прочностью, очень высокой ударной вязкостью в широком диапазоне температур, стойкостью к растрескиванию и истиранию.

Данный материал не способен защищать от гамма- и рентгеновского излучения, которое возникает при поглощении нейтрона бором.

Известен материал биозащиты (RU 2008730 C1 19940228 «МАТЕРИАЛ БИОЗАЩИТЫ ОТ НЕЙТРОНОВ»). Применяемая для его получения композиция содержит, масс.ч.: полиэтилен 100; аморфный бор 3-5; гидроокись алюминия 70-100; бромсодержащее ароматическое соединение 10-20; поливиниловый спирт 1-2; малеиновый ангидрид 1-2. Композиция дополнительно может содержать полистирол в количестве 20-25 масс.ч. на 100 масс.ч. полиэтилена для повышения радиационной стойкости.

Недостатком материала является неспособность материалом поглощать гамма-излучение, при поглощении нейтрона бором.

Материл (RU 2050380 C1, 19951220 «СПОСОБ ПОЛУЧЕНИЯ ПОЛИЭТИЛЕНОВОЙ КОМПОЗИЦИИ») получен на основе полиэтиленовой композиции, где предварительно аморфный бор смешивают с изотактическим полипропиленом, прессуют в виде заготовок, точением получают стружку и дробят ее до порошкового состояния дисперсностью до 1 мм в шаровом смесителе, в дробленый порошок вводят полиэтилен, смешивают и экструдируют. Процесс проводят при содержании аморфного бора 50, 75 масс. на 100 масс. его смеси с полипропиленом. Также предложена и боросодержащая композиция композиционного материала, предназначенного для защиты от нейтронных излучений при эксплуатации атомных энергетических установок, защищающих контейнеров при хранении и транспортировке делящихся веществ, что обеспечивает получение более теплостойкой боросодержащей композиции с повышенными прочностными характеристиками и не имеющей дефектов. Боросодержащая композиция на основе аморфного бора и полипропилена дополнительно содержит нитрид бора при следующем соотношении компонентов, масс.%: бор аморфный 4-6; нитрид бора 9-11; полипропилен 83-87.

Недостатком является неспособность защищать от гамма- и рентгеновского излучения, которое возникает при поглощении нейтрона бором.

Также известна боросодержащая композиция (RU 2096431 C1, 19971120 «БОРОСОДЕРЖАЩАЯ КОМПОЗИЦИЯ»). Точением получают стружку и дробят ее до порошкового состояния. В дробленый продукт добавляют полиэтилен, смешивают и экструдируют. Способ позволяет прессовать детали без дефектов, предел прочности на разрыв не ниже 160 кг/см2.

Недостатками являются низкие показатели прочности на разрыв, а также неспособность защищать от гамма- и рентгеновского излучения, которое возникает при поглощении нейтрона бором.

Прототипом предложенного изобретения является (RU 02148062 C1, 20000427 «СПОСОБ ПРИГОТОВЛЕНИЯ ПОЛИМЕРНОЙ КОМПОЗИЦИИ»), получена полимерная композиция, в которой в качестве наполнителя используют нитрид бора и осуществляют его смешение с частью олефинового полимера при их массовом соотношении от 1:2 до 1:1 соответственно в шаровом смесителе при соотношении массы металлических шаров к массе перемешиваемой композиции 4:1 в течение 1-2 ч с последующим добавлением оставшейся части олефинового полимера и продолжением смешения в шаровом смесителе в течение 0,5-1 ч.

Отличием является полимерная матрица и способ получения готового продукта.

Технический результат изобретения заключается в увеличении поглощения ионизирующего излучения (нейтронного и рентгеновского) за счет введения нанопорошков наполнителей, обеспечивающих увеличение коэффициента поглощения рентгеновского излучения до 10-30% по сравнению с микрокристаллическими аналогами.

Технический результат достигается следующим образом.

Радиационно-защитный материал на полимерной основе содержит сверхвысокомолекулярный полиэтилен с наночастицами вольфрама и карбида бора при следующем соотношении компонентов, мас.%:

Сверхвысокомолекулярный полиэтилен - 20-82;

Вольфрам - 10-60;

Карбид бора - 8-20.

В предлагаемом материале повышение уровня радиационно-защитных свойств достигается за счет введения в композит порошка вольфрама и карбида бора дисперсностью менее 50 нм. Введение нанопорошка вольфрама в количестве 10-60% масс. обеспечивает коэффициент поглощения рентгеновского излучения с энергией 122 кэВ до 4 см-1. Введение наночастиц карбида бора в композит в количестве 8-20% масс. обеспечивает высокий уровень защитных свойств от нейтронного излучения, вплоть до полного поглощения. Эффективное распределение наноразмерных наполнителей по полимерной матрице обеспечивается за счет применения метода совестного механического синтеза в высокоэнергетичных планетарных мельницах с металлическими мелящими телами. Получение изделия необходимой формы из композита осуществляется методами термопрессования и экструзии при температуре 180-200°C. Благодаря хорошей перерабатываемости материала изделие радиационной защиты из данного материала может быть изготовлено практически любой сложной формы.

Возможность промышленной применимости предлагаемого материала и его использования в качестве радиационно-защитного материала подтверждается следующим примером реализации.

Пример

В качестве исходных материалов использовались сверхвысокомолекулярный полиэтилен (СВМПЭ) марки GUR 4120, нанопорошок вольфрама дисперсностью 50 нм, полученный методом водородного восстановления специально приготовленного прекурсора на основе вольфрамовой кислоты, и карбид бора, полученный механическим измельчением в шаровом механоактиваторе промышленного порошка карбида бора.

Порошки - СВМПЭ, вольфрама, карбида бора проходят предварительную сушку при температуре 110°C, затем смешиваются и подвергаются механическому перемешиванию с помощью планетарной мельницы АПФ-3 с металлическими мелящими телами в следующих композициях: 10% масс. вольфрама с 8% масс. карбида бора, СВМПЭ - остальное; 18% масс. вольфрама с 12% масс. карбида бора, СВМПЭ - остальное; 30% масс. вольфрама с 20% масс. карбида бора, СВМПЭ - остальное; 60% масс. вольфрама с 8% масс. карбида бора, СВМПЭ - остальное. Полученные после перемешивания в мельнице композиционные смеси подвергались термопрессованию при температуре 180-200°C и давлении 35-40 МПа.

На чертеже показан пример структуры композита, полученной на сканирующем электронном микроскопе, путем получения хрупкого излома композита при замораживании его в жидком азоте.

Механические, трибологические и радиационно-защитные свойства композитов приведены в таблицах 1, 2, 3.

Радиационно-защитный материал на полимерной основе содержит сверхвысокомолекулярный полиэтилен с наночастицами вольфрама и карбида бора при следующем соотношении компонентов, мас.%:
Сверхвысокомолекулярный полиэтилен - 20-82;
Вольфрам - 10-60;
Карбид бора - 8-20.



 

Похожие патенты:

Изобретение относится к сельскому хозяйству и защите окружающей среды, в частности к средствам для дезактивации почв, зараженных радиоактивными элементами. Средство для дезактивации почв, зараженных радиоактивными элементами, содержит в своем составе поли-N,N-диалкил-3,4-диметиленпирролидиний галогенид общей формулы в которой R1 и R2 означают независимо друг от друга линейный или разветвленный алкил с 1-6 атомами углерода и X означает фтор, хлор, бром, йод или тетрафторборат, причем средняя молекулярная масса полимера составляет от 75000 до 100000 г/моль.
Изобретение относится к полимерной композиции для радиационной защиты электронных приборов, содержащей полимерное связующее, литий и бор в качестве экранирующих наполнителей (агентов), которая может быть использована для изготовления защитных материалов для биологической защиты, в качестве теневой защиты ядерных энергетических установок, аппаратуры ядерно-опасных объектов.

Изобретение относится к технологии изготовления материалов для защиты от нейтронного излучения. Пастообразный материал для защиты от нейтронного излучения включает консистентную смазку ВНИИНП-293 и порошкообразный бор аморфный в качестве наполнителя при массовом соотношении компонентов (%) 91-97 и 3-9 соответственно, при этом удельная поверхность порошка бора аморфного составляет не менее 15 м2/г.
Изобретение относится к области защиты от ионизирующего излучения и может применяться в качестве защиты электронных приборов космического аппарата (КА), работающего на геостационарной орбите, от воздействия поражающего фактора магнитных бурь.
Изобретение относится к средствам защиты от радиоактивного излучения и может применяться в производстве контейнеров для хранения радиоактивных материалов, а также изоляции помещений.

Изобретение относится к области космического материаловедения и может быть использовано в качестве терморегулирующих покрытий на внешней стороне космического аппарата в области низких земных орбит.
Изобретение относится к области разработки материалов, обладающих нейтронопоглощающими свойствами, и может быть использовано в качестве защитного слоя при изготовлении транспортно-упаковочных конструкций (ТУК) для транспортировки и хранения отработанного ядерного топлива, а также для биологической защиты от других случаев нейтронных излучений.

Изобретение относится к лантаноидсодержащим соединениям, состоящим из сополимера этилметакрилата и 3-аллилпентандиона-2,4 (100:1), связанного через -дикетонатную группу с ионом лантаноида (+3), который, в свою очередь, связан с молекулами лиганда, представляющего собой -дикетон, общей формулы где Ln - ион лантаноида (+3) (La 3+, Pr3+, Nd3+ Sm3+, Eu 3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+ ), n - количество звеньев этилметакрилата в цепи сополимера; m - количество лантаноидсодержащих звеньев в цепи сополимера; R1, R2, R3, R4 - органические радикалы (СН3-метил, С6Н 5-фенил): R1=R2=R3=R 4=СН3 - ион лантаноида (+3), связанный с полимерной частью соединения через фрагмент пентандион-2,4 (ацетилацетона) и лигандом, представляющим собой ацетилацетон; R1=R 3=СН3, R2=R4=С6 Н5 - ион лантаноида (+3), связанный с полимерной частью соединения через фрагмент бензоилацетона и лигандом, представляющим собой бензоилацетон; R1=R2=R3 =R4=С6Н5 - ион лантаноида (+3), связанный с полимерной частью соединения через фрагмент дибензоилметана и лигандом, представляющим собой дибензоилметан; R1 =R3=R4=СН3, R2=С 6Н5 - ион лантаноида (+3), связанный с полимерной частью соединения через фрагмент бензоилацетона и лигандом, представляющим собой ацетилацетон; R1=R2=С6 Н5, R3=R4=СН3 - ион лантаноида (+3), связанный с полимерной частью соединения через фрагмент дибензоилметана и лигандом, представляющим собой ацетилацетон; R1=R2=R3=С6Н 5, R4=СН3 - ион лантаноида (+3), связанный с полимерной частью соединения через фрагмент дибензоилметана и лигандом, представляющим собой бензоилацетон.
Изобретение относится к области композиционных пленкообразующих материалов и предназначено для создания тонкослойных полимерных рентгенозащитных покрытий. .
Изобретение относится к полимерной композиции для радиационной защиты электронных приборов, содержащей полимерное связующее, литий и бор в качестве экранирующих наполнителей (агентов), которая может быть использована для изготовления защитных материалов для биологической защиты, в качестве теневой защиты ядерных энергетических установок, аппаратуры ядерно-опасных объектов.
Изобретение относится к материалам для защиты от ионизирующих излучений и может быть использовано в атомной, радиохимической промышленности, а также в военно-морской и авиакосмической промышленности в целях защиты обслуживающего персонала и окружающей среды.

Изобретение относится к области биологической защиты персонала и окружающей среды от воздействия высокоактивных источников радиоактивного излучения. .

Изобретение относится к области электронной техники. .
Изобретение относится к области производства материалов, поглощающих нейтроны. .
Изобретение относится к порошковой металлургии и может быть использовано для изготовления вкладышей из карбида бора для работы в качестве поглотителей нейтронов в стержнях СУЗ атомных реакторов, например в реакторах БОР-60 и БН-600.
Изобретение относится к рентгенотехнике и касается материалов для защиты от рентгеновского излучения. .
Изобретение относится к рентгенотехнике и касается материалов для защиты от рентгеновского излучения. .

Изобретение относится к рентгенотехнике и касается материалов с повышенными свойствами к поглощению рентгеновских лучей. .

Изобретение относится к средствам защиты от оружия поражения ближнего боя. В защитном устройстве резервуаров для хранения газообразных, жидких и сыпучих сред, в том числе радиоактивных, защита обеспечивается установкой на корпус резервуара «прозрачного» экрана, выполненного в виде решетки из стального прутка, и сплошных экранов, выполненных из армированного высокопрочного не поддерживающего горение материала, например фиброжелезобетона.
Наверх